Random unconditional convergence of vector-valued Dirichlet series

Melisa Scotti

Joint work with D. Carando, F. Marceca y P. Tradacete

Conference on Non Linear Functional Analysis, Valencia 2017

Universidad de Buenos Aires, IMAS-CONICET

October 17, 2017

A basic sequence $(x_n)_n$ in a Banach space X is **unconditional** if for every $x \in \text{span}(x_n)_n$ its expansion $\sum_n a_n x_n$ converges unconditionally.

Equivalently:

A basic sequence $(x_n)_n$ in a Banach space X is **unconditional** if for every $x \in \text{span}(x_n)_n$ its expansion $\sum_n a_n x_n$ converges unconditionally.

Equivalently:

• There is a constant C > 0 such that for every choice of signs $\varepsilon = \pm 1$,

$$\left\|\sum_{n=1}^{N}\varepsilon_{n}a_{n}x_{n}\right\| \leq C \left\|\sum_{n=1}^{N}a_{n}x_{n}\right\|.$$

A basic sequence $(x_n)_n$ in a Banach space X is **unconditional** if for every $x \in \text{span}(x_n)_n$ its expansion $\sum_n a_n x_n$ converges unconditionally.

Equivalently:

• There is a constant C > 0 such that for every choice of signs $\varepsilon = \pm 1$,

$$\Big\|\sum_{n=1}^N \varepsilon_n a_n x_n\Big\| \le C \Big\|\sum_{n=1}^N a_n x_n\Big\|.$$

• Considering each ε_n a Rademacher random variable,

A basic sequence $(x_n)_n$ in a Banach space X is **unconditional** if for every $x \in \text{span}(x_n)_n$ its expansion $\sum_n a_n x_n$ converges unconditionally.

Equivalently:

• There is a constant C > 0 such that for every choice of signs $\varepsilon = \pm 1$,

$$\Big\|\sum_{n=1}^N \varepsilon_n a_n x_n\Big\| \le C \Big\|\sum_{n=1}^N a_n x_n\Big\|.$$

• Considering each ε_n a Rademacher random variable,

$$C^{-1} \Big\| \sum_{n=1}^{N} a_n x_n \Big\| \le \mathbb{E} \Big\| \sum_{n=1}^{N} \varepsilon_n a_n x_n \Big\| \le C \Big\| \sum_{n=1}^{N} a_n x_n \Big\|.$$

A basic sequence $(x_n)_n$ in a Banach space X is **unconditional** if for every $x \in \text{span}(x_n)_n$ its expansion $\sum_n a_n x_n$ converges unconditionally.

Equivalently:

• There is a constant C > 0 such that for every choice of signs $\varepsilon = \pm 1$,

$$\Big\|\sum_{n=1}^N \varepsilon_n a_n x_n\Big\| \le C \Big\|\sum_{n=1}^N a_n x_n\Big\|.$$

• Considering each ε_n a Rademacher random variable,

$$\mathbb{E} \Big\| \sum_{n=1}^{N} \varepsilon_n a_n x_n \Big\| \sim \Big\| \sum_{n=1}^{N} a_n x_n \Big\|.$$

• Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$?

• Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. • Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. It is an open problem for $p \neq 2$.

- Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. It is an open problem for $p \neq 2$.
- Is $(n^{-s})_n$ an unconditional basis in $\mathcal{H}^p(\mathbb{C})$?

- Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. It is an open problem for $p \neq 2$.
- Is $(n^{-s})_n$ an unconditional basis in $\mathcal{H}^p(\mathbb{C})$?

Proposition (Carando-Defant-Sevilla)

Let $1 \le p < \infty$. For every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\mathbb{E}\Big\|\sum_{n=1}^{N}\varepsilon_{n}a_{n}n^{-s}\Big\|_{\mathcal{H}_{p}(\mathbb{C})}\sim\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}=\Big\|\sum_{n=1}^{N}a_{n}n^{-s}\Big\|_{\mathcal{H}_{2}(\mathbb{C})}$$

- Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. It is an open problem for $p \neq 2$.
- Is $(n^{-s})_n$ an unconditional basis in $\mathcal{H}^p(\mathbb{C})$?

Proposition (Carando-Defant-Sevilla)

Let $1 \le p < \infty$. For every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\mathbb{E} \Big\| \sum_{n=1}^{N} \varepsilon_n a_n n^{-s} \Big\|_{\mathcal{H}_p(\mathbb{C})} \sim \left(\sum_{n=1}^{N} |a_n|^2 \right)^{1/2} = \Big\| \sum_{n=1}^{N} a_n n^{-s} \Big\|_{\mathcal{H}_2(\mathbb{C})}$$

$$\mathbb{E} \left\| \sum_{n=1}^{N} \varepsilon_{n} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \leq C \left\| \sum_{n=1}^{N} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \text{ if and only if } p \geq 2$$
$$\left\| \sum_{n=1}^{N} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \leq \tilde{C} \mathbb{E} \left\| \sum_{n=1}^{N} \varepsilon_{n} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \text{ if and only if } p \leq 2$$

- Does $\mathcal{H}^p(\mathbb{C})$ have an unconditional basis if $p \in (1, \infty)$? YES if p = 2. It is an open problem for $p \neq 2$.
- Is $(n^{-s})_n$ an unconditional basis in $\mathcal{H}^p(\mathbb{C})$? ONLY FOR p = 2

Proposition (Carando-Defant-Sevilla)

Let $1 \le p < \infty$. For every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\mathbb{E}\left\|\sum_{n=1}^{N}\varepsilon_{n}a_{n}n^{-s}\right\|_{\mathcal{H}_{p}(\mathbb{C})}\sim\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}=\left\|\sum_{n=1}^{N}a_{n}n^{-s}\right\|_{\mathcal{H}_{2}(\mathbb{C})}$$

$$\mathbb{E} \left\| \sum_{n=1}^{N} \varepsilon_{n} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \leq C \left\| \sum_{n=1}^{N} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \text{ if and only if } p \geq 2$$
$$\left\| \sum_{n=1}^{N} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \leq \tilde{C} \mathbb{E} \left\| \sum_{n=1}^{N} \varepsilon_{n} a_{n} n^{-s} \right\|_{\mathcal{H}_{p}(\mathbb{C})} \text{ if and only if } p \leq 2$$

RUC and RUD sequences

Definition (Billard-Kwapien-Pełczynski-Samuel, 1985)

A basic sequence $(x_n)_n$ in a Banach space X is **Random Unconditionally Convergent** (*RUC*), when there is a constant $C \ge 1$ such that for every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\mathbb{E}\Big\|\sum_{n=1}^{N}\varepsilon_{n}a_{n}x_{n}\Big\| \leq C \Big\|\sum_{n=1}^{N}a_{n}x_{n}\Big\|.$$

RUC and RUD sequences

Definition (Billard-Kwapien-Pełczynski-Samuel, 1985)

A basic sequence $(x_n)_n$ in a Banach space X is **Random** Unconditionally Convergent (*RUC*), when there is a constant $C \ge 1$ such that for every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\mathbb{E}\Big\|\sum_{n=1}^{N}\varepsilon_{n}a_{n}x_{n}\Big\| \leq C\,\Big\|\sum_{n=1}^{N}a_{n}x_{n}\Big\|.$$

Definition

A basic sequence $(x_n)_n$ is **Random Unconditionally Divergent** (*RUD*), when there is a constant $C \ge 1$ such that for every $N \in \mathbb{N}$ and every sequence of scalars $(a_n)_{n=1}^N$ we have

$$\Big\|\sum_{n=1}^N a_n x_n\Big\| \le C \,\mathbb{E} \Big\| \sum_{n=1}^N \varepsilon_n a_n x_n \Big\|.$$

• If a basic sequence is *RUC* and *RUD*, then it is unconditional.

• If a basic sequence is *RUC* and *RUD*, then it is unconditional.

Summarizing

- $(n^{-s})_n$ is RUC in $\mathcal{H}_p(\mathbb{C})$ if and only if $2 \le p < \infty$.
- $(n^{-s})_n$ is RUD in $\mathcal{H}_p(\mathbb{C})$ if and only if 1 .
- $(n^{-s})_n$ is unconditional in $\mathcal{H}_p(\mathbb{C})$ if and only if p = 2.

A Dirichlet series with values in *E* is a functions D = D(s) of the form

$$D = \sum_{n} a_n \frac{1}{n^s}$$

with coefficients $a_n \in E$ and variable s in some region of \mathbb{C} .

A Dirichlet series with values in *E* is a functions D = D(s) of the form

$$D = \sum_{n} a_n \frac{1}{n^s}$$

with coefficients $a_n \in E$ and variable s in some region of \mathbb{C} .

A Dirichlet series with values in *E* is a functions D = D(s) of the form

$$D = \sum_{n} a_n \frac{1}{n^s}$$

with coefficients $a_n \in E$ and variable *s* in some region of \mathbb{C} .

Bohr's idea was to relate Dirichlet series in one complex variable to power series in infinitely many variables.

A Dirichlet series with values in *E* is a functions D = D(s) of the form

$$D = \sum_{n} a_n \frac{1}{n^s}$$

with coefficients $a_n \in E$ and variable *s* in some region of \mathbb{C} .

Bohr's idea was to relate Dirichlet series in one complex variable to power series in infinitely many variables.

Let $p = (p_1, p_2, p_3...)$ be the sequence of prime numbers.

Let $p = (p_1, p_2, p_3...)$ be the sequence of prime numbers. For $\alpha = (\alpha_1, ..., \alpha_N, 0, ...) \in \mathbb{N}_0^{(\mathbb{N})}$ we set

$$p^{\alpha} = p_1^{\alpha_1} \times \dots \times p_N^{\alpha_N}.$$

Let $p = (p_1, p_2, p_3...)$ be the sequence of prime numbers. For $\alpha = (\alpha_1, ..., \alpha_N, 0, ...) \in \mathbb{N}_0^{(\mathbb{N})}$ we set

$$p^{\alpha} = p_1^{\alpha_1} \times \dots \times p_N^{\alpha_N}.$$

There is a one-to-one correspondance

$$\alpha \in \mathbb{N}_0^{(\mathbb{N})} \longleftrightarrow n \in \mathbb{N}$$
 where $p^{\alpha} = n$

Let $p = (p_1, p_2, p_3...)$ be the sequence of prime numbers. For $\alpha = (\alpha_1, ..., \alpha_N, 0, ...) \in \mathbb{N}_0^{(\mathbb{N})}$ we set

$$p^{\alpha} = p_1^{\alpha_1} \times \dots \times p_N^{\alpha_N}.$$

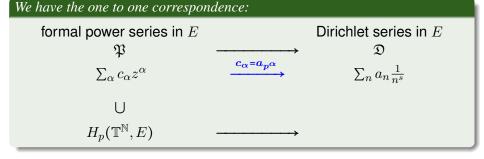
There is a one-to-one correspondance

$$\alpha \in \mathbb{N}_0^{(\mathbb{N})} \longleftrightarrow n \in \mathbb{N}$$
 where $p^{\alpha} = n$

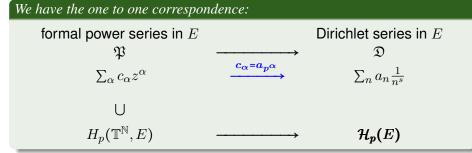
Notation:

If $z = (z_1, z_2, z_3, ...)$ is any sequence of complex numbers we write

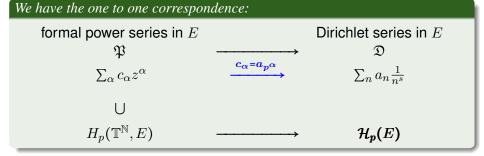
$$z^{\alpha} = z_1^{\alpha_1} \times \cdots \times z_N^{\alpha_N}.$$



 $H_p(\mathbb{T}^{\mathbb{N}}; E) \coloneqq \{ f \in L_p(\mathbb{T}^{\mathbb{N}}; E) : \hat{f}(\alpha) \neq 0 \text{ only if } \alpha \in \mathbb{N}_0^{(\mathbb{N})} \}.$



 $H_p(\mathbb{T}^{\mathbb{N}}; E) \coloneqq \{ f \in L_p(\mathbb{T}^{\mathbb{N}}; E) : \hat{f}(\alpha) \neq 0 \text{ only if } \alpha \in \mathbb{N}_0^{(\mathbb{N})} \}.$



$$H_p(\mathbb{T}^{\mathbb{N}}; E) \coloneqq \{ f \in L_p(\mathbb{T}^{\mathbb{N}}; E) : \hat{f}(\alpha) \neq 0 \text{ only if } \alpha \in \mathbb{N}_0^{(\mathbb{N})} \}.$$

Define $\mathcal{H}_p(E)$ as the image of $H_p(\mathbb{T}^{\mathbb{N}}, E)$ under Bohr's transform, equipped with the norm

$$\left\|\sum_{n\in\mathbb{N}}x_nn^{-s}\right\|_{\mathcal{H}_p(E)} = \left\|\sum_{\alpha\in\mathbb{N}_0^{(\mathbb{N})}}x_{n(\alpha)}z^{\alpha}\right\|_{H_p(\mathbb{T}^{\mathbb{N}},E)}.$$

Given $1 \le p \le \infty$ and a Banach space *E*, we define

 $\mathcal{H}_p^{rad}(E) \coloneqq \{\sum a_n n^{-s} : \sum r_n a_n n^{-s} \in L_1\left([0,1], \mathcal{H}_p(E)\right)\}.$

Given $1 \le p \le \infty$ and a Banach space *E*, we define

$$\mathcal{H}_p^{rad}(E) \coloneqq \{\sum a_n n^{-s} : \sum r_n a_n n^{-s} \in L_1([0,1], \mathcal{H}_p(E))\}.$$

This is a Banach space under the norm

$$\left\|\sum a_n n^{-s}\right\|_{\mathcal{H}_p^{rad}(E)} \coloneqq \mathbb{E}\left\|\sum \varepsilon_n a_n n^{-s}\right\|_{\mathcal{H}_p(E)}$$

Given $1 \le p \le \infty$ and a Banach space *E*, we define

$$\mathcal{H}_p^{rad}(E) \coloneqq \{\sum a_n n^{-s} : \sum r_n a_n n^{-s} \in L_1([0,1], \mathcal{H}_p(E))\}.$$

This is a Banach space under the norm

$$\left\|\sum a_n n^{-s}\right\|_{\mathcal{H}_p^{rad}(E)} \coloneqq \mathbb{E}\left\|\sum \varepsilon_n a_n n^{-s}\right\|_{\mathcal{H}_p(E)}.$$

Recall that $(n^{-s})_n \subset \mathcal{H}_p(\mathbb{C})$ is RUC if and only if

Given $1 \le p \le \infty$ and a Banach space *E*, we define

$$\mathcal{H}_p^{rad}(E) \coloneqq \{\sum a_n n^{-s} : \sum r_n a_n n^{-s} \in L_1([0,1], \mathcal{H}_p(E))\}.$$

This is a Banach space under the norm

$$\left\|\sum a_n n^{-s}\right\|_{\mathcal{H}_p^{rad}(E)} \coloneqq \mathbb{E}\left\|\sum \varepsilon_n a_n n^{-s}\right\|_{\mathcal{H}_p(E)}.$$

Recall that $(n^{-s})_n \in \mathcal{H}_p(\mathbb{C})$ is RUC if and only if

$$\mathbb{E} \left\| \sum_{n=1}^{N} \varepsilon_n a_n n^{-s} \right\|_{\mathcal{H}_p(\mathbb{C})} \le C \left\| \sum_{n=1}^{N} a_n n^{-s} \right\|_{\mathcal{H}_p(\mathbb{C})}$$

This happens if and only if

$$\mathcal{H}_p(\mathbb{C}) \subseteq \mathcal{H}_p^{Rad}(\mathbb{C})$$

Given $1 \le p \le \infty$ and a Banach space *E*, we define

$$\mathcal{H}_p^{rad}(E) \coloneqq \{\sum a_n n^{-s} : \sum r_n a_n n^{-s} \in L_1([0,1], \mathcal{H}_p(E))\}.$$

This is a Banach space under the norm

$$\left\|\sum a_n n^{-s}\right\|_{\mathcal{H}_p^{rad}(E)} \coloneqq \mathbb{E}\left\|\sum \varepsilon_n a_n n^{-s}\right\|_{\mathcal{H}_p(E)}.$$

Recall that $(n^{-s})_n \subset \mathcal{H}_p(\mathbb{C})$ is RUC if and only if

$$\left\|\sum_{n=1}^{N} a_n n^{-s}\right\|_{\mathcal{H}_p^{Rad}(\mathbb{C})} = \mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_n a_n n^{-s}\right\|_{\mathcal{H}_p(\mathbb{C})} \le C\left\|\sum_{n=1}^{N} a_n n^{-s}\right\|_{\mathcal{H}_p(\mathbb{C})}$$

This happens if and only if

$$\mathcal{H}_p(\mathbb{C}) \subseteq \mathcal{H}_p^{Rad}(\mathbb{C})$$

Vector-Valued case

Proposition

Let *E* be a Banach space. The following statements are equivalent:

Proposition

Let *E* be a Banach space. The following statements are equivalent: • $(x_n n^{-s})_n$ is RUC in $\mathcal{H}_p(E)$ for every $(x_n)_n \in E$

Proposition

Let E be a Banach space. The following statements are equivalent:

- $(x_n n^{-s})_n$ is RUC in $\mathcal{H}_p(E)$ for every $(x_n)_n \subset E$
- There is $C \ge 1$ such that for every $N \in \mathbb{N}$ and $(x_n)_n^N$ we have

$$\left\|\sum_{n=1}^{N} x_n n^{-s}\right\|_{\mathcal{H}_p^{Rad}(E)} \le C \left\|\sum_{n=1}^{N} x_n n^{-s}\right\|_{\mathcal{H}_p(E)}$$

Let E be a Banach space. The following statements are equivalent:

- $(x_n n^{-s})_n$ is RUC in $\mathcal{H}_p(E)$ for every $(x_n)_n \subset E$
- There is $C \ge 1$ such that for every $N \in \mathbb{N}$ and $(x_n)_n^N$ we have

$$\left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}^{Rad}(E)} \le C \left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}(E)}$$

The following inclusion holds:

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Let E be a Banach space. The following statements are equivalent:

- $(x_n n^{-s})_n$ is RUC in $\mathcal{H}_p(E)$ for every $(x_n)_n \subset E$
- There is $C \ge 1$ such that for every $N \in \mathbb{N}$ and $(x_n)_n^N$ we have

$$\left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}^{Rad}(E)} \le C \left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}(E)}$$

The following inclusion holds:

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Let E be a Banach space. The following statements are equivalent:

- $(x_n n^{-s})_n$ is RUC in $\mathcal{H}_p(E)$ for every $(x_n)_n \subset E$
- There is $C \ge 1$ such that for every $N \in \mathbb{N}$ and $(x_n)_n^N$ we have

$$\left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}^{Rad}(E)} \le C \left\|\sum_{n=1}^{N} x_{n} n^{-s}\right\|_{\mathcal{H}_{p}(E)}$$

The following inclusion holds:

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

• E has the \mathcal{H}_p random convergence property if and only if

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

• E has the \mathcal{H}_p random convergence property if and only if

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Proposition

For $1 \le p < \infty$ we have

$$\mathcal{H}_p^{Rad}(E) = \mathcal{H}_2^{Rad}(E).$$

M. Scotti (UBA, IMAS-CONICET)

• E has the \mathcal{H}_p random convergence property if and only if

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Proposition

For $1 \le p < \infty$ we have

$$\mathcal{H}_p^{Rad}(E) = \mathcal{H}_2^{Rad}(E).$$

• If *E* has the \mathcal{H}_p random convergence property then it has the \mathcal{H}_q random convergence property for every $q \ge p$.

Vector-Valued case

Theorem

If *E* has type 2, then *E* has the \mathcal{H}_p random convergence property for $p \ge 2$. In other words, for each $p \ge 2$ we have

 $\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$

Theorem

If *E* has type 2, then *E* has the H_p random convergence property for $p \ge 2$. In other words, for each $p \ge 2$ we have

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Example

The space $L_r(\mathbb{T}^{\mathbb{N}})$ has the \mathcal{H}_p random convergence property for some $2 \le p < \infty$ if and only if $2 \le r < \infty$.

Theorem

If *E* has type 2, then *E* has the H_p random convergence property for $p \ge 2$. In other words, for each $p \ge 2$ we have

$$\mathcal{H}_p(E) \subseteq \mathcal{H}_p^{Rad}(E).$$

Example

The space $L_r(\mathbb{T}^{\mathbb{N}})$ has the \mathcal{H}_p random convergence property for some $2 \le p < \infty$ if and only if $2 \le r < \infty$.

Theorem

If *E* has the \mathcal{H}_p random convergence property for some $2 \le p < \infty$, then

 $\sup\{r: E \text{ has type } r\} = 2.$

M. Scotti (UBA, IMAS-CONICET)

Random unconditional convergence

Assume that

 $s = \sup\{r : X \text{ has type } r\} < 2.$

Assume that

 $s = \sup\{r : X \text{ has type } r\} < 2.$

By Maurey-Pisier Theorem, ℓ_s is finitely representable in E,

Assume that

 $s = \sup\{r : X \text{ has type } r\} < 2.$

By Maurey-Pisier Theorem, ℓ_s is finitely representable in E, and then so is $L_s(\mathbb{T}^{\mathbb{N}})$.

Assume that

 $s = \sup\{r : X \text{ has type } r\} < 2.$

By Maurey-Pisier Theorem, ℓ_s is finitely representable in E, and then so is $L_s(\mathbb{T}^{\mathbb{N}})$.

• As $L_s(\mathbb{T}^{\mathbb{N}})$ fails to have the \mathcal{H}_p random convergence property for $2 \le p < \infty$ and this is a local property, the result follows.

If *E* has the \mathcal{H}_2 random convergence property and cotype 2, then *E* is a Hilbert space.

If *E* has the \mathcal{H}_2 random convergence property and cotype 2, then *E* is a Hilbert space.

Example

Take $1 \le p_n \nearrow 2$ such that $\left(\frac{1}{p_n} - \frac{1}{2}\right) \log n \to \infty$. Define $X = \bigoplus_{n=1}^{\infty} \ell_{p_n}^n$ with the ℓ_2 -norm for the sum. Then:

If *E* has the \mathcal{H}_2 random convergence property and cotype 2, then *E* is a Hilbert space.

Example

Take $1 \le p_n \nearrow 2$ such that $\left(\frac{1}{p_n} - \frac{1}{2}\right) \log n \to \infty$. Define $X = \bigoplus_{n=1}^{\infty} \ell_{p_n}^n$ with the ℓ_2 -norm for the sum. Then:

1) X only has type p for p < 2;

If *E* has the \mathcal{H}_2 random convergence property and cotype 2, then *E* is a Hilbert space.

Example

Take $1 \le p_n \nearrow 2$ such that $\left(\frac{1}{p_n} - \frac{1}{2}\right) \log n \to \infty$. Define $X = \bigoplus_{n=1}^{\infty} \ell_{p_n}^n$ with the ℓ_2 -norm for the sum. Then:

- 1) X only has type p for p < 2;
- 2) X has cotype 2;

If *E* has the \mathcal{H}_2 random convergence property and cotype 2, then *E* is a Hilbert space.

Example

Take $1 \le p_n \nearrow 2$ such that $\left(\frac{1}{p_n} - \frac{1}{2}\right) \log n \to \infty$. Define $X = \bigoplus_{n=1}^{\infty} \ell_{p_n}^n$ with the ℓ_2 -norm for the sum. Then:

- 1) X only has type p for p < 2;
- 2) X has cotype 2;
- 3) X fails to have the \mathcal{H}_2 random convergence property.

¡Muchas gracias!

