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The Merton problem
Basic setting

I Bond normalized to S0 = 1
I Stock modelled as

dSt = Stαtdt + StσtdWt

I Trading strategy (ϕ0, ϕ), consumption rate c
I Self-financing condition:

dϕ0
t = −Stdϕt − ctdt

I Admissibility condition:

ϕ0
t + ϕtSt ≥ 0



The Merton problem
Optimization problem

Goal: Maximize expected utility from consumption

E
(∫ ∞

0
e−δt log(ct)dt

)
over all admissible (ϕ0, ϕ, c)

I Impatience rate δ
I log(ct) measures utility from consumption at time t
I Infinite planning horizon
I Already solved by Merton (1971)

What does the solution look like?



The Merton problem
Solution

Goal: Maximize
E
(∫ ∞

0
e−δt log(ct)dt

)
over all admissible (ϕ0, ϕ, c)

I dSt/St = αtdt + σtdWt
I Consume contant fraction c∗t = δ(ϕ0

t + ϕtSt) of wealth
I Invest myopic fraction

π∗t =
ϕtSt

ϕ0
t + ϕtSt

=
αt
σ2

t

of wealth into stocks
I For Black-Scholes model: α, σ and hence π∗ are constant



The Merton problem
Solution ct’d

Optimal strategy in the Black-Schloles model: Invest constant
fraction

π∗t =
ϕtSt

ϕ0
t + ϕtSt

=
α

σ2

into stocks
I Buy stocks when prices go down, sell when they move up
I Consequence: Continuous trading necessary due to fluctuation

of the Brownian motion W
I Strategy leads to instant ruin for transaction costs
I How to formalize this?
I How does the optimal policy change?



The Merton problem with transaction costs
Basic setting

I Bond S0 = 1, stock dSt = Stµtdt + StσtdWt
I Can buy stocks only at higher ask price

St = (1 + λ)St

I Can sell them only at lower bid price

St = (1− µ)St

I Self-financing condition:

dϕ0
t = Stdϕ

↓
t − Stϕ

↑
t dSt − ctdt

I Admissibility condition:

ϕ0
t + (ϕt)+St − (ϕt)−St ≥ 0



The Merton problem with transaction costs
Optimization problem

Goal: As before, maximize

E
(∫ ∞

0
e−δt log(ct)dt

)
over all admissible (ϕ0, ϕ, c)

I Problem does not have to be changed
I Only notion of admissibility has to be adapted
I But now, solution is much harder
I Results only available for Black-Scholes with constant α, σ

Structure of the solution?



The Merton problem with transaction costs
Results

Remember: Without transaction costs (Merton (1971))
I Fixed fraction π∗ of wealth in stock (e.g. 31%)
I Consumption rate is fixed proportion of wealth
I Both numbers explicitly known

With transaction costs (Magill & Constantinidis (1976), Davis &
Norman (1990), Shreve and Soner (1994)):

I Minimal trading to keep fraction of wealth in stock in fixed
corridor [π, π] (e.g. 20-40%)

I Consumption rate is function of wealth in cash and stock
I Corridor known only as solution to free boundary problem

Method: Stochastic control, PDEs. Here: Different approach



Shadow Prices
A general principle
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Shadow prices
A general principle

I Idea: Problem with transaction costs as problem without
transaction costs for different price process

I Shadow price at boundary when optimal strategy transacts
I Min-Max theorem:

sup
ϕ

inf
S̃∈[S,S]

(
Utility

)
= inf

S̃∈[S,S]

sup
ϕ

(
Utility

)
I Similiar to concept of consistent price systems in W.

Schachermayer’s talk yesterday

But does this really hold? Under what conditions?



Shadow prices
A general principle?

Existence of a shadow price S̃?
I Partial positive results for continuous processes in Karatzas &

Cvitanić (1996), Loewenstein (2002)
I Kallsen & M-K (2009): Always holds, if |Ω| <∞
I Elementary proof, S̃ constructed from Lagrange multipliers
I General theorem is still missing, current work in progress with

W. Schachermayer, J. Kallsen and M. Owen
I Other structural results in different areas

But can this be used for computations?



Application to Merton problem with transaction costs
Using shadow prices?

If
dS̃ = γtdt + εtdWt

were known things would be easy:
I Consume contant fraction c∗t = δ(ϕ0

t + ϕt S̃t)

I Invest constant fraction π∗t = γt/ε
2
t into stocks

I Wealth now measured in terms of S̃ instead of S

But:
I Even if it exists, S̃ is not known a priori
I Hence: Must be determined simulatneously with π and c!



Application to Merton problem with transaction costs
Price processes

Real price processes:
I Stock price: dSt/St = αdt + σdWt
I Bid price: (1− µ)St
I Ask price: (1 + λ)St

Shadow price process S̃ ∈ [(1− µ)S, (1 + λ)S]:
I S̃t = exp(Ct)St
I Ct = log(S̃t/St) deviation from real price
I Ct ∈ [log(1− µ), log(1 + λ)]

C moves in bounded interval. How to model such a process?



Application to Merton problem with transaction costs
Ansatz for the shadow price

How to model process C ∈ [log(1− µ), log(1 + λ)]?

Naive approach:

dCt = α̃(Ct)dt + σ̃(Ct)dWt

I Diffusion of order
√

dt, drift of order dt, need “drift” ∞ at
the boundary
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Application to Merton problem with transaction costs
Ansatz for the shadow price

How to model process C ∈ [log(1− µ), log(1 + λ)]?

Naive approach:

dCt = α̃(Ct)dt + σ̃(Ct)dWt + local time

I Diffusion of order
√

dt, drift of order dt, need “drift” ∞ at
the boundary

I But: Optimal fraction Drift/Diffusion2 would be infinite
I This is not a good idea with transaction costs!

Different approach?



Application to Merton problem with transaction costs
Ansatz for the shadow price ct’d

How to model process C ∈ [log(1− µ), log(1 + λ)]?

Refined approach:

dCt = α̃(Ct)dt + σ̃(Ct)dWt

I Diffusion of order
√

dt, drift of order dt
I Need to have σ̃(Ct)→ 0 when approaching the boundary
I Analogous to square-root process for e.g. interest rates:

drt = (κ− λrt)dt +
√

rtdWt



Application to Merton problem with transaction costs
Ansatz for the shadow price ct’d

I Itô process dCt = α̃(Ct)dt + σ̃(Ct)dWt

⇒ dS̃t/S̃t = Drift(Ct)dt + Diffusion(Ct)dWt

Remember: Optimal strategy (without transaction costs):
I Consumption: δṼt

I Fraction of stocks: π(Ct) = Drift(Ct)

Diffusion(Ct)2

I Use transformation
1

1+exp(−f (Ct))
= π(Ct)⇔ f (Ct) = log( π(Ct)

1−π(Ct)
)

⇒ Need to determine 3 functions: α̃, σ̃, f
⇒ f (log(1− µ)), f (log(1 + λ)) determine corridor



Application to Merton problem with transaction costs
Conditions for the shadow price

I Optimality:
1

1 + exp(−f )
=

Drift
Diffusion2 (I)

I No trading within bounds: dϕt = 0 for optimal ϕ
I Itô’s formula:

dϕt = somefunction(f , f ′, f ′′, α̃, σ̃)dt
+ anotherfunction(f , f ′, α̃, σ̃)dWt

I Hence

0 = somefunction, (II)
0 = anotherfunction (III)

I 3 conditions



Application to Merton problem with transaction costs
Conditions for the shadow price ct’d

Solution to Equations I-III:

σ̃ =
σ

f ′ − 1

α̃ = −α + σ2
( f ′

f ′ − 1

)( 1
1 + e−f

)
f satisfies the ODE

f ′′(x) =
(

2δ
σ2 (1 + ef (x))

)
+
(

2α
σ2 − 1− 4δ

σ2 (1 + ef (x))
)

f ′(x)

+
(

4α
σ2 + 2− 2δ

σ2 (1 + ef (x)) + 1−e−f (x)

1+e−f (x)

)
(f ′(x))2

+
(

2α
σ2 + 2

1+e−f (x)

)
(f ′(x))3

Still missing: Boundary conditions for x = log(1− µ) and
x = log(1 + λ)?



Application to Merton problem with transaction costs
Heuristics for boundary conditions

Remember:
dCt = α̃(Ct)dt + σ̃(Ct)dWt

has to stay in [log(1− µ, 1 + λ]

I Consequence: Need σ̃ → 0 at the boundary
I σ̃ = σ

f ′−1 ⇒ |f
′| =∞ at the boundary

I If C = log(1− µ): Shadow price = Bid price ⇒ higher sell
boundary

I If C = log(1 + λ): Shadow price = Ask price ⇒ lower buy
boundary

I Hence: f is decreasing, f ′ = −∞ at the boundary



Application to Merton problem with transaction costs
The decisive ODE

Have to solve second-order ODE

f ′′(x) = somefunction(f (x))

s.t.

f (log(1− µ)) = log
(

π

1− π

)
, f (log(1 + λ)) = log

(
π

1− π

)
and

f ′(log(1− µ)) = −∞, f ′(log(1 + λ)) = −∞

I Same number of conditions and degrees of freedom
I But f ′ = −∞ is difficult both for existence proof and numerics
I Way out: Consider g = f −1 instead



Application to Merton problem with transaction costs
The decisive free boundary problem

g ′′(y) =
(

1−e−y

1+e−y + 1− 2α
σ2

)
+
(

4α
σ2 − 2− 1−e−y

1+e−y − 2δ
σ2 (1 + ey )

)
g ′(y)

+
(
−2α
σ2 + 1− 4δ

σ2 (1 + ey )
)

(g ′(y))2

−
(

2δ
σ2 (1 + ey )

)
(g ′(y))3

s.t.

g
(
log
(

π

1− π

))
= log(1− µ), g

(
log
(

π

1− π

))
= log(1 + λ)

and
g ′
(
log
(

π

1− π

))
= 0, g ′

(
log
(

π

1− π

))
= 0

I Boundaries determine no-trade region



Application to Merton problem with transaction costs
Numerical solution

g ′′(y) = somefunction(y)

s.t.

g
(
log
(

π

1− π

))
= log(1− µ), g ′

(
log
(

π

1− π

))
= 0

and

g
(
log
(

π

1− π

))
= log(1 + λ) g ′

(
log
(

π

1− π

))
= 0

I Numerically compute solution g to initial value proble for
given boundary, find next zero of g ′

I Adjust boundary to get right value of g there
I This is also the basis for the existence proof



Application to Merton problem with transaction costs
Numerical solution ct’d
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Application to Merton problem with transaction costs
Simulation
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Application to Merton problem with transaction costs
Simulation ct’d
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Summary

Computation of conditions:
1. Optimality without transaction costs,
2. Constant trading strategy within bounds,
3. Boundary conditions via Itô process assumption.

Verification:
1. Prove existence of a solution to free boundary problem.
2. Prove existence of corresponding processes S̃ etc.
3. Show that optimal investment in S̃ trades only at boundary.
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