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Introduction

I The general idea of using “good” embeddings of discrete
metric spaces into “well-structured” spaces, such as a Hilbert
space or a “good” Banach space has found many significant
applications.

I One of the reasons for usefulness of this idea consists in the
fact that for “well-structured” spaces one can apply
well-developed tools which are generally not available for
discrete metric spaces.
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Applications of Metric Embeddings

I Here I just list the applications (more details will be provided
later).

I In Geometric Group Theory metric embeddings are used to find
an important classification of infinite finitely generated groups.

I In Computer Science metric embeddings are used for
construction of polynomial Approximation Algorithms for
problems for which (exact) polynomial algorithms are known to
be hard to find (in the sense that they can exist only if P
coincides with NP in the famous open “P vs NP” problem).

I Reminder: A polynomial algorithm is an algorithm for which
there exists a polynomial Q such that the number of steps for
any instance of the problem can be estimated from above by
Q(the size of the data for that instance).

I In Topology metric embeddings are used to prove special cases
of the Novikov and Baum-Connes conjectures (also metric
embeddings indicated the direction in which counterexamples
to some strengthened forms of the Baum-Connes conjecture
were found).
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On applications in group theory

I An infinite group having a finite generating set can be
endowed with a metric in a very natural way:

I Let G be a group and S be a finite subset of G . We say that
S is a generating set of G , if each g ∈ G can be written as a
finite product of elements from S (elements from S can be
repeated in this product arbitrarily many times). We introduce
the distance between elements g , h ∈ G as the length of the
shortest representation of g−1h in terms of elements of S . It is
easy to check that this is a metric, it is called the word metric.

I Applications of metric embeddings in geometric group theory
are based on the fact that in some important properties of
groups can be characterized in terms of existence of
sufficiently good embeddings into certain Banach spaces.
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Computer science: the sparsest cut problem

I The sparsest cut problem: We are given a connected graph
G = (V ,E ), with a positive weight (called a capacity) c(e)
associated to each edge e ∈ E , and a nonnegative number
(called a demand) D(u, v) associated to each (unordered) pair
of vertices u, v ∈ V .

I By a cut of G we mean a partition of the vertex set V into
two disjoint sets: S and its complement S̄ .

I The sparsity of the cut (S , S̄) is defined as∑
u∈S ,v∈S̄ ,uv∈E c(uv)∑
u∈S ,v∈S̄ D(u, v)

, (1)

that is, the sparsity is the ratio between the capacities and the
demands which “cross” the cut.

I The sparsest cut problem: What is the minimum sparsity
among all cuts with nonzero

∑
u∈S ,v∈S̄ D(u, v)?
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I The sparsest cut problem is known to be computationally hard
(in the sense that polynomial algorithms for it can exist only if
P is equivalent to NP in the “P vs NP” problem), for this
reason the following version of the sparsest cut problem is also
of interest: find an approximation algorithm for the sparsest
cut problem.

I An α-approximation algorithm for a combinatorial
optimization problem is a polynomial-time algorithm that for
all instances of the problem produces a solution whose value is
within a factor α of the value of an optimal solution.

I In many cases we have to allow α to be a slowly increasing
function of one of the parameters of the problem.
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I An approximation algorithm for the sparsest cut problem can
be found on the following lines.

I Cut semimetrics (sometimes called elementary cut metrics)
Let S be a subset of a set A, S̄ be the complement of S . The
pair (S , S̄) is called a cut in A and S , S̄ are called parts of this
cut. The cut semimetric on A corresponding to the cut (S , S̄)
is defined by

dS(u, v) =

{
0 if u and v are in the same part

1 if u and v are in different parts

I It is easy to see that the quantity which is of interest for the
sparsest cut problem can be rewritten as

∑
uv∈E c(uv)dS(u, v)∑

u,v∈V D(u, v)dS(u, v)

(
Originally:

∑
u∈S,v∈S̄,uv∈E c(uv)∑
u∈S,v∈S̄ D(u, v)

)
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I The next step in the approximation algorithm is the
observation that if we replace the minimum over cut metrics
in the sparsest cut problem by the minimum over all metrics,
we get a problem for which polynomial algorithms are known
(it becomes a Linear Programming problem).

I Solving this problem we get a metric (instead of a cut which
we wanted to get) and the corresponding ratio.

I It turns out (and not difficult to prove) that the quotient
between this ratio and the optimal ratio can be estimated in
terms of the distortion of the optimal embedding of the
obtained metric space into Banach space `1. I recall the
definition of `1 (distortion will be introduced later):

`1 =

{
{xi}∞i=1 : xi ∈ R, ||{xi}∞i=1|| =

∞∑
i=1

|xi | <∞

}
.
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Topology

I Instead of stating the Novikov and Baum-Connes conjectures,
I shall state a (close in a certain sense) Borel conjecture.

I I do this because the Borel conjecture is much easier to state.
I should confess that at this point I do not know works on the
Borel conjecture which involve metric embeddings.

I A manifold M is called aspherical if all of its homotopy groups
πn(M) are trivial (contain only the identity).

I Borel conjecture: Let X and Y be compact aspherical
manifolds. If X and Y are homotopy equivalent, then X and
Y are homeomorphic.

I Reminder: Topological spaces X and Y are called homotopy
equivalent if there exist maps f : X → Y and g : Y → X such
that f ◦ g is homotopic to the identity of Y and g ◦ f is
homotopic to the identity on X .
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What do we need to know about embeddings?

I Types of embeddings and useful choices of Banach spaces are
different for different applications. We start with embeddings
used for Approximation Algorithms.

I Let (X , dX ) be a metric space Y be a Banach space. The
distortion cY (X ) of embeddings of X into Y is defined as the
infimum of C ≥ 1 for which there is a map f : X → Y
satisfying

∀u, v ∈ X dX (u, v) ≤ ||f (u)− f (v)||Y ≤ CdX (u, v). (2)

We let cY (X ) =∞ if there are no embeddings satisfying (2).
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I The most important for applications to Approximation
Algorithms are embeddings of finite sets into the Hilbert space
`2 and the space `1. The corresponding distortions are
denoted by c2(X ) and c1(X ), respectively (instead of c`2(X )
and c`1(X )).

I The general problem of interest for the area of Approximation
Algorithms is to estimate distortions of different classes of
spaces. Let mention some important facts.

I Bourgain (1985) proved that there exists constant C <∞
such that for any n-element metric space X we have
c2(X ) ≤ C ln n. (Well-known results of Banach space theory
imply that c1(X ) ≤ c2(X ) for any finite metric space X .)

I Linial-London-Rabinovich (1995) proved that (up the the
value of the constant C ) Bourgain’s result is optimal (see the
next slide).
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I For a graph G with vertex set V and a subset F ⊂ V by ∂F
we denote the set of edges connecting F and V \F . The
expanding constant (a.k.a. Cheeger constant) of G is

h(G ) = inf

{
|∂F |

min{|F |, |V \F |}
: F ⊂ V , 0 < |F | < +∞

}
(where |A| denotes the cardinality of a set A.)

I A sequence {Gn} of graphs is called a family of expanders if
all of Gn are finite, connected, k-regular for some k ∈ N (this
means that each vertex is incident with exactly k edges), their
expanding constants h(Gn) are bounded away from 0 (that is,
there exists ε > 0 such that h(Gn) ≥ ε for all n), and their
orders (numbers of vertices) tend to ∞ as n→∞.

I We consider Gn as metric spaces, whose elements are vertices
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Existence of expanders

I Recall that a sequence {Gn} of graphs is called a family of
expanders if all of Gn are finite, connected, k-regular for some
k ∈ N, their expanding constants

h(Gn) = inf

{
|∂F |

min{|F |, |V (Gn)\F |}
: F ⊂ V (Gn), 0 < |F | < +∞

}
are bounded away from 0, and their orders (numbers of
vertices) tend to ∞ as n→∞.

I It is far from being clear that such graphs exist. However, it
was observed simultaneously with introducing the definition
(Kolmogorov–Bardzin’ (1967) and Pinsker (1973)) that
suitably defined families of random graphs are families of
expanders.

I It was a very important for applications problem: to construct
families of expanders deterministically. Eventually many of
such families were constructed (starting with Margulis
(1973)).
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Families of graphs with large girth

I As was mentioned in the previous slide
Linial-London-Rabinovich (1995) observed that expanders
have poor embeddability properties.

I In the same paper Linial-London-Rabinovich (1995) suggested
to study embeddability properties of families of k-regular
graphs (k ≥ 3) with indefinitely growing girths. (Note: The
case where k = 2 is easy to handle.)

I Reminders: The girth of a graph G is the number of edges in
a shortest cycle in G (we define girth only for graphs
containing some cycles). Notation: g(G ).

I The existence of k-regular (k ≥ 3) families of graphs with
indefinitely growing girths is also far from being obvious. The
earliest constructions I am aware of were suggested
Erdős-Sachs (1963).
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I There is a series of papers: Linial-Magen-Naor (2002), Bartal
-Linial-Mendel-Naor (2005), Naor-Peres-Schramm-Sheffield
(2006) in which results on poor embeddability of expanders
parallel to results on poor embeddability of families of graphs
with indefinitely growing girths.

I This made it interesting to understand whether each family of
graphs with growing girth contain a substructure which is like
a weak expander in a certain sense. The earliest known to me
mention of this problem is Naor’s Ph. D. (2002).

I Linial-Magen-Naor (2002) at the Symposium on the Theory of
Computing (STOC) conference suggested a closely related
problem: Can we derive any lower bound on c1(G ) that tends
to ∞ with g(G )?

I This problem was repeated in the full version of their paper
(GAFA 2002), Matoušek’s collection of open problems on
embeddings of metric spaces, and Linial’s ICM talk (2002).
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I Problems mentioned in the previous slide (in the stated
generality) are answered by the following theorem.

I Theorem (M.O. 2012): For each k ≥ 3 there exists a
sequence {G̃n}∞n=1 of finite k-regular graphs with

limn→∞ g(G̃n) =∞ and supn c1(G̃n) <∞.

I The construction used to prove the theorem was inspired by
the work of Arzhantseva-Guentner-Špakula (GAFA 2012) on
quotients of free groups. I do not plan to describe the
connection between constructions as I do not want to
introduce algebraic preliminaries.

I One of the important (and attractive for some people)
features of my proof is that it is completely elementary and
requires knowledge of basic Graph Theory only.

I One can find all details and relevant background in my book
M. I. Ostrovskii, “Metric embeddings”, 2013.
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Coarse embeddings

I In applications to Group Theory and Topology the following
class of embeddings is important.

I Let ρ1, ρ2 : [0,∞)→ [0,∞) be two non-decreasing functions
(important: ρ2 has finite values), and let
F : (X , dX )→ (Y , dY ) be a mapping between two metric
spaces such that
∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (F (u),F (v)) ≤ ρ2(dX (u, v)).
The mapping F is called a coarse embedding if ρ1 can be
chosen to satisfy limt→∞ ρ1(t) =∞.

I It is clear that this definition imposes nontrivial restrictions
only when we consider embeddings of unbounded metric
spaces: If a space X is such that supu,v∈X dX (u, v) <∞, then
the map which maps all elements of X to the same element of
Y is a coarse embedding.

Mikhail Ostrovskii, St. John’s University Metric embeddings



Coarse embeddings

I In applications to Group Theory and Topology the following
class of embeddings is important.

I Let ρ1, ρ2 : [0,∞)→ [0,∞) be two non-decreasing functions
(important: ρ2 has finite values), and let
F : (X , dX )→ (Y , dY ) be a mapping between two metric
spaces such that
∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (F (u),F (v)) ≤ ρ2(dX (u, v)).
The mapping F is called a coarse embedding if ρ1 can be
chosen to satisfy limt→∞ ρ1(t) =∞.

I It is clear that this definition imposes nontrivial restrictions
only when we consider embeddings of unbounded metric
spaces: If a space X is such that supu,v∈X dX (u, v) <∞, then
the map which maps all elements of X to the same element of
Y is a coarse embedding.

Mikhail Ostrovskii, St. John’s University Metric embeddings



Coarse embeddings

I In applications to Group Theory and Topology the following
class of embeddings is important.

I Let ρ1, ρ2 : [0,∞)→ [0,∞) be two non-decreasing functions
(important: ρ2 has finite values), and let
F : (X , dX )→ (Y , dY ) be a mapping between two metric
spaces such that
∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (F (u),F (v)) ≤ ρ2(dX (u, v)).
The mapping F is called a coarse embedding if ρ1 can be
chosen to satisfy limt→∞ ρ1(t) =∞.

I It is clear that this definition imposes nontrivial restrictions
only when we consider embeddings of unbounded metric
spaces: If a space X is such that supu,v∈X dX (u, v) <∞, then
the map which maps all elements of X to the same element of
Y is a coarse embedding.

Mikhail Ostrovskii, St. John’s University Metric embeddings



Examples of coarse embeddings

I Example 1. The mapping F : R→ Z given by F (x) = bxc is
a coarse embedding.

I In Example 1 preimage of a point is an interval.

I Example 2. The vertex set V of an infinite dyadic tree T
with its graph distance can be coarsely embedded into `2 in
the following way: we consider a bijection between the set of
all edges of T and vectors of an orthonormal basis {ei} in `2,
and map each vertex from V onto the sum of those vectors
from {ei} which correspond to a path from a root O of T to
the vertex, O is mapped to 0.

I In Example 2 the distance between the images is the
√

of
the distance between vertices.
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Locally finite metric spaces

I A metric space is called locally finite if each ball of finite
radius in it has finitely many elements.

I The main metric space whose embeddability is of interest for
applications in Group Theory and Topology is a finitely
generated group with its word metric. It is easy to check that
each such metric space is locally finite.

I It turns out that embeddability of a locally finite metric space
into a Banach space is finitely determined in the sense
explained on the next slide.
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Embeddings of locally finite metric spaces are finitely
determined

I Theorem (M.O. 2012): (1) Let A be a locally finite metric
space whose finite subsets admit embeddings into a Banach
space X with uniformly bounded distortions. Then A admits
an embedding into X with finite distortion.

I (2) Let A be a locally finite metric space whose finite subsets
admit coarse embeddings into a Banach space X with the
same functions ρ1 and ρ2 for all subsets. Then A admits a
coarse embedding into X .

I Before this result was known for many different classes of
Banach spaces (such as Lp(0, 1)), but its validity in the
general case was a kind of unexpected.
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On the proof of the finite determination result

I The proof of the theorem is based on one of the kinds of
convergence which exist for bounded sets in an arbitrary
separable Banach space and a pasting procedure which was
first suggested by Ribe (1984) and later developed by Baudier
and Lancien (2008).

I The proof for (infinite-dimensional) Banach spaces X which
are not isomorphic to X ⊕ R requires an additional step (such
spaces X were constructed by Gowers and Maurey (1993)).

I For this result details can be found in my book “Metric
embeddings”.
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Metric characterizations

I One of the important directions of research in the theory of
metric embeddings is: Characterize well-known classes of
Banach spaces in terms of their metrics, that is in such a way
that characterizations include only distances between vectors
of the space and do not include linear combinations or linear
functionals.

I I found such a characterization for the Radon-Nikodým
property (RNP).

I An interest to such characterizations is stimulated by the fact
that in some of the recent works in the theory of embeddings
of metric spaces into Banach spaces (Cheeger, Kleiner, Lee,
Naor, 2006–2015) an important role is played by the class of
Banach spaces with the RNP.

I In 2009 Bill Johnson suggested the problem: Find a purely
metric characterization of the Radon-Nikodým property.
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Introduction to the RNP

I The Radon-Nikodým property (RNP, for short) is one of the
most important isomorphic invariants of Banach spaces.

I One of the reasons for the importance of the RNP is the
possibility to characterize the RNP in many different ways.

I Some of the equivalent definitions of the RNP:

I Measure-theoretic definition (it gives the name to this
property) X ∈ RNP⇔ The following analogue of the
Radon-Nikodým theorem holds for X -valued measures.

I Let (Ω,Σ, µ) be a positive finite real-valued measure, and
(Ω,Σ, τ) be an X -valued measure on the same σ-algebra
which is absolutely continuous with respect to µ (this means
µ(A) = 0 ⇒ τ(A) = 0) and satisfies the condition τ(A)/µ(A)
is a uniformly bounded set of vectors over all A ∈ Σ with
µ(A) 6= 0. Then there is an f ∈ L1(µ,X ) such that

∀A ∈ Σ τ(A) =

∫
A

f (ω)dµ(ω).
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Further equivalent definitions of the Radon-Nikodým
property (RNP)

I Definition in terms of differentiability (going back to Clarkson
(1936) and Gelfand (1938)) X ∈ RNP⇔ X -valued Lipschitz
functions on R are differentiable almost everywhere.

I Probabilistic definition (Chatterji (1968)) X ∈ RNP⇔
Bounded X -valued martingales converge.

I In more detail: A Banach space X has the RNP if and only if
each X -valued martingale {fn} on some probability space
(Ω,Σ, µ), for which {||fn(ω)|| : n ∈ N, ω ∈ Ω} is a bounded
set, converges in L1(Ω,Σ, µ,X ).
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Further equivalent definitions of the Radon-Nikodým
property (RNP)

I Geometric definition. X ∈ RNP⇔ Each bounded closed
convex set in X is dentable in the following sense:

I A bounded closed convex subset C in a Banach space X is
called dentable if for each ε > 0 there is a continuous linear
functional f on X and α > 0 such that the set

{y ∈ C : f (y) ≥ sup{f (x) : x ∈ C} − α}

has diameter < ε.
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Examples

I RNP: Reflexive (for example Lp, 1 < p <∞), separable dual
spaces (for example, `1).

I non-RNP: c0, L1(0, 1), nonseparable duals of separable
Banach spaces.

Mikhail Ostrovskii, St. John’s University Metric embeddings



Examples

I RNP: Reflexive (for example Lp, 1 < p <∞), separable dual
spaces (for example, `1).

I non-RNP: c0, L1(0, 1), nonseparable duals of separable
Banach spaces.

Mikhail Ostrovskii, St. John’s University Metric embeddings



Geodesics

I Our main goal is to present a metric characterization of the
RNP in terms of thick families of geodesics.

I We start with a standard definition:
Let u and v be two elements in a metric space (M, dM). A
uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).
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Thick families of geodesics

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn (we call these
points control points).

I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are
distinct and the sum of deviations over them is nontrivially
large in the sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I (4) Furthermore, each geodesic which on some intervals
between the points 0 = q0 < q1 < q2 < · · · < qm = dM(u, v)
coincides with g and on others with g̃ is also in T .
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RNP and thick family of geodesics

I Examples: Numerous examples of thick families of geodesics
can be obtained by considering a metric space consisting of
one geodesic joining two points and then adding more and
more geodesics in infinitely many steps.

I Theorem 1 (M.O. (2014)). A Banach space X does not have
the RNP if and only if there exists a metric space MX

containing a thick family TX of geodesics which admits an
embedding into X with finite distortion.

I At the same time, it turns out that the metric space MX in
Theorem 1 cannot be chosen independently of X because the
following result holds.

I Theorem 2 (M.O. (2014)). For each metric space M
containing a thick family of geodesics there exists a Banach
space X which does not have the RNP and does not admit an
embedding of M with finite distortion.
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