The Algebra of symmetric analytic functions of bounded type on the complex L_{∞}

Taras Vasylyshyn
(joint work with Pablo Galindo and Andriy Zagorodnyuk)

围 Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on L_{∞}. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 2017, 147A 1-19. doi:10.1017/S0308210516000287
Rasylyshyn T. Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞}. Carpathian Math. Publ. 2017, 9 (1), 22-27. doi:10.15330/cmp.9.1.22-27

Let L_{∞} be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on $[0,1]$ with norm

$$
\|x\|_{\infty}=\operatorname{ess} \sup _{t \in[0,1]}|x(t)| .
$$

Let Ξ be the set of all measurable bijections of $[0,1]$ that preserve the measure.

A function $f: L_{\infty} \rightarrow \mathbb{C}$ is called symmetric if for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$

$$
f(x \circ \sigma)=f(x)
$$

Theorem 1

Polynomials $R_{n}: L_{\infty} \rightarrow \mathbb{C}, R_{n}(x)=\int_{[0,1]}(x(t))^{n} d t$ for $n \in \mathbb{N}$, form an algebraic basis in the algebra of all symmetric continuous polynomials on L_{∞}.

Let $H_{b s}\left(L_{\infty}\right)$ be the Fréchet algebra of all entire symmetric functions $f: L_{\infty} \rightarrow \mathbb{C}$ which are bounded on bounded sets endowed with the topology of uniform convergence on bounded sets.

Since every $f \in H_{b s}\left(L_{\infty}\right)$ can be described by its Taylor series of continuous symmetric homogeneous polynomials, it follows that f can be uniquely represented as

$$
f(x)=f(0)+\sum_{n=1}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}(x) \cdots R_{n}^{k_{n}}(x) .
$$

Consequently, for every non-trivial continuous homomorphism $\varphi: H_{b s}\left(L_{\infty}\right) \rightarrow \mathbb{C}$, taking into account $\varphi(1)=1$, we have

$$
\varphi(f)=f(0)+\sum_{n=1}^{\infty} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} \varphi\left(R_{1}\right)^{k_{1}} \cdots \varphi\left(R_{n}\right)^{k_{n}}
$$

Therefore, φ is completely determined by the sequence of its values on R_{n} :

$$
\left(\varphi\left(R_{1}\right), \varphi\left(R_{2}\right), \ldots\right) .
$$

We denote by $M_{b s}$ the spectrum of $H_{b s}\left(L_{\infty}\right)$, that is, the set of all continuous homomorphisms $\varphi: H_{b s}\left(L_{\infty}\right) \rightarrow \mathbb{C}$.

Proposition 2

For every non-trivial continuous homomorphism $\varphi: H_{b s}\left(L_{\infty}\right) \rightarrow \mathbb{C}$, the sequence $\left\{\sqrt[n]{\left|\varphi\left(R_{n}\right)\right|}\right\}_{n=1}^{\infty}$ is bounded.

Theorem 3

For every sequence $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sup _{n \in \mathbb{N}} \sqrt[n]{\left|\xi_{n}\right|}<+\infty$, there exists $x_{\xi} \in L_{\infty}$ such that $R_{n}\left(x_{\xi}\right)=\xi_{n}$ for every $n \in \mathbb{N}$.

Let $\varepsilon_{n}(t)=\operatorname{sign} \sin 2^{n} \pi t$

Theorem (J.-P. Kahane "Some random series of functions", 1968)

The series

$$
\sum_{n=1}^{\infty} \varepsilon_{n}(t) u_{n}
$$

is convergent almost everywhere on $[0,1]$ if and only if the series

$$
\sum_{n=1}^{\infty} u_{n}^{2}
$$

is convergent.

Corollary

The series

$$
\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(t)}{n+1}
$$

converges almost everywhere on $[0,1]$.

Let

$$
p_{n}(t)=\exp \left(\frac{i \pi}{2 n} \sum_{k=1}^{\infty} \frac{\varepsilon_{k}(t)}{k+1}\right) .
$$

By the Corollary, $p_{n} \in L_{\infty}$.

Note that

$$
R_{m}\left(p_{n}\right)=\prod_{k=1}^{\infty} \cos \left(\frac{\pi m}{2 n} \frac{1}{k+1}\right)
$$

Let us define functions $y_{n}:[0,1] \rightarrow \mathbb{C}$. For $t \in\left[\frac{k-1}{n}, \frac{k}{n}\right)$ let

$$
y_{n}(t)=\alpha_{k} p_{n}(n t-k+1),
$$

where

$$
\alpha_{k}=\exp \left(\frac{2 \pi i k}{n}\right), \quad(k=1,2, \ldots, n)
$$

Note that $\left\|y_{n}\right\|_{\infty}=\operatorname{ess} \sup _{t \in[0,1]}\left|y_{n}(t)\right|=1$.

We have

$$
\begin{aligned}
& R_{m}\left(y_{n}\right)=\int_{[0,1]}\left(y_{n}(t)\right)^{m} d t=\sum_{k=1}^{n} \int_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}\left(\alpha_{k} p_{n}(n t-k+1)\right)^{m} d t \\
&=\left(\frac{1}{n} \sum_{k=1}^{n} \alpha_{k}^{m}\right) \int_{[0,1]}\left(p_{n}(t)\right)^{m} d t
\end{aligned}
$$

Since

$$
\frac{1}{n} \sum_{k=1}^{n} \alpha_{k}^{m}= \begin{cases}1, & \text { if } m \text { is a multiple of } n \\ 0, & \text { otherwise }\end{cases}
$$

it follows that $R_{m}\left(y_{n}\right)=0$ if m is not a multiple of n.

If m is a multiple of n, i.e. $m=k_{0} n$ for some $k_{0} \in \mathbb{N}$, we have

$$
R_{m}\left(y_{n}\right)=\int_{[0,1]}\left(p_{n}(t)\right)^{m} d t=\prod_{k=1}^{\infty} \cos \left(\frac{\pi}{2} \cdot \frac{k_{0}}{k+1}\right)
$$

If $m \neq n$, then $k_{0}>1$ and one of the factors is equal to $\cos \frac{1}{2} \pi$, and, therefore, $R_{m}\left(y_{n}\right)=0$. In the $m=n$ case we have

$$
R_{n}\left(y_{n}\right)=\prod_{k=1}^{\infty} \cos \left(\frac{\pi}{2} \frac{1}{k+1}\right)
$$

Let $M=R_{n}\left(y_{n}\right)$. Note that $0<M<1$.

Let

$$
x_{n}(t)=\frac{1}{\sqrt[n]{M}} y_{n}(t)
$$

Note that

$$
R_{m}\left(x_{n}\right)= \begin{cases}1, & \text { if } m=n \\ 0, & \text { otherwise }\end{cases}
$$

Let us define $x_{\xi}(t)$.

For $t \in\left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^{n}-1}{2^{n}}\right)$ let

$$
x_{\xi}(t)=2 \sqrt[n]{\xi_{n}} x_{n}\left(2^{n} t-2^{n}+2\right)
$$

Corollary 4

Every $\varphi \in M_{b s}$ is a point-evaluation functional.

Corollary 5

The spectrum $M_{b s}$ can be identified with the set of all sequences $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\left\{\sqrt[n]{\left|\xi_{n}\right|}\right\}_{n=1}^{\infty}$ is bounded.

Let $\nu: L_{\infty} \rightarrow M_{b s}$ be defined by $\nu(x)=\left(R_{1}(x), R_{2}(x), \ldots\right)$.

Let τ_{∞} be the topology on L_{∞}, generated by $\|\cdot\|_{\infty}$.

Let us define an equivalence relation on L_{∞} by $x \sim y \Leftrightarrow \nu(x)=\nu(y)$.

Let τ be the quotient topology on $M_{b s}$:

$$
\tau=\left\{\nu(V): V \in \tau_{\infty}\right\} .
$$

Theorem 6

$\left(M_{b s},+, \tau\right)$ is an abelian topological group, where " + " is an operation of coordinate-wise addition.

