On mappings between Banach spaces preserving \mathcal{A}-compact sets

Pablo Turco

Universidad de Buenos Aires and CONICET
(Joint work with Silvia Lassalle)
NoLiFa17
Valencia, España
October 19, 2017

Our interest

Fix a "Class of sets" defined on Banach spaces,

- Does polynomials or holomorphic mapping maps this class in the same class?

If this is not the case,

- Which polynomials or holomorphic mappings does it?

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Example: Weakly compact sets

$P \in \mathcal{P}\left({ }^{2} \ell_{2} ; \ell_{1}\right), P\left(\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n}^{2} e_{n}$. Then $P\left(B_{\ell_{2}}\right)=B_{\ell_{1}}$.

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Example: Weakly compact sets

$P \in \mathcal{P}\left({ }^{2} \ell_{2} ; \ell_{1}\right), P\left(\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n}^{2} e_{n}$. Then $P\left(B_{\ell_{2}}\right)=B_{\ell_{1}}$.
Thus,

- Polynomials do not preserves weakly compact sets.

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Example: Weakly compact sets

$P \in \mathcal{P}\left({ }^{2} \ell_{2} ; \ell_{1}\right), P\left(\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n}^{2} e_{n}$. Then $P\left(B_{\ell_{2}}\right)=B_{\ell_{1}}$.
Thus,

- Polynomials do not preserves weakly compact sets.
- If F is reflexive, polynomials $P: E \rightarrow F$ preserves weakly compact sets.

Let E and F (complex) Banach, for $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} E ; F\right)$ if there exists $A \in \mathcal{L}\left({ }^{n} E ; F\right)$ such that $P(x)=A(x, x, \ldots, x)$.

Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Example: Weakly compact sets

$P \in \mathcal{P}\left({ }^{2} \ell_{2} ; \ell_{1}\right), P\left(\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n}^{2} e_{n}$. Then $P\left(B_{\ell_{2}}\right)=B_{\ell_{1}}$.
Thus,

- Polynomials do not preserves weakly compact sets.
- If F is reflexive, polynomials $P: E \rightarrow F$ preserves weakly compact sets.
- Weakly compact polynomials preserves weakly compact sets.

Our "class of sets" will be the \mathcal{A}-compact sets of Carl and Stephani (1984)

Definition (Carl and Stephani)

Fix a λ-Banach operator ideal \mathcal{A}. A subset $K \subset E$ is relatively \mathcal{A}-compact if there exist a Banach space F, an operator $S \in \mathcal{A}(F ; E)$ and a compact set $L \subset B_{F}$ such that

$$
K \subset S(L)
$$

Our "class of sets" will be the \mathcal{A}-compact sets of Carl and

 Stephani (1984)
Definition (Carl and Stephani)

Fix a λ-Banach operator ideal \mathcal{A}. A subset $K \subset E$ is relatively \mathcal{A}-compact if there exist a Banach space F, an operator $S \in \mathcal{A}(F ; E)$ and a compact set $L \subset B_{F}$ such that

$$
K \subset S(L)
$$

For an \mathcal{A}-compact set $K \subset E, m_{\mathcal{A}}(K)=\inf \left\{\|S\|_{\mathcal{A}}: K \subset S(L)\right\}$.

Our "class of sets" will be the \mathcal{A}-compact sets of Carl and

 Stephani (1984)
Definition (Carl and Stephani)

Fix a λ-Banach operator ideal \mathcal{A}. A subset $K \subset E$ is relatively \mathcal{A}-compact if there exist a Banach space F, an operator $S \in \mathcal{A}(F ; E)$ and a compact set $L \subset B_{F}$ such that

$$
K \subset S(L)
$$

For an \mathcal{A}-compact set $K \subset E, m_{\mathcal{A}}(K)=\inf \left\{\|S\|_{\mathcal{A}}: K \subset S(L)\right\}$.

$$
\begin{gathered}
\mathcal{K}_{\mathcal{A}}(E ; F)=\left\{T: E \rightarrow F: T\left(B_{E}\right) \text { is rel. } \mathcal{A} \text {-compact }\right\} \\
\|T\|_{\mathcal{K}_{\mathcal{A}}}=m_{\mathcal{A}}\left(T\left(B_{E}\right)\right)
\end{gathered}
$$

Examples of \mathcal{A}-compact sets

We will use the ideals

- Π of absolutely summing operators.
- For $1+\frac{1}{t} \geq \frac{1}{u}+\frac{1}{v}, \mathcal{N}_{(t, u, v)}$ of (t, u, v)-nuclear operators,
- $\mathcal{N}_{\left(p, 1, r^{\prime}\right)} \leadsto(p, r)$-compact (Ain, Lillemets and Oja).
- $\mathcal{N}_{(p, 1, p)} \leadsto p$-compact (Sinha and Karn).
- $\mathcal{N}_{\left(\infty, p^{\prime}, r^{\prime}\right)} \leadsto \mathcal{U}$ nconditionally (p, r)-compact (Ain and Oja).

First results

Every linear operator preserves \mathcal{A}-compact sets for any \mathcal{A}.

First results

Every linear operator preserves \mathcal{A}-compact sets for any \mathcal{A}.

Aron, Rueda (2011) / Aron, Çalişkan, García, Maestre (2016)

For $1 \leq p \leq \infty$, every homogeneous polynomial preserves p-compact sets.

First results

Every linear operator preserves \mathcal{A}-compact sets for any \mathcal{A}.

Aron, Rueda (2011) / Aron, Çalișkan, García, Maestre (2016)

For $1 \leq p \leq \infty$, every homogeneous polynomial preserves p-compact sets.

Example

For every $n \in \mathbb{N}$, there exists $P \in \mathcal{P}\left({ }^{n} \ell_{2} ; \ell_{1}\right)$ which do not preserves Π-compact sets.

Example

For $1 \leq p<\infty, 1 \leq r \leq p^{\prime}$, and $n \in \mathbb{N}$ with $n \geq p$ there exists $P \in \mathcal{P}\left({ }^{n} \ell_{p} ; \ell_{1}\right)$ which do not preserves $\mathcal{U}_{(p, r)}$-compact sets.

For $P \in \mathcal{P}\left({ }^{n} E ; F\right)=\mathcal{L}\left(\widehat{\otimes}_{\pi_{s}}^{n, s} E ; F\right)$ isometrically.

$$
\Delta_{E}^{n}(x)=\otimes^{n} x=x \otimes x \otimes \ldots \otimes x
$$

For α_{s} a symmetric tensor norm of order n
$P \in \mathcal{P}_{\alpha_{s}}\left({ }^{n} E ; F\right) \Leftrightarrow L_{P} \in \mathcal{L}\left(\widehat{\otimes}_{\alpha_{s}}^{n, s} E ; F\right) ;\|P\|_{\alpha_{s}}=\left\|L_{P}: \widehat{\otimes}_{\alpha_{s}}^{n, s} E \rightarrow F\right\|$.

$$
\Delta_{E}^{n}(x)=\otimes^{n} x=x \otimes x \otimes \ldots \otimes x
$$

$$
\mathcal{P}\left({ }^{n} E ; F\right)=\mathcal{P}_{\pi_{s}}\left({ }^{n} E ; F\right)
$$

Proposition: Step 1

Let E be a Banach space, \mathcal{A} a λ-Banach operator ideal and α_{s} a symmetric tensor norm of order n. Are equivalent

- For every Banach space F, every $P \in \mathcal{P}_{\alpha_{s}}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets.
- $\Delta_{E}^{n}: E \rightarrow \widehat{\otimes}_{\alpha_{s}}^{n, s} E$ preserves \mathcal{A}-compact sets.

Moreover, there exists $C>0$ such that, $\forall K \subset E \mathcal{A}$-compact set

$$
m_{\mathcal{A}}(P(K)) \leq C\|P\|_{\alpha_{s}} m_{\mathcal{A}}(K)^{n}
$$

if and only if

$$
m_{\mathcal{A}}\left(\Delta_{E}^{n}(K)\right) \leq C m_{\mathcal{A}}(K)^{n} .
$$

Lemma

Let \mathcal{A} be a λ-Banach operator ideal. A set $K \subset E$ is relatively \mathcal{A}-compact if and only if exists $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$ such that $K \subset T\left(B_{\ell_{1}}\right)$.

For $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)$ is \mathcal{A}-compact?

Lemma

Let \mathcal{A} be a λ-Banach operator ideal. A set $K \subset E$ is relatively \mathcal{A}-compact if and only if exists $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$ such that $K \subset T\left(B_{\ell_{1}}\right)$.

For $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)$ is \mathcal{A}-compact?

$$
\begin{aligned}
& \ell_{1} \xrightarrow{T} E \\
& \Delta_{\ell_{1}}^{n} \downarrow \quad \nabla^{n} T \quad \downarrow \Delta_{E}^{n} \\
& \widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} \xrightarrow{\otimes^{n} T} \widehat{\otimes}_{\pi_{s}}^{n, s} E \\
& \Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)=\otimes^{n} T \circ \Delta_{\ell_{1}}^{n}\left(B_{\ell_{1}}\right) \subset \otimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1}}\right) . \\
& \otimes \otimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1}}\right) \subset \otimes^{n} T\left(\Gamma\left(\Delta_{\ell_{1}}^{n}\left(B_{\ell_{1}}\right)\right)\right)=\Gamma\left(\Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)\right) .
\end{aligned}
$$

Lemma

Let \mathcal{A} be a λ-Banach operator ideal. A set $K \subset E$ is relatively \mathcal{A}-compact if and only if exists $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$ such that $K \subset T\left(B_{\ell_{1}}\right)$.

For $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)$ is \mathcal{A}-compact?

$$
\begin{aligned}
& \ell_{1} \xrightarrow{T} E \\
& \Delta_{\ell_{1}}^{n} \downarrow \quad \nabla^{n} T \quad \downarrow \Delta_{E}^{n} \\
& \widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} \xrightarrow{\otimes^{n} T} \widehat{\otimes}_{\alpha_{s}}^{n, s} E \\
& \Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)=\otimes^{n} T \circ \Delta_{\ell_{1}}^{n}\left(B_{\ell_{1}}\right) \subset \otimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1}}\right) . \\
& \otimes \otimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1}}\right) \subset \otimes^{n} T\left(\Gamma\left(\Delta_{\ell_{1}}^{n}\left(B_{\ell_{1}}\right)\right)\right)=\Gamma\left(\Delta_{E}^{n}\left(T\left(B_{\ell_{1}}\right)\right)\right) .
\end{aligned}
$$

Proposition: Step 2

Let E be a Banach space, \mathcal{A} a λ-Banach operator ideal and α_{s} a symmetric tensor norm of order n. Are equivalent

- For every Banach space F, every $P \in \mathcal{P}_{\alpha_{s}}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets.
- For every $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right) ; \otimes^{n} T \in \mathcal{K}_{\mathcal{A}}\left(\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} ; \widehat{\otimes}_{\alpha_{s}}^{n, s} E\right)$.

Moreover, there exists $C>0$ such that, $\forall K \subset E \mathcal{A}$-compact set

$$
m_{\mathcal{A}}(P(K)) \leq C\|P\|_{\alpha_{s}} m_{\mathcal{A}}(K)^{n}
$$

if and only if

$$
\left\|\otimes^{n} T\right\|_{\mathcal{K}_{\mathcal{A}}} \leq C\|T\|_{\mathcal{K}_{\mathcal{A}}}^{n}
$$

If $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\otimes^{n} T \in \mathcal{K}_{\mathcal{A}}\left(\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} ; \widehat{\otimes}_{\pi_{s}}^{n, s} E\right)$?

If $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\otimes^{n} T \in \mathcal{K}_{\mathcal{A}}\left(\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} ; \widehat{\otimes}_{\pi_{s}}^{n, s} E\right)$?

For $n=2$

$\otimes^{2} T=\sigma_{2} \circ(\otimes T)^{2} \circ \iota$

If $T \in \mathcal{K}_{\mathcal{A}}\left(\ell_{1} ; E\right)$, When $\otimes^{n} T \in \mathcal{K}_{\mathcal{A}}\left(\widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} ; \widehat{\otimes}_{\pi_{s}}^{n, s} E\right)$?

For $n=2$

$\otimes^{2} T=\sigma_{2} \circ(\otimes T)^{2} \circ \iota$

For $n=3$

$\otimes^{3} T=\sigma_{3} \circ(\otimes T)^{3} \circ \iota$

In general...

$$
\begin{aligned}
& \widehat{\otimes}_{\pi_{s}}^{n, s} \ell_{1} \longrightarrow{ }_{\otimes^{n} T} \widehat{\otimes}_{\pi_{s}}^{n, s} E \\
& \imath \downarrow{ }^{\circ} \\
& \widehat{\otimes}_{\pi}^{n} \ell_{1} \longrightarrow{ }_{(\otimes T)^{n}} \widehat{\otimes}_{\pi}^{n} E \\
& \|(\otimes \perp)\| \\
& \ell_{1} \widehat{\otimes}_{\pi}\left(\widehat{\otimes}_{\pi}^{n-1} \ell_{T \otimes}\right) \underset{(\otimes T)^{n}}{\longrightarrow} E_{1} \widehat{\otimes}_{\pi}\left(\widehat{\otimes}_{\pi}^{n-1} E\right) \\
& \otimes^{n} T=\sigma_{n} \circ(\otimes T)^{n} \circ \iota
\end{aligned}
$$

In general...

$$
\begin{aligned}
& \ell_{1} \widehat{\otimes}_{\pi}\left(\widehat{\otimes}_{\pi}^{n-1} \ell_{1}\right) \underset{(\otimes T)^{n}}{\underset{-1}{E}} \widehat{\otimes}_{\pi}\left(\widehat{\otimes}_{\pi}^{n-1} E\right) \ell_{1} \widehat{\otimes}_{\pi}\left(\widehat{\otimes}_{\pi}^{n-1} \ell_{1}\right) \underset{(\otimes T)^{n}}{E_{1}} \widehat{\otimes}_{\varepsilon}\left(\widehat{\otimes}_{\varepsilon}^{n-1} E\right) \\
& \otimes^{n} T=\sigma_{n} \circ(\otimes T)^{n} \circ \iota \\
& \otimes^{n} T=\sigma_{n} \circ(\otimes T)^{n} \circ \iota
\end{aligned}
$$

Definition

Let \mathcal{A} be a λ-Banach operator ideal and α, β tensor norms. Then \mathcal{A} is said to be (α, β)-tensorstable with constant $C \geq 1$ if for every Banach spaces E, F, X, Y, any $S \in \mathcal{A}(E ; F)$ and $T \in \mathcal{A}(X ; Y)$,

$$
S \otimes T \in \mathcal{A}\left(E \widehat{\otimes}_{\alpha} X ; F \widehat{\otimes}_{\beta} Y\right) \quad \text { and } \quad\|S \otimes T\|_{\mathcal{A}} \leq C\|S\|_{\mathcal{A}}\|T\|_{\mathcal{A}}
$$

Definition

Let \mathcal{A} be a λ-Banach operator ideal and α, β tensor norms. Then \mathcal{A} is said to be (α, β)-tensorstable with constant $C \geq 1$ if for every Banach spaces E, F, X, Y, any $S \in \mathcal{A}(E ; F)$ and $T \in \mathcal{A}(X ; Y)$,

$$
S \otimes T \in \mathcal{A}\left(E \widehat{\otimes}_{\alpha} X ; F \widehat{\otimes}_{\beta} Y\right) \quad \text { and } \quad\|S \otimes T\|_{\mathcal{A}} \leq C\|S\|_{\mathcal{A}}\|T\|_{\mathcal{A}}
$$

And when we fix the spaces E and F, we say that \mathcal{A} is (α, β)-tensorstable for $(E ; F)$ with constant $C \geq 1$.

Proposition: Step 3

Let E be a Banach space and \mathcal{A} a λ-Banach operator ideal. If $\mathcal{K}_{\mathcal{A}}$ is (π, π)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then for every Banach space F, every $P \in \mathcal{P}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets.
Moreover, for every \mathcal{A}-compact set $K \subset E$,

$$
m_{\mathcal{A}}(P(K)) \leq C^{n-1} e^{n}\|P\| m_{\mathcal{A}}(K)^{n} .
$$

Proposition: Step 3

Let E be a Banach space and \mathcal{A} a λ-Banach operator ideal. If $\mathcal{K}_{\mathcal{A}}$ is (π, π)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then for every Banach space F, every $P \in \mathcal{P}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets.
Moreover, for every \mathcal{A}-compact set $K \subset E$,

$$
m_{\mathcal{A}}(P(K)) \leq C^{n-1} e^{n}\|P\| m_{\mathcal{A}}(K)^{n} .
$$

Let E be a Banach space and \mathcal{A} a λ-Banach operator ideal. If $\mathcal{K}_{\mathcal{A}}$ is (π, ε)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then for every Banach space F, every $P \in \mathcal{P}_{\varepsilon_{s}}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets.
Moreover, for every \mathcal{A}-compact set $K \subset E$,

$$
m_{\mathcal{A}}(P(K)) \leq C^{n-1}\|P\|_{\varepsilon_{s}} m_{\mathcal{A}}(K)^{n} .
$$

Lemma

Let E be a Banach space, \mathcal{A} a λ-Banach operator ideal and β a tensor norm. If \mathcal{A} is (π, β)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then If $\mathcal{K}_{\mathcal{A}}$ is (π, β)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$.

Proposition: Step 4

Let E be a Banach space and \mathcal{A} a λ-Banach operator ideal.
If \mathcal{A} is (π, π)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then for every Banach space F, every $P \in \mathcal{P}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets. Moreover, for every \mathcal{A}-compact set $K \subset E$,

$$
m_{\mathcal{A}}(P(K)) \leq C^{n-1} e^{n}\|P\| m_{\mathcal{A}}(K)^{n} .
$$

Let E be a Banach space and \mathcal{A} a λ-Banach operator ideal. If \mathcal{A} is (π, ε)-tensorstable for $\left(\ell_{1} ; E\right)$ with constant $C \geq 1$, then for every Banach space F, every $P \in \mathcal{P}_{\varepsilon_{s}}\left({ }^{n} E ; F\right)$ preserves \mathcal{A}-compact sets. Moreover, for every \mathcal{A}-compact set $K \subset E$,

$$
m_{\mathcal{A}}(P(K)) \leq C^{n-1}\|P\|_{\varepsilon_{s}} m_{\mathcal{A}}(K)^{n} .
$$

Examples

Proposition

For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, the ideal $\mathcal{N}_{\left(p, 1, r^{\prime}\right)}$ is (π, π)-tensorstable with constant $C=1$.
(The case $r=p^{\prime}$ is due Carl, Defant and Ramanujan (1989))

Example

For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $P \in \mathcal{P}\left({ }^{n} E ; F\right)$ preserves (p, r)-compact sets.
Moreover, for every (p, r)-compact set $K \subset E$,

$$
m_{(p, r)}(P(K)) \leq e^{n}\|P\| m_{(p, r)}(K)^{n} .
$$

Examples

Proposition

For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, the ideal $\mathcal{N}_{\left(\infty, p^{\prime}, r^{\prime}\right)}$ is (π, ε)-tensorstable with constant $C=1$.
(The case $r=p^{\prime}$ is due Carl, Defant and Ramanujan (1989))

Example

For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $\left.P \in \mathcal{P}_{\varepsilon_{s}}{ }^{n} E ; F\right)$ preserves $\mathcal{U}_{(p, r)}$-compact sets.
Moreover, for every $\mathcal{U}_{(p, r)}$-compact set $K \subset E$

$$
m_{\mathcal{U}_{(p, r)}}(P(K)) \leq\|P\|_{\varepsilon} m_{\mathcal{U}_{(p, r)}}(K)^{n} .
$$

Examples

Proposition (Holub 1974)

The ideal Π is (π, π)-tensorstable for $\left(\ell_{1} ; L_{1}(\mu)\right)$ with constant $C=1$.

Example

For every Banach space F, every $P \in \mathcal{P}\left({ }^{n} L_{1}(\mu) ; F\right)$ preserves Π-compact set.
Moreover, for every Π-compact set $K \subset L_{1}(\mu)$,

$$
m_{\Pi}(P(K)) \leq e^{n}\|P\| m_{\Pi}(K)^{n}
$$

- For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $P \in \mathcal{P}\left({ }^{n} E ; F\right)$ preserves (p, r)-compact sets and $m_{(p, r)}(P(K)) \leq e^{n}\|P\| m_{(p, r)}(K)^{n}$.
- For every Banach space F, every $P \in \mathcal{P}\left({ }^{n} L_{1}(\mu) ; F\right)$ preserves Π-compact set, and $m_{\Pi}(P(K)) \leq e^{n}\|P\| m_{\Pi}(K)^{n}$.
- For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $P \in \mathcal{P}_{\varepsilon_{s}}\left({ }^{n} E ; F\right)$ preserves $\mathcal{U}_{(p, r)}$-compact sets and $m_{\mathcal{U}_{(p, r)}}(P(K)) \leq\|P\| m_{\mathcal{U}_{(p, r)}}(K)^{n}$.

Analytic Functions

For Banach spaces E and $F, U \subset E$ and open set, $f \in \mathcal{H}(U ; F)$ if for each $x_{0} \in U$ there exists a sequence of homogeneous polynomials $P_{n} f\left(x_{0}\right) \in P\left({ }^{n} E ; F\right)$ such that

$$
f(x)=\sum_{n=0}^{\infty} P_{n} f\left(x_{0}\right)\left(x-x_{0}\right),
$$

uniformly for all x in a neighborhood of x_{0}. And
$r\left(f ; x_{0}\right)=\frac{1}{\lim \sup \left\|P_{n} f\left(x_{0}\right)\right\|^{1 / n}}=\sup \left\{r: \sup _{x \in B\left(x_{0}, r\right)}\|f(x)\|<\infty\right\}$.

Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

Aron, Çalișkan, García, Maestre (2016)

Let E and $F, U \subset E$ an open balance set and $f \in \mathcal{H}(U ; F)$. For $1 \leq p<\infty$, consider a sequence $\left(x_{j}\right)_{j} \in \ell_{p}(E)$ such that $\left(x_{j}\right)_{j} \subset U$. Then for the p-compact set $K=\left\{\sum_{j=1}^{\infty} \alpha_{j} x_{j}:\left(\alpha_{j}\right)_{j} \in B_{\ell_{p^{\prime}}}\right\}, f(K)$ is p-compact.

Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

Aron, Çalișkan, García, Maestre (2016)

Let E and $F, U \subset E$ an open balance set and $f \in \mathcal{H}(U ; F)$. For $1 \leq p<\infty$, consider a sequence $\left(x_{j}\right)_{j} \in \ell_{p}(E)$ such that $\left(x_{j}\right)_{j} \subset U$. Then for the p-compact set $K=\left\{\sum_{j=1}^{\infty} \alpha_{j} x_{j}:\left(\alpha_{j}\right)_{j} \in B_{\ell_{p^{\prime}}}\right\}, f(K)$ is p-compact.

For every $n \in \mathbb{N}$, there exists $P \in \mathcal{P}\left({ }^{n} \ell_{2} ; \ell_{1}\right)$ which do not preserves Π-compact sets.

For $1 \leq p<\infty, 1 \leq r \leq p^{\prime}$, and $n \in \mathbb{N}$ with $n \geq p$ there exists $P \in \mathcal{P}\left({ }^{n} \ell_{p} ; \ell_{1}\right)$ which do not preserves $\mathcal{U}_{(p, r)}$-compact sets.

For $f \in \mathcal{H}(U ; F)$, if $x_{0} \in U$, and $K \subset U \mathcal{A}$-compact,

$$
f(K) \subset \sum_{n=0}^{\infty} P_{n} f\left(x_{0}\right)\left(K-x_{0}\right)
$$

- $K \subset B\left(x_{0} ; r\left(f ; x_{0}\right)\right)$.

For $f \in \mathcal{H}(U ; F)$, if $x_{0} \in U$, and $K \subset U \mathcal{A}$-compact,

$$
f(K) \subset \sum_{n=0}^{\infty} P_{n} f\left(x_{0}\right)\left(K-x_{0}\right)
$$

- $K \subset B\left(x_{0} ; r\left(f ; x_{0}\right)\right)$.
- Every $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.

For $f \in \mathcal{H}(U ; F)$, if $x_{0} \in U$, and $K \subset U \mathcal{A}$-compact,

$$
f(K) \subset \sum_{n=0}^{\infty} P_{n} f\left(x_{0}\right)\left(K-x_{0}\right)
$$

- $K \subset B\left(x_{0} ; r\left(f ; x_{0}\right)\right)$.
- Every $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.
- The infinite sum of \mathcal{A}-compact sets is \mathcal{A}-compact?

For $f \in \mathcal{H}(U ; F)$, if $x_{0} \in U$, and $K \subset U \mathcal{A}$-compact,

$$
f(K) \subset \sum_{n=0}^{\infty} P_{n} f\left(x_{0}\right)\left(K-x_{0}\right)
$$

- $K \subset B\left(x_{0} ; r\left(f ; x_{0}\right)\right)$.
- Every $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.
- The infinite sum of \mathcal{A}-compact sets is \mathcal{A}-compact?

Lemma

Let E be a Banach space, \mathcal{A} a λ-Banach operator ideal and let K_{1}, K_{2}, \ldots be \mathcal{A}-compact sets such that

$$
\sum_{n=1}^{\infty} m_{\mathcal{A}}\left(K_{j}\right)^{\lambda}<\infty
$$

Then the set $K=\left\{\sum_{n=1}^{\infty} x_{j}: x_{j} \in K_{j}\right\}$ is \mathcal{A}-compact and $m_{\mathcal{A}}(K)^{\lambda}<\sum_{n=1}^{\infty} m_{\mathcal{A}}\left(K_{j}\right)^{\lambda}$.

Proposition: Step 1

Let \mathcal{A} be a λ-Banach operator ideal and let E, F Banach spaces,
$U \subset E$ an open set. Take $f \in \mathcal{H}(U ; F)$ such that, for $x_{0} \in U$

- $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.

If $K \subset U$ is \mathcal{A}-compact such that

- $K \subset B\left(x_{0}, r\left(f ; x_{0}\right)\right)$.

Proposition: Step 1

Let \mathcal{A} be a λ-Banach operator ideal and let E, F Banach spaces,
$U \subset E$ an open set. Take $f \in \mathcal{H}(U ; F)$ such that, for $x_{0} \in U$

- $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.
- There exist C_{n} such that for all \mathcal{A}-compact sets $K \subset U$

$$
m_{\mathcal{A}}\left(P_{n} f\left(x_{0}\right)(K)\right) \leq C_{n}\left\|P_{n} f\left(x_{0}\right)\right\| m_{\mathcal{A}}(K)^{n} .
$$

If $K \subset U$ is \mathcal{A}-compact such that

- $K \subset B\left(x_{0}, r\left(f ; x_{0}\right)\right)$.
- $m_{\mathcal{A}}\left(K-x_{0}\right)<\frac{r\left(f, x_{0}\right)}{\lim \sup C_{n}^{1 / n}}$,

Proposition: Step 1

Let \mathcal{A} be a λ-Banach operator ideal and let E, F Banach spaces,
$U \subset E$ an open set. Take $f \in \mathcal{H}(U ; F)$ such that, for $x_{0} \in U$

- $P_{n} f\left(x_{0}\right)$ preserves \mathcal{A}-compact sets.
- There exist C_{n} such that for all \mathcal{A}-compact sets $K \subset U$

$$
m_{\mathcal{A}}\left(P_{n} f\left(x_{0}\right)(K)\right) \leq C_{n}\left\|P_{n} f\left(x_{0}\right)\right\| m_{\mathcal{A}}(K)^{n} .
$$

If $K \subset U$ is \mathcal{A}-compact such that

- $K \subset B\left(x_{0}, r\left(f ; x_{0}\right)\right)$.
- $m_{\mathcal{A}}\left(K-x_{0}\right)<\frac{r\left(f, x_{0}\right)}{\lim \sup C_{n}^{1 / n}}$,
then $f(K)$ is \mathcal{A}-compact.

What we do with "bigger" \mathcal{A}-compact sets?

What we do with "bigger" \mathcal{A}-compact sets?

Proposition

Let \mathcal{A} be a λ-Banach operator ideal E a Banach space and $K \subset E$ an \mathcal{A}-compact set with $0 \in K$. Then, given $\epsilon>0$, there exists $\delta>0$ such that

$$
m_{\mathcal{A}}(K \cap B(0 ; \delta)) \leq \epsilon
$$

Example

Let E and F be Banach spaces and $U \subset E$ an open set. For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $f \in \mathcal{H}(U ; F)$ preserves (p, r)-compact sets.

Example

Let E and F be Banach spaces and $U \subset E$ an open set. For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $f \in \mathcal{H}(U ; F)$ preserves (p, r)-compact sets.

Proof.

- Every homogeneous polynomial preserves (p, r)-compact sets and, if $P \in \mathcal{P}\left({ }^{n} E ; F\right)$, and $K \subset E$ is (p, r)-compact, then $m_{(p, r)}(P(K)) \leq e^{n}\|P\| m_{(p, r)}(K)$.

Example

Let E and F be Banach spaces and $U \subset E$ an open set. For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $f \in \mathcal{H}(U ; F)$ preserves (p, r)-compact sets.

Proof.

- Every homogeneous polynomial preserves (p, r)-compact sets and, if $P \in \mathcal{P}\left({ }^{n} E ; F\right)$, and $K \subset E$ is (p, r)-compact, then $m_{(p, r)}(P(K)) \leq e^{n}\|P\| m_{(p, r)}(K)$.
Take $K \subset U(p, r)$-compact and for each $x \in K$ take $\delta_{x}>0$ such that $m_{\mathcal{A}}\left((K-x) \cap B\left(0, \delta_{x}\right)\right)<\frac{r(f, x)}{e}$.

Example

Let E and F be Banach spaces and $U \subset E$ an open set. For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $f \in \mathcal{H}(U ; F)$ preserves (p, r)-compact sets.

Proof.

- Every homogeneous polynomial preserves (p, r)-compact sets and, if $P \in \mathcal{P}\left({ }^{n} E ; F\right)$, and $K \subset E$ is (p, r)-compact, then $m_{(p, r)}(P(K)) \leq e^{n}\|P\| m_{(p, r)}(K)$.
Take $K \subset U(p, r)$-compact and for each $x \in K$ take $\delta_{x}>0$ such that $m_{\mathcal{A}}\left((K-x) \cap B\left(0, \delta_{x}\right)\right)<\frac{r(f, x)}{e}$. There exist $x_{1}, \ldots, x_{k} \in K$ such that $K=\bigcup_{j=1}^{k} K \cap B\left(x_{j}, \delta_{x_{j}}\right)$. Then $f(K)=\bigcup_{j=1}^{k} f\left(K \cap B\left(x_{j}, \delta_{x_{j}}\right)\right)$ and each $K \cap B\left(x_{j}, \delta_{x_{j}}\right)$ satisfies the hypothesis of Step 1.

For every Banach space F, every $P \in \mathcal{P}\left({ }^{n} L_{1}(\mu) ; F\right)$ preserves Π-compact set. Moreover if $K \subset L_{1}(\mu) \Pi$-compact, then $m_{\Pi}(P(K)) \leq e^{n}\|P\| m_{\Pi}(K)^{n}$.

Example

Let F be a Banach space and $U \subset L_{1}(\mu)$ an open set. Every $f \in \mathcal{H}(U ; F)$ preserves Π-compact sets.

For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every homogeneous polynomial preserves in $\mathcal{P}_{\varepsilon_{s}}$ preserves $\mathcal{U}_{(p, r)}$-compact sets. Moreover, if $P \in \mathcal{P}_{\varepsilon_{s}}\left({ }^{n} E ; F\right)$, and $K \subset E$ is $\mathcal{U}_{(p, r)}$-compact, then $m_{\mathcal{U}_{(p, r)}}(P(K)) \leq\|P\|_{\varepsilon_{s}} m_{\mathcal{U}_{(p, r)}}(K)^{n}$.

Example

Let E and F be a Banach space and $U \subset E$ an open set. For $1 \leq p<\infty$ and $1 \leq r \leq p^{\prime}$, every $f \in \mathcal{H}(U ; F)$ such that for every $x_{0} \in U, P_{n} f\left(x_{0}\right) \in \mathcal{P}_{\varepsilon_{s}}\left({ }^{n} E ; F\right)$ for all $n \in \mathbb{N}$ and $\limsup \left\|P_{n} f\left(x_{0}\right)\right\|_{\varepsilon_{s}}<\infty$, then f preserves $\mathcal{U}_{(p, r)}$-compact sets.

THANK YOU! iGRACIAS!

