The Algebra of symmetric analytic functions of bounded type on the complex L_∞

Taras Vasylyshyn (joint work with Pablo Galindo and Andriy Zagorodnyuk)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 うのの

- Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on L_∞. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 2017, **147A** 1–19. doi:10.1017/S0308210516000287
- Vasylyshyn T. Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞} . Carpathian Math. Publ. 2017, **9** (1), 22–27. doi:10.15330/cmp.9.1.22-27

Let L_{∞} be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on [0, 1] with norm

$$||x||_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |x(t)|.$$

Let Ξ be the set of all measurable bijections of [0,1] that preserve the measure.

A function $f: L_{\infty} \to \mathbb{C}$ is called symmetric if for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$ $f(x \circ \sigma) = f(x).$

э

Theorem 1

Polynomials $R_n : L_{\infty} \to \mathbb{C}$, $R_n(x) = \int_{[0,1]} (x(t))^n dt$ for $n \in \mathbb{N}$, form an algebraic basis in the algebra of all symmetric continuous polynomials on L_{∞} .

Let $H_{bs}(L_{\infty})$ be the Fréchet algebra of all entire symmetric functions $f: L_{\infty} \to \mathbb{C}$ which are bounded on bounded sets endowed with the topology of uniform convergence on bounded sets.

Since every $f \in H_{bs}(L_{\infty})$ can be described by its Taylor series of continuous symmetric homogeneous polynomials, it follows that f can be uniquely represented as

$$f(x) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} R_1^{k_1}(x) \cdots R_n^{k_n}(x).$$

Consequently, for every non-trivial continuous homomorphism $\varphi: H_{bs}(L_{\infty}) \to \mathbb{C}$, taking into account $\varphi(1) = 1$, we have

$$\varphi(f) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} \varphi(R_1)^{k_1} \cdots \varphi(R_n)^{k_n}.$$

Therefore, φ is completely determined by the sequence of its values on R_n :

 $(\varphi(R_1),\varphi(R_2),\ldots).$

We denote by M_{bs} the spectrum of $H_{bs}(L_{\infty})$, that is, the set of all continuous homomorphisms $\varphi: H_{bs}(L_{\infty}) \to \mathbb{C}$.

Proposition 2

For every non-trivial continuous homomorphism $\varphi : H_{bs}(L_{\infty}) \to \mathbb{C}$, the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^{\infty}$ is bounded.

Theorem 3

For every sequence $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|} < +\infty$, there exists $x_{\xi} \in L_{\infty}$ such that $R_n(x_{\xi}) = \xi_n$ for every $n \in \mathbb{N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\varepsilon_n(t) = \operatorname{sign} \sin 2^n \pi t$

Theorem (J.-P. Kahane "Some random series of functions", 1968)

The series

$$\sum_{n=1}^{\infty} \varepsilon_n(t) u_n$$

is convergent almost everywhere on [0, 1] if and only if the series

$$\sum_{n=1}^{\infty} u_n^2$$

伺い イヨン イヨン

э

is convergent.

Corollary

The series

$$\sum_{n=1}^{\infty} \frac{\varepsilon_n(t)}{n+1}$$

converges almost everywhere on [0, 1].

Let

$$p_n(t) = \exp\left(\frac{i\pi}{2n}\sum_{k=1}^{\infty}\frac{\varepsilon_k(t)}{k+1}\right).$$

By the Corollary, $p_n \in L_{\infty}$.

Note that

$$R_m(p_n) = \prod_{k=1}^{\infty} \cos\left(\frac{\pi m}{2n} \frac{1}{k+1}\right).$$

Let us define functions $y_n : [0,1] \to \mathbb{C}$. For $t \in \left[\frac{k-1}{n}, \frac{k}{n}\right)$ let $y_n(t) = \alpha_k p_n(nt - k + 1),$

where

$$\alpha_k = \exp\left(\frac{2\pi ik}{n}\right), \quad (k = 1, 2, \dots, n).$$

Note that $||y_n||_{\infty} = \text{ess sup}_{t \in [0,1]} |y_n(t)| = 1.$

We have

$$R_m(y_n) = \int_{[0,1]} (y_n(t))^m dt = \sum_{k=1}^n \int_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} (\alpha_k p_n(nt-k+1))^m dt = \\ = \left(\frac{1}{n} \sum_{k=1}^n \alpha_k^m\right) \int_{[0,1]} (p_n(t))^m dt.$$

Since

$$\frac{1}{n}\sum_{k=1}^{n}\alpha_{k}^{m} = \begin{cases} 1, & \text{if } m \text{ is a multiple of } n, \\ 0, & \text{otherwise.} \end{cases}$$

it follows that $R_m(y_n) = 0$ if m is not a multiple of n.

If m is a multiple of n, i.e. $m = k_0 n$ for some $k_0 \in \mathbb{N}$, we have

$$R_m(y_n) = \int_{[0,1]} (p_n(t))^m \, dt = \prod_{k=1}^\infty \cos\left(\frac{\pi}{2} \cdot \frac{k_0}{k+1}\right).$$

If $m \neq n$, then $k_0 > 1$ and one of the factors is equal to $\cos \frac{1}{2}\pi$, and, therefore, $R_m(y_n) = 0$. In the m = n case we have

$$R_n(y_n) = \prod_{k=1}^{\infty} \cos\left(\frac{\pi}{2}\frac{1}{k+1}\right).$$

Let $M = R_n(y_n)$. Note that 0 < M < 1.

,

Let

$$x_n(t) = \frac{1}{\sqrt[n]{M}} y_n(t).$$

Note that

$$R_m(x_n) = \begin{cases} 1, & \text{if } m = n, \\ 0, & \text{otherwise.} \end{cases}$$

Let us define $x_{\xi}(t)$.

For
$$t \in \left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^n-1}{2^n}\right)$$
 let
$$x_{\xi}(t) = 2\sqrt[n]{\xi_n} x_n(2^n t - 2^n + 2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Corollary 4

Every $\varphi \in M_{bs}$ is a point-evaluation functional.

Corollary 5

The spectrum M_{bs} can be identified with the set of all sequences $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ is bounded.

Let $\nu: L_{\infty} \to M_{bs}$ be defined by $\nu(x) = (R_1(x), R_2(x), \ldots)$.

Let τ_{∞} be the topology on L_{∞} , generated by $\|\cdot\|_{\infty}$.

Let us define an equivalence relation on L_{∞} by $x \sim y \Leftrightarrow \nu(x) = \nu(y)$.

Let τ be the quotient topology on M_{bs} :

 $\tau = \{\nu(V): V \in \tau_{\infty}\}.$

Theorem 6

 $(M_{bs},+,\tau)$ is an abelian topological group, where "+" is an operation of coordinate-wise addition.