# On mappings between Banach spaces preserving $\mathcal{A}$ -compact sets

Pablo Turco
Universidad de Buenos Aires and CONICET

(Joint work with Silvia Lassalle)

NoLiFa17 Valencia, España October 19, 2017

## Our interest

Fix a "Class of sets" defined on Banach spaces,

 Does polynomials or holomorphic mapping maps this class in the same class?

If this is not the case,

• Which polynomials or holomorphic mappings does it?

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE; F)$  if there exists  $A \in \mathcal{L}(^nE; F)$  such that  $P(x) = A(x, x, \dots, x)$ .

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE; F)$  if there exists  $A \in \mathcal{L}(^nE; F)$  such that  $P(x) = A(x, x, \dots, x)$ .

## Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE; F)$  if there exists  $A \in \mathcal{L}(^nE; F)$  such that  $P(x) = A(x, x, \dots, x)$ .

## Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

#### Example: Weakly compact sets

$$P \in \mathcal{P}(^2\ell_2;\ell_1), P(\sum_{n=1} \alpha_n e_n) = \sum_{n=1} \alpha_n^2 e_n. \text{ Then } P(B_{\ell_2}) = B_{\ell_1}.$$

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE;F)$  if there exists  $A \in \mathcal{L}(^nE;F)$  such that  $P(x) = A(x,x,\ldots,x)$ .

## Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

#### Example: Weakly compact sets

$$P \in \mathcal{P}(^2\ell_2;\ell_1), P(\sum_{n=1} \alpha_n e_n) = \sum_{n=1} \alpha_n^2 e_n. \text{ Then } P(B_{\ell_2}) = B_{\ell_1}.$$

Thus,

Polynomials do not preserves weakly compact sets.

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE;F)$  if there exists  $A \in \mathcal{L}(^nE;F)$  such that  $P(x) = A(x,x,\ldots,x)$ .

## Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

#### Example: Weakly compact sets

$$P \in \mathcal{P}(^{2}\ell_{2}; \ell_{1}), P(\sum_{n=1}^{\infty} \alpha_{n}e_{n}) = \sum_{n=1}^{\infty} \alpha_{n}^{2}e_{n}.$$
 Then  $P(B_{\ell_{2}}) = B_{\ell_{1}}.$ 

Thus,

- Polynomials do not preserves weakly compact sets.
- If F is reflexive, polynomials  $P \colon E \to F$  preserves weakly compact sets.

Let E and F (complex) Banach, for  $n \in \mathbb{N}$ ,  $P \in \mathcal{P}(^nE;F)$  if there exists  $A \in \mathcal{L}(^nE;F)$  such that  $P(x) = A(x,x,\ldots,x)$ .

### Examples: Compact and bounded sets

- Polynomials preserves compact sets.
- Polynomials preserves bounded sets.

#### Example: Weakly compact sets

$$P \in \mathcal{P}(^{2}\ell_{2}; \ell_{1}), P(\sum_{n=1}^{\infty} \alpha_{n}e_{n}) = \sum_{n=1}^{\infty} \alpha_{n}^{2}e_{n}.$$
 Then  $P(B_{\ell_{2}}) = B_{\ell_{1}}.$ 

Thus,

- Polynomials do not preserves weakly compact sets.
- If F is reflexive, polynomials  $P \colon E \to F$  preserves weakly compact sets.
- Weakly compact polynomials preserves weakly compact sets.

# Our "class of sets" will be the $\mathcal{A}$ -compact sets of Carl and Stephani (1984)

## Definition (Carl and Stephani)

Fix a  $\lambda$ -Banach operator ideal  $\mathcal{A}$ . A subset  $K \subset E$  is relatively  $\mathcal{A}$ -compact if there exist a Banach space F, an operator  $S \in \mathcal{A}(F;E)$  and a compact set  $L \subset B_F$  such that

$$K \subset S(L)$$
.

# Our "class of sets" will be the A-compact sets of Carl and Stephani (1984)

## Definition (Carl and Stephani)

Fix a  $\lambda$ -Banach operator ideal  $\mathcal{A}$ . A subset  $K \subset E$  is relatively  $\mathcal{A}$ -compact if there exist a Banach space F, an operator  $S \in \mathcal{A}(F;E)$  and a compact set  $L \subset B_F$  such that

$$K \subset S(L)$$
.

For an A-compact set  $K \subset E$ ,  $m_A(K) = \inf\{\|S\|_A \colon K \subset S(L)\}$ .

# Our "class of sets" will be the A-compact sets of Carl and Stephani (1984)

### Definition (Carl and Stephani)

Fix a  $\lambda$ -Banach operator ideal  $\mathcal{A}$ . A subset  $K \subset E$  is relatively  $\mathcal{A}$ -compact if there exist a Banach space F, an operator  $S \in \mathcal{A}(F;E)$  and a compact set  $L \subset B_F$  such that

$$K \subset S(L)$$
.

For an A-compact set  $K \subset E$ ,  $m_A(K) = \inf\{\|S\|_A \colon K \subset S(L)\}$ .

$$\mathcal{K}_{\mathcal{A}}(E;F) = \{T \colon E \to F \colon T(B_E) \text{ is rel. } \mathcal{A}\text{-compact}\}$$

$$\|T\|_{\mathcal{K}_{\mathcal{A}}} = m_{\mathcal{A}}(T(B_E))$$

## Examples of A-compact sets

#### We will use the ideals

- ullet  $\Pi$  of absolutely summing operators.
- For  $1 + \frac{1}{t} \ge \frac{1}{u} + \frac{1}{v}$ ,  $\mathcal{N}_{(t,u,v)}$  of (t,u,v)-nuclear operators,
  - $\mathcal{N}_{(p,1,r')} \leadsto (p,r)$ -compact (Ain, Lillemets and Oja).
  - $\mathcal{N}_{(p,1,p)} \leadsto p$ -compact (Sinha and Karn).
  - $\mathcal{N}_{(\infty,p',r')} \leadsto \mathcal{U}$ nconditionally (p,r)-compact (Ain and Oja).
  - $\mathcal{N}_{(\infty,p',p)} \leadsto \mathcal{U}$ nconditionally p-compact (Kim).

## First results

Every linear operator preserves  $\mathcal{A}\text{-compact}$  sets for any  $\mathcal{A}.$ 

### First results

Every linear operator preserves A-compact sets for any A.

## Aron, Rueda (2011) / Aron, Çalişkan, García, Maestre (2016)

For  $1 \leq p \leq \infty$ , every homogeneous polynomial preserves p-compact sets.

#### First results

Every linear operator preserves A-compact sets for any A.

## Aron, Rueda (2011) / Aron, Çalişkan, García, Maestre (2016)

For  $1 \leq p \leq \infty$ , every homogeneous polynomial preserves p-compact sets.

#### Example

For every  $n \in \mathbb{N}$ , there exists  $P \in \mathcal{P}(^n\ell_2; \ell_1)$  which do not preserves  $\Pi$ -compact sets.

#### Example

For  $1 \leq p < \infty$ ,  $1 \leq r \leq p'$ , and  $n \in \mathbb{N}$  with  $n \geq p$  there exists  $P \in \mathcal{P}(^n\ell_p;\ell_1)$  which do not preserves  $\mathcal{U}_{(p,r)}$ -compact sets.

For  $P \in \mathcal{P}(^nE; F) = \mathcal{L}(\widehat{\otimes}_{\pi_s}^{n,s}E; F)$  isometrically.



$$\Delta_E^n(x) = \otimes^n x = x \otimes x \otimes \ldots \otimes x$$

For  $\alpha_s$  a symmetric tensor norm of order n

$$P \in \mathcal{P}_{\alpha_s}(^n E; F) \Leftrightarrow L_P \in \mathcal{L}(\widehat{\otimes}_{\alpha_s}^{n,s} E; F); \|P\|_{\alpha_s} = \|L_P \colon \widehat{\otimes}_{\alpha_s}^{n,s} E \to F\|.$$



$$\Delta_E^n(x) = \otimes^n x = x \otimes x \otimes \ldots \otimes x$$

$$\mathcal{P}(^{n}E;F) = \mathcal{P}_{\pi_{s}}(^{n}E;F)$$

## Proposition: Step 1

Let E be a Banach space,  $\mathcal{A}$  a  $\lambda$ -Banach operator ideal and  $\alpha_s$  a symmetric tensor norm of order n. Are equivalent

- For every Banach space F, every  $P \in \mathcal{P}_{\alpha_s}(^nE;F)$  preserves  $\mathcal{A}$ -compact sets.
- $\bullet \ \Delta^n_E \colon E \to \widehat{\otimes}^{n,s}_{\alpha_s} E \text{ preserves $\mathcal{A}$-compact sets.}$

Moreover, there exists C>0 such that,  $\forall K\subset E$   $\mathcal{A}\text{-compact}$  set

$$m_{\mathcal{A}}(P(K)) \le C \|P\|_{\alpha_s} m_{\mathcal{A}}(K)^n$$

if and only if

$$m_{\mathcal{A}}(\Delta_E^n(K)) \le C m_{\mathcal{A}}(K)^n$$
.

Let  $\mathcal A$  be a  $\lambda$ -Banach operator ideal. A set  $K\subset E$  is relatively  $\mathcal A$ -compact if and only if exists  $T\in\mathcal K_{\mathcal A}(\ell_1;E)$  such that  $K\subset T(B_{\ell_1}).$ 

For  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$ , When  $\Delta^n_E(T(B_{\ell_1}))$  is  $\mathcal{A}$ -compact?

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal. A set  $K \subset E$  is relatively  $\mathcal{A}$ -compact if and only if exists  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$  such that  $K \subset T(B_{\ell_1})$ .

For  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$ , When  $\Delta_E^n(T(B_{\ell_1}))$  is  $\mathcal{A}$ -compact?

$$\ell_{1} \xrightarrow{T} E$$

$$\Delta_{\ell_{1}}^{n} \downarrow \qquad \qquad \downarrow \Delta_{E}^{n}$$

$$\widehat{\otimes}_{\pi_{s}}^{n,s} \ell_{1} \xrightarrow{\otimes^{n} T} \widehat{\otimes}_{\pi_{s}}^{n,s} E$$

$$\Delta_{E}^{n}(T(B_{\ell_{1}})) = \bigotimes^{n} T \circ \Delta_{\ell_{1}}^{n}(B_{\ell_{1}}) \subset \bigotimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n,s}\ell_{1}}\right).$$

$$\bigotimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n,s}\ell_{1}}\right) \subset \bigotimes^{n} T\left(\Gamma(\Delta_{\ell_{1}}^{n}(B_{\ell_{1}}))\right) = \Gamma\left(\Delta_{E}^{n}(T(B_{\ell_{1}}))\right).$$

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal. A set  $K \subset E$  is relatively  $\mathcal{A}$ -compact if and only if exists  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$  such that  $K \subset T(B_{\ell_1})$ .

For  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$ , When  $\Delta_E^n(T(B_{\ell_1}))$  is  $\mathcal{A}$ -compact?

$$\ell_{1} \xrightarrow{T} E$$

$$\Delta_{\ell_{1}}^{n} \downarrow \qquad \qquad \downarrow \Delta_{E}^{n}$$

$$\widehat{\otimes}_{\pi_{s}}^{n,s} \ell_{1} \xrightarrow{\otimes^{n} T} \widehat{\otimes}_{\alpha_{s}}^{n,s} E$$

$$\Delta_{E}^{n}(T(B_{\ell_{1}})) = \bigotimes^{n} T \circ \Delta_{\ell_{1}}^{n}(B_{\ell_{1}}) \subset \bigotimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n,s}\ell_{1}}\right).$$

$$\bigotimes^{n} T\left(B_{\widehat{\otimes}_{\pi_{s}}^{n,s}\ell_{1}}\right) \subset \bigotimes^{n} T\left(\Gamma(\Delta_{\ell_{1}}^{n}(B_{\ell_{1}}))\right) = \Gamma\left(\Delta_{E}^{n}(T(B_{\ell_{1}}))\right).$$

## Proposition: Step 2

Let E be a Banach space,  $\mathcal A$  a  $\lambda$ -Banach operator ideal and  $\alpha_s$  a symmetric tensor norm of order n. Are equivalent

- For every Banach space F, every  $P \in \mathcal{P}_{\alpha_s}(^nE;F)$  preserves  $\mathcal{A}$ -compact sets.
- For every  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$ ;  $\otimes^n T \in \mathcal{K}_{\mathcal{A}}(\widehat{\otimes}_{\pi_s}^{n,s} \ell_1; \widehat{\otimes}_{\alpha_s}^{n,s} E)$ .

Moreover, there exists C>0 such that,  $\forall K\subset E$   $\mathcal{A}$ -compact set

$$m_{\mathcal{A}}(P(K)) \le C \|P\|_{\alpha_s} m_{\mathcal{A}}(K)^n$$

if and only if

$$\| \otimes^n T \|_{\mathcal{K}_{\mathcal{A}}} \le C \|T\|_{\mathcal{K}_{\mathcal{A}}}^n$$

If 
$$T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$$
, When  $\otimes^n T \in \mathcal{K}_{\mathcal{A}}(\widehat{\otimes}_{\pi_s}^{n,s} \ell_1; \widehat{\otimes}_{\pi_s}^{n,s} E)$ ?

If 
$$T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$$
, When  $\otimes^n T \in \mathcal{K}_{\mathcal{A}}(\widehat{\otimes}_{\pi_s}^{n,s} \ell_1; \widehat{\otimes}_{\pi_s}^{n,s} E)$ ?

For n=2

$$\begin{array}{c|c} \widehat{\otimes}_{\pi_s}^{2,s} \ell_1 \xrightarrow{\otimes^2 T} \widehat{\otimes}_{\pi_s}^{2,s} E \\ \downarrow & & & & & \sigma_2 \\ \widehat{\otimes}_{\pi}^2 \ell_1 \xrightarrow{(\otimes T)^2} \widehat{\otimes}_{\pi}^2 E \\ & & & & & & \\ \mathbb{1} & & & & & \\ \ell_1 \widehat{\otimes}_{\pi} \ell_1 \xrightarrow{T \otimes T} E \widehat{\otimes}_{\pi} E \end{array}$$

$$\otimes^2 T = \sigma_2 \circ (\otimes T)^2 \circ \iota$$

If  $T \in \mathcal{K}_{\mathcal{A}}(\ell_1; E)$ , When  $\otimes^n T \in \mathcal{K}_{\mathcal{A}}(\widehat{\otimes}_{\pi_s}^{n,s} \ell_1; \widehat{\otimes}_{\pi_s}^{n,s} E)$ ?

For n=2

$$\otimes^2 T = \sigma_2 \circ (\otimes T)^2 \circ \iota$$

For n=3

$$\otimes^3 T = \sigma_3 \circ (\otimes T)^3 \circ \iota$$

## In general...

### In general...

$$\bigotimes_{\pi_{s}}^{n,\sigma} \ell_{1} \xrightarrow{\otimes^{n}T} \bigotimes_{\pi_{s}}^{n,\sigma} E \qquad \bigotimes_{\pi_{s}}^{n,\sigma} \ell_{1} \xrightarrow{\otimes^{n}T} \bigotimes_{\varepsilon_{s}}^{n,\sigma} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \sigma_{n}$$

$$\bigotimes_{\pi}^{n} \ell_{1} \xrightarrow{(\otimes T)^{n}} \Longrightarrow \bigotimes_{\pi}^{n} E \qquad \qquad \bigotimes_{\pi}^{n} \ell_{1} \xrightarrow{(\otimes T)^{n}} \Longrightarrow \bigotimes_{\varepsilon}^{n} E$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\ell_{1} \widehat{\otimes}_{\pi} (\widehat{\otimes}_{\pi}^{n-1} \ell_{1}) \xrightarrow{T} \underbrace{(\otimes T)^{n}}_{T} \underbrace{(\widehat{\otimes}_{\pi}^{n-1} E)}_{T} \ell_{1} \widehat{\otimes}_{\pi} (\widehat{\otimes}_{\pi}^{n-1} E)$$

$$\otimes^{n}T = \sigma_{n} \circ (\otimes T)^{n} \circ \iota \qquad \qquad \otimes^{n}T = \sigma_{n} \circ (\otimes T)^{n} \circ \iota$$

## Definition

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal and  $\alpha, \beta$  tensor norms. Then  $\mathcal{A}$  is said to be  $(\alpha, \beta)$ -tensorstable with constant  $C \geq 1$  if for every Banach spaces E, F, X, Y, any  $S \in \mathcal{A}(E; F)$  and  $T \in \mathcal{A}(X; Y)$ ,

$$S\otimes T\in \mathcal{A}(E\widehat{\otimes}_{\alpha}X;F\widehat{\otimes}_{\beta}Y)\quad\text{and}\quad \|S\otimes T\|_{\mathcal{A}}\leq C\|S\|_{\mathcal{A}}\|T\|_{\mathcal{A}}$$

#### Definition

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal and  $\alpha, \beta$  tensor norms. Then  $\mathcal{A}$  is said to be  $(\alpha, \beta)$ -tensorstable with constant  $C \geq 1$  if for every Banach spaces E, F, X, Y, any  $S \in \mathcal{A}(E; F)$  and  $T \in \mathcal{A}(X; Y)$ ,

$$S \otimes T \in \mathcal{A}(E \widehat{\otimes}_{\alpha} X; F \widehat{\otimes}_{\beta} Y)$$
 and  $\|S \otimes T\|_{\mathcal{A}} \leq C \|S\|_{\mathcal{A}} \|T\|_{\mathcal{A}}$ 

And when we fix the spaces E and F, we say that  $\mathcal A$  is  $(\alpha,\beta)$ -tensorstable for (E;F) with constant  $C\geq 1$ .

## Proposition: Step 3

Let E be a Banach space and  $\mathcal A$  a  $\lambda$ -Banach operator ideal. If  $\mathcal K_{\mathcal A}$  is  $(\pi,\pi)$ -tensorstable for  $(\ell_1;E)$  with constant  $C\geq 1$ , then for every Banach space F, every  $P\in \mathcal P(^nE;F)$  preserves  $\mathcal A$ -compact sets.

Moreover, for every A-compact set  $K \subset E$ ,

$$m_{\mathcal{A}}(P(K)) \le C^{n-1}e^n ||P|| m_{\mathcal{A}}(K)^n.$$

## Proposition: Step 3

Let E be a Banach space and  $\mathcal A$  a  $\lambda$ -Banach operator ideal. If  $\mathcal K_{\mathcal A}$  is  $(\pi,\pi)$ -tensorstable for  $(\ell_1;E)$  with constant  $C\geq 1$ , then for every Banach space F, every  $P\in \mathcal P(^nE;F)$  preserves  $\mathcal A$ -compact sets.

Moreover, for every A-compact set  $K \subset E$ ,

$$m_{\mathcal{A}}(P(K)) \le C^{n-1}e^n ||P|| m_{\mathcal{A}}(K)^n.$$

Let E be a Banach space and  $\mathcal A$  a  $\lambda$ -Banach operator ideal. If  $\mathcal K_{\mathcal A}$  is  $(\pi, \varepsilon)$ -tensorstable for  $(\ell_1; E)$  with constant  $C \geq 1$ , then for every Banach space F, every  $P \in \mathcal P_{\varepsilon_s}(^nE; F)$  preserves  $\mathcal A$ -compact sets.

Moreover, for every A-compact set  $K \subset E$ ,

$$m_{\mathcal{A}}(P(K)) \leq C^{n-1} ||P||_{\varepsilon_s} m_{\mathcal{A}}(K)^n.$$

Let E be a Banach space,  $\mathcal A$  a  $\lambda$ -Banach operator ideal and  $\beta$  a tensor norm. If  $\mathcal A$  is  $(\pi,\beta)$ -tensorstable for  $(\ell_1;E)$  with constant  $C\geq 1$ , then If  $\mathcal K_{\mathcal A}$  is  $(\pi,\beta)$ -tensorstable for  $(\ell_1;E)$  with constant  $C\geq 1$ .

### Proposition: Step 4

Let E be a Banach space and  $\mathcal A$  a  $\lambda$ -Banach operator ideal. If  $\mathcal A$  is  $(\pi,\pi)$ -tensorstable for  $(\ell_1;E)$  with constant  $C\geq 1$ , then for every Banach space F, every  $P\in \mathcal P(^nE;F)$  preserves  $\mathcal A$ -compact sets. Moreover, for every  $\mathcal A$ -compact set  $K\subset E$ ,

$$m_{\mathcal{A}}(P(K)) \le C^{n-1}e^n ||P|| m_{\mathcal{A}}(K)^n.$$

Let E be a Banach space and  $\mathcal A$  a  $\lambda$ -Banach operator ideal. If  $\mathcal A$  is  $(\pi, \varepsilon)$ -tensorstable for  $(\ell_1; E)$  with constant  $C \geq 1$ , then for every Banach space F, every  $P \in \mathcal P_{\varepsilon_s}(^nE; F)$  preserves  $\mathcal A$ -compact sets. Moreover, for every  $\mathcal A$ -compact set  $K \subset E$ ,

$$m_{\mathcal{A}}(P(K)) \leq C^{n-1} ||P||_{\varepsilon_s} m_{\mathcal{A}}(K)^n.$$

## Examples

#### Proposition

For  $1 \leq p < \infty$  and  $1 \leq r \leq p'$ , the ideal  $\mathcal{N}_{(p,1,r')}$  is  $(\pi,\pi)$ -tensorstable with constant C=1. (The case r=p' is due Carl, Defant and Ramanujan (1989))

#### Example

For  $1 \leq p < \infty$  and  $1 \leq r \leq p'$ , every  $P \in \mathcal{P}(^nE;F)$  preserves (p,r)-compact sets.

Moreover, for every (p, r)-compact set  $K \subset E$ ,

$$m_{(p,r)}(P(K)) \le e^n ||P|| m_{(p,r)}(K)^n.$$

## Examples

#### Proposition

For  $1 \leq p < \infty$  and  $1 \leq r \leq p'$ , the ideal  $\mathcal{N}_{(\infty,p',r')}$  is  $(\pi,\varepsilon)$ -tensorstable with constant C=1. (The case r=p' is due Carl, Defant and Ramanujan (1989))

#### Example

For  $1 \leq p < \infty$  and  $1 \leq r \leq p'$ , every  $P \in \mathcal{P}_{\varepsilon_s}(^nE;F)$  preserves  $\mathcal{U}_{(p,r)}$ -compact sets.

Moreover, for every  $\mathcal{U}_{(p,r)}$ -compact set  $K \subset E$ 

$$m_{\mathcal{U}_{(p,r)}}(P(K)) \leq ||P||_{\varepsilon} m_{\mathcal{U}_{(p,r)}}(K)^n.$$

## Examples

## Proposition (Holub 1974)

The ideal  $\Pi$  is  $(\pi, \pi)$ -tensorstable for  $(\ell_1; L_1(\mu))$  with constant C = 1.

#### Example

For every Banach space F, every  $P \in \mathcal{P}(^nL_1(\mu);F)$  preserves  $\Pi$ -compact set.

Moreover, for every  $\Pi$ -compact set  $K \subset L_1(\mu)$ ,

$$m_{\Pi}(P(K)) \le e^n ||P|| m_{\Pi}(K)^n.$$

- For  $1 \le p < \infty$  and  $1 \le r \le p'$ , every  $P \in \mathcal{P}(^nE; F)$  preserves (p, r)-compact sets and  $m_{(p,r)}(P(K)) \le e^n \|P\| m_{(p,r)}(K)^n$ .
- For every Banach space F, every  $P \in \mathcal{P}(^nL_1(\mu);F)$  preserves  $\Pi$ -compact set, and  $m_{\Pi}(P(K)) \leq e^n \|P\| m_{\Pi}(K)^n$ .
- For  $1 \leq p < \infty$  and  $1 \leq r \leq p'$ , every  $P \in \mathcal{P}_{\varepsilon_s}(^nE;F)$  preserves  $\mathcal{U}_{(p,r)}$ -compact sets and  $m_{\mathcal{U}_{(p,r)}}(P(K)) \leq \|P\| m_{\mathcal{U}_{(p,r)}}(K)^n$ .

# Analytic Functions

For Banach spaces E and F,  $U \subset E$  and open set,  $f \in \mathcal{H}(U;F)$  if for each  $x_0 \in U$  there exists a sequence of homogeneous polynomials  $P_n f(x_0) \in P(^nE;F)$  such that

$$f(x) = \sum_{n=0}^{\infty} P_n f(x_0)(x - x_0),$$

uniformly for all x in a neighborhood of  $x_0$ . And

$$r(f;x_0) = \frac{1}{\limsup \|P_n f(x_0)\|^{1/n}} = \sup\{r : \sup_{x \in B(x_0,r)} \|f(x)\| < \infty\}.$$

## Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

## Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

### Aron, Çalişkan, García, Maestre (2016)

Let E and F,  $U \subset E$  an open balance set and  $f \in \mathcal{H}(U;F)$ . For  $1 \leq p < \infty$ , consider a sequence  $(x_j)_j \in \ell_p(E)$  such that  $(x_j)_j \subset U$ . Then for the p-compact set  $K = \{\sum_{j=1}^\infty \alpha_j x_j \colon (\alpha_j)_j \in B_{\ell_{p'}}\}$ , f(K) is p-compact.

#### Examples: Compact and bounded sets

- Holomorphic mappings preserves compact sets.
- Holomorphic mappings do not preserves bounded sets.

Analytic Functions

#### Aron, Çalişkan, García, Maestre (2016)

Let E and F,  $U \subset E$  an open balance set and  $f \in \mathcal{H}(U;F)$ . For  $1 \leq p < \infty$ , consider a sequence  $(x_j)_j \in \ell_p(E)$  such that  $(x_j)_j \subset U$ . Then for the p-compact set  $K = \{\sum_{j=1}^\infty \alpha_j x_j \colon (\alpha_j)_j \in B_{\ell_{p'}}\}$ , f(K) is p-compact.

For every  $n \in \mathbb{N}$ , there exists  $P \in \mathcal{P}(^n\ell_2; \ell_1)$  which do not preserves  $\Pi$ -compact sets.

For  $1 \leq p < \infty$ ,  $1 \leq r \leq p'$ , and  $n \in \mathbb{N}$  with  $n \geq p$  there exists  $P \in \mathcal{P}(^n\ell_p;\ell_1)$  which do not preserves  $\mathcal{U}_{(p,r)}$ -compact sets.

$$f(K) \subset \sum_{n=0}^{\infty} P_n f(x_0)(K - x_0).$$

$$\bullet K \subset B(x_0; r(f; x_0)).$$

$$f(K) \subset \sum_{n=0}^{\infty} P_n f(x_0)(K - x_0).$$

- $\bullet K \subset B(x_0; r(f; x_0)).$
- Every  $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.

$$f(K) \subset \sum_{n=0}^{\infty} P_n f(x_0)(K - x_0).$$

- $K \subset B(x_0; r(f; x_0))$ .
- Every  $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.
- The infinite sum of A-compact sets is A-compact?

$$f(K) \subset \sum_{n=0}^{\infty} P_n f(x_0)(K - x_0).$$

- $K \subset B(x_0; r(f; x_0))$ .
- Every  $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.
- The infinite sum of A-compact sets is A-compact?

#### Lemma

Let E be a Banach space,  $\mathcal{A}$  a  $\lambda$ -Banach operator ideal and let  $K_1, K_2, \ldots$  be  $\mathcal{A}$ -compact sets such that

$$\sum_{m=1}^{\infty} m_{\mathcal{A}}(K_j)^{\lambda} < \infty.$$

Then the set  $K = \{\sum_{n=1}^{\infty} x_j : x_j \in K_j\}$  is  $\mathcal{A}$ -compact and  $m_{\mathcal{A}}(K)^{\lambda} < \sum_{n=1}^{\infty} m_{\mathcal{A}}(K_j)^{\lambda}$ .

# Proposition: Step 1

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal and let E,F Banach spaces,  $U\subset E$  an open set. Take  $f\in\mathcal{H}(U;F)$  such that, for  $x_0\in U$ 

•  $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.

If  $K \subset U$  is  $\mathcal{A}\text{-compact}$  such that

 $\bullet K \subset B(x_0, r(f; x_0)).$ 

# Proposition: Step 1

Let  $\mathcal{A}$  be a  $\lambda$ -Banach operator ideal and let E,F Banach spaces,  $U\subset E$  an open set. Take  $f\in\mathcal{H}(U;F)$  such that, for  $x_0\in U$ 

- $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.
- There exist  $C_n$  such that for all  $\mathcal{A}$ -compact sets  $K \subset U$

$$m_{\mathcal{A}}(P_n f(x_0)(K)) \le C_n \|P_n f(x_0)\| m_{\mathcal{A}}(K)^n.$$

If  $K \subset U$  is  $\mathcal{A}$ -compact such that

- $K \subset B(x_0, r(f; x_0))$ .
  - $m_{\mathcal{A}}(K-x_0) < \frac{r(f,x_0)}{\limsup C_n^{1/n}}$ ,

# Proposition: Step 1

Let  $\mathcal A$  be a  $\lambda$ -Banach operator ideal and let E,F Banach spaces,  $U\subset E$  an open set. Take  $f\in\mathcal H(U;F)$  such that, for  $x_0\in U$ 

- $P_n f(x_0)$  preserves  $\mathcal{A}$ -compact sets.
- There exist  $C_n$  such that for all  $\mathcal{A}$ -compact sets  $K \subset U$

$$m_{\mathcal{A}}(P_n f(x_0)(K)) \le C_n \|P_n f(x_0)\| m_{\mathcal{A}}(K)^n.$$

If  $K \subset U$  is  $\mathcal{A}$ -compact such that

- $K \subset B(x_0, r(f; x_0))$ .
  - $m_{\mathcal{A}}(K-x_0) < \frac{r(f,x_0)}{\limsup C_n^{1/n}}$ ,

then f(K) is  $\mathcal{A}$ -compact.

What we do with "bigger"  $\mathcal{A}$ -compact sets?

What we do with "bigger" A-compact sets?

#### Proposition

Let  $\mathcal A$  be a  $\lambda$ -Banach operator ideal E a Banach space and  $K\subset E$  an  $\mathcal A$ -compact set with  $0\in K$ . Then, given  $\epsilon>0$ , there exists  $\delta>0$  such that

$$m_{\mathcal{A}}(K \cap B(0;\delta)) \le \epsilon$$

Let E and F be Banach spaces and  $U\subset E$  an open set. For  $1\leq p<\infty$  and  $1\leq r\leq p'$ , every  $f\in \mathcal{H}(U;F)$  preserves (p,r)-compact sets.

Let E and F be Banach spaces and  $U\subset E$  an open set. For  $1\leq p<\infty$  and  $1\leq r\leq p'$ , every  $f\in \mathcal{H}(U;F)$  preserves (p,r)-compact sets.

#### Proof.

• Every homogeneous polynomial preserves (p,r)-compact sets and, if  $P \in \mathcal{P}(^nE;F)$ , and  $K \subset E$  is (p,r)-compact, then  $m_{(p,r)}(P(K)) \leq e^n \|P\| m_{(p,r)}(K)$ .

Let E and F be Banach spaces and  $U\subset E$  an open set. For  $1\leq p<\infty$  and  $1\leq r\leq p'$ , every  $f\in \mathcal{H}(U;F)$  preserves (p,r)-compact sets.

#### Proof.

• Every homogeneous polynomial preserves (p,r)-compact sets and, if  $P \in \mathcal{P}(^nE;F)$ , and  $K \subset E$  is (p,r)-compact, then  $\mathit{m}_{(p,r)}(P(K)) \leq e^n \|P\| \mathit{m}_{(p,r)}(K)$ .

Take  $K \subset U$  (p,r)-compact and for each  $x \in K$  take  $\delta_x > 0$  such that  $m_{\mathcal{A}}\big((K-x)\cap B(0,\delta_x)\big) < \frac{r(f,x)}{e}$ .

Let E and F be Banach spaces and  $U \subset E$  an open set. For  $1 \le p < \infty$  and  $1 \le r \le p'$ , every  $f \in \mathcal{H}(U; F)$  preserves (p,r)-compact sets.

#### Proof.

• Every homogeneous polynomial preserves (p, r)-compact sets and, if  $P \in \mathcal{P}(^nE; F)$ , and  $K \subset E$  is (p, r)-compact, then  $m_{(n,r)}(P(K)) \leq e^n ||P|| m_{(n,r)}(K).$ 

Take  $K \subset U$  (p,r)-compact and for each  $x \in K$  take  $\delta_x > 0$  such that  $m_{\mathcal{A}}((K-x)\cap B(0,\delta_x))<\frac{r(f,x)}{\epsilon}$ . There exist  $x_1,\ldots,x_k\in K$ such that  $K = \bigcup_{i=1}^k K \cap B(x_i, \delta_{x_i})$ . Then  $f(K) = \bigcup_{i=1}^k f(K \cap B(x_i, \delta_{x_i}))$  and each  $K \cap B(x_i, \delta_{x_i})$  satisfies the hypothesis of Step 1.

For every Banach space F, every  $P \in \mathcal{P}(^nL_1(\mu);F)$  preserves  $\Pi$ -compact set. Moreover if  $K \subset L_1(\mu)$   $\Pi$ -compact, then  $m_\Pi(P(K)) \leq e^n \|P\| m_\Pi(K)^n$ .

#### Example

Let F be a Banach space and  $U\subset L_1(\mu)$  an open set. Every  $f\in \mathcal{H}(U;F)$  preserves  $\Pi$ -compact sets.

For  $1 \le p < \infty$  and  $1 \le r \le p'$ , every homogeneous polynomial preserves in  $\mathcal{P}_{arepsilon_s}$  preserves  $\mathcal{U}_{(p,r)}$ -compact sets. Moreover, if  $P \in \mathcal{P}_{\varepsilon_s}(^nE; F)$ , and  $K \subset E$  is  $\mathcal{U}_{(p,r)}$ -compact, then  $m_{\mathcal{U}_{(p,r)}}(P(K)) \leq ||P||_{\varepsilon_s} m_{\mathcal{U}_{(p,r)}}(K)^n$ .

#### Example

Let E and F be a Banach space and  $U \subset E$  an open set. For  $1 \le p < \infty$  and  $1 \le r \le p'$ , every  $f \in \mathcal{H}(U; F)$  such that for every  $x_0 \in U$ ,  $P_n f(x_0) \in \mathcal{P}_{\varepsilon_s}(^n E; F)$  for all  $n \in \mathbb{N}$  and  $\limsup \|P_n f(x_0)\|_{\varepsilon_s} < \infty$ , then f preserves  $\mathcal{U}_{(p,r)}$ -compact sets.

# THANK YOU! ¡GRACIAS!

