On Using Shadow Prices in Portfolio optimization with Transaction Costs

Johannes Muhle-Karbe

Universität Wien

Joint work with Jan Kallsen

Universidad de Murcia 12.03.2010

Outline

The Merton problem

The Merton problem with transaction costs

Shadow prices

Application to Merton problem with transaction costs

Basic setting

- ▶ Bond normalized to $S^0 = 1$
- Stock modelled as

$$dS_t = S_t \alpha_t dt + S_t \sigma_t dW_t$$

- ▶ Trading strategy (φ^0, φ) , consumption rate c
- Self-financing condition:

$$d\varphi_t^0 = -S_t d\varphi_t - c_t dt$$

Admissibility condition:

$$\varphi_t^0 + \varphi_t S_t \ge 0$$

Optimization problem

Goal: Maximize expected utility from consumption

$$\mathbb{E}\left(\int_0^\infty e^{-\delta t}\log(c_t)dt\right)$$

over all admissible (φ^0, φ, c)

- ightharpoonup Impatience rate δ
- $\triangleright \log(c_t)$ measures utility from consumption at time t
- Infinite planning horizon
- ▶ Already solved by Merton (1971)

What does the solution look like?

Solution

Goal: Maximize

$$\mathbb{E}\left(\int_0^\infty e^{-\delta t}\log(c_t)dt\right)$$

over all admissible (φ^0, φ, c)

- $dS_t/S_t = \alpha_t dt + \sigma_t dW_t$
- ▶ Consume contant fraction $c_t^* = \delta(\varphi_t^0 + \varphi_t S_t)$ of wealth
- Invest myopic fraction

$$\pi_t^* = \frac{\varphi_t S_t}{\varphi_t^0 + \varphi_t S_t} = \frac{\alpha_t}{\sigma_t^2}$$

of wealth into stocks

▶ For Black-Scholes model: α, σ and hence π^* are constant

Solution ct'd

Optimal strategy in the Black-Schloles model: Invest constant fraction

$$\pi_t^* = \frac{\varphi_t S_t}{\varphi_t^0 + \varphi_t S_t} = \frac{\alpha}{\sigma^2}$$

into stocks

- Buy stocks when prices go down, sell when they move up
- Consequence: Continuous trading necessary due to fluctuation of the Brownian motion W
- Strategy leads to instant ruin for transaction costs
- How to formalize this?
- ▶ How does the optimal policy change?

The Merton problem with transaction costs Basic setting

- ▶ Bond $S^0 = 1$, stock $dS_t = S_t \mu_t dt + S_t \sigma_t dW_t$
- ► Can buy stocks only at higher ask price

$$\overline{S}_t = (1 + \lambda)S_t$$

Can sell them only at lower bid price

$$\underline{S}_t = (1 - \mu)S_t$$

Self-financing condition:

$$d\varphi_t^0 = \underline{S}_t d\varphi_t^{\downarrow} - \overline{S}_t \varphi_t^{\uparrow} dS_t - c_t dt$$

Admissibility condition:

$$\varphi_t^0 + (\varphi_t)^+ \underline{S}_t - (\varphi_t)^- \overline{S}_t \ge 0$$

The Merton problem with transaction costs

Optimization problem

Goal: As before, maximize

$$\mathbb{E}\left(\int_0^\infty e^{-\delta t}\log(c_t)dt\right)$$

over all admissible (φ^0, φ, c)

- Problem does not have to be changed
- Only notion of admissibility has to be adapted
- But now, solution is much harder
- lacksquare Results only available for Black-Scholes with constant $lpha,\sigma$

Structure of the solution?

The Merton problem with transaction costs

Remember: Without transaction costs (Merton (1971))

- ▶ Fixed fraction π^* of wealth in stock (e.g. 31%)
- Consumption rate is fixed proportion of wealth
- ▶ Both numbers explicitly known

With transaction costs (Magill & Constantinidis (1976), Davis & Norman (1990), Shreve and Soner (1994)):

- Minimal trading to keep fraction of wealth in stock in fixed corridor $[\underline{\pi}, \overline{\pi}]$ (e.g. 20-40%)
- Consumption rate is function of wealth in cash and stock
- Corridor known only as solution to free boundary problem

Method: Stochastic control, PDEs. Here: Different approach

Shadow Prices

A general principle

Optimal portfolio with transaction costs?

Shadow Prices

A general principle

Optimal portfolio with transaction costs?

Shadow Prices

A general principle

Optimal portfolio with transaction costs

Optimal portfolio without transaction costs for shado pitchiversität

Shadow prices

A general principle

- ▶ Idea: Problem with transaction costs as problem without transaction costs for different price process
- ▶ Shadow price at boundary when optimal strategy transacts
- Min-Max theorem:

$$\sup_{\varphi}\inf_{\widetilde{S}\in[\underline{S},\overline{S}]}\left(\mathsf{Utility}\right)=\inf_{\widetilde{S}\in[\underline{S},\overline{S}]}\sup_{\varphi}\left(\mathsf{Utility}\right)$$

► Similiar to concept of consistent price systems in W. Schachermayer's talk yesterday

But does this really hold? Under what conditions?

Shadow prices

A general principle?

Existence of a shadow price \tilde{S} ?

- ▶ Partial positive results for continuous processes in Karatzas & Cvitanić (1996), Loewenstein (2002)
- ▶ Kallsen & M-K (2009): Always holds, if $|\Omega| < \infty$
- ightharpoonup Elementary proof, \widetilde{S} constructed from Lagrange multipliers
- ► General theorem is still missing, current work in progress with W. Schachermayer, J. Kallsen and M. Owen
- Other structural results in different areas

But can this be used for computations?

Application to Merton problem with transaction costs Using shadow prices?

lf

$$d\widetilde{S} = \gamma_t dt + \epsilon_t dW_t$$

were known things would be easy:

- ▶ Consume contant fraction $c_t^* = \delta(\varphi_t^0 + \varphi_t \widetilde{S}_t)$
- ▶ Invest constant fraction $\pi_t^* = \gamma_t/\epsilon_t^2$ into stocks
- Wealth now measured in terms of \widetilde{S} instead of S

But:

- ightharpoonup Even if it exists, \widetilde{S} is not known a priori
- ▶ Hence: Must be determined simulatineously with π and c!

Application to Merton problem with transaction costs Price processes

Real price processes:

- ▶ Stock price: $dS_t/S_t = \alpha d_t + \sigma dW_t$
- ▶ Bid price: $(1 \mu)S_t$
- ▶ Ask price: $(1 + \lambda)S_t$

Shadow price process $\widetilde{S} \in [(1 - \mu)S, (1 + \lambda)S]$:

- $ightharpoonup C_t = \log(\widetilde{S}_t/S_t)$ deviation from real price
- $ightharpoonup C_t \in [\log(1-\mu), \log(1+\lambda)]$

C moves in bounded interval. How to model such a process?

Application to Merton problem with transaction costs Ansatz for the shadow price

How to model process $C \in [\log(1-\mu), \log(1+\lambda)]$?

Naive approach:

$$dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t$$

▶ Diffusion of order \sqrt{dt} , drift of order dt, need "drift" ∞ at the boundary

Application to Merton problem with transaction costs Ansatz for the shadow price

How to model process $C \in [\log(1-\mu), \log(1+\lambda)]$?

Naive approach:

$$dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t + \text{local time}$$

▶ Diffusion of order \sqrt{dt} , drift of order dt, need "drift" ∞ at the boundary

Application to Merton problem with transaction costs Ansatz for the shadow price

How to model process $C \in [\log(1-\mu), \log(1+\lambda)]$?

Naive approach:

$$dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t + \text{local time}$$

- ▶ Diffusion of order \sqrt{dt} , drift of order dt, need "drift" ∞ at the boundary
- ▶ **But**: Optimal fraction Drift/Diffusion² would be infinite
- ▶ This is not a good idea with transaction costs!

Different approach?

Ansatz for the shadow price ct'd

How to model process $C \in [\log(1-\mu), \log(1+\lambda)]$?

Refined approach:

$$dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t$$

- ▶ Diffusion of order \sqrt{dt} , drift of order dt
- ▶ Need to have $\widetilde{\sigma}(C_t) \to 0$ when approaching the boundary
- ▶ Analogous to square-root process for e.g. interest rates:

$$dr_t = (\kappa - \lambda r_t)dt + \sqrt{r_t}dW_t$$

Ansatz for the shadow price ct'd

▶ Itô process $dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t$ ⇒ $d\widetilde{S}_t/\widetilde{S}_t = \text{Drift}(C_t)d_t + \text{Diffusion}(C_t)dW_t$

Remember: Optimal strategy (without transaction costs):

- ▶ Consumption: $\delta \widetilde{V}_t$
- ► Fraction of stocks: $\pi(C_t) = \frac{\text{Drift}(C_t)}{\text{Diffusion}(C_t)^2}$
- ▶ Use transformation $\frac{1}{1+\exp(-f(C_t))} = \pi(C_t) \Leftrightarrow f(C_t) = \log(\frac{\pi(C_t)}{1-\pi(C_t)})$
- \Rightarrow Need to determine 3 functions: $\tilde{\alpha}$, $\tilde{\sigma}$, f
- $\Rightarrow f(\log(1-\mu)), f(\log(1+\lambda))$ determine corridor

Conditions for the shadow price

Optimality:

$$\frac{1}{1 + \exp(-f)} = \frac{\mathsf{Drift}}{\mathsf{Diffusion}^2} \tag{I}$$

- ▶ No trading within bounds: $d\varphi_t = 0$ for optimal φ
- Itô's formula:

$$d\varphi_t = \text{somefunction}(f, f', f'', \widetilde{\alpha}, \widetilde{\sigma})dt + \text{anotherfunction}(f, f', \widetilde{\alpha}, \widetilde{\sigma})dW_t$$

Hence

$$0 = some function,$$
 (II) $0 = another function$ (III)

Conditions for the shadow price ct'd

Solution to Equations I-III:

$$\tilde{\sigma} = \frac{\sigma}{f' - 1}$$

$$\tilde{\alpha} = -\alpha + \sigma^2 \left(\frac{f'}{f' - 1}\right) \left(\frac{1}{1 + e^{-f}}\right)$$

f satisfies the ODE

$$f''(x) = \left(\frac{2\delta}{\sigma^{2}}(1 + e^{f(x)})\right) + \left(\frac{2\alpha}{\sigma^{2}} - 1 - \frac{4\delta}{\sigma^{2}}(1 + e^{f(x)})\right)f'(x)$$

$$+ \left(\frac{4\alpha}{\sigma^{2}} + 2 - \frac{2\delta}{\sigma^{2}}(1 + e^{f(x)}) + \frac{1 - e^{-f(x)}}{1 + e^{-f(x)}}\right)(f'(x))^{2}$$

$$+ \left(\frac{2\alpha}{\sigma^{2}} + \frac{2}{1 + e^{-f(x)}}\right)(f'(x))^{3}$$

Still missing: **Boundary conditions** for $x = \log(1 - \mu)$ and $x = \log(1 + \lambda)$?

Heuristics for boundary conditions

Remember:

$$dC_t = \widetilde{\alpha}(C_t)dt + \widetilde{\sigma}(C_t)dW_t$$

has to stay in $[\log(1-\mu, 1+\lambda]]$

- ▶ Consequence: Need $\widetilde{\sigma} \rightarrow 0$ at the boundary
- $ightharpoonup \widetilde{\sigma} = rac{\sigma}{f'-1} \Rightarrow |f'| = \infty$ at the boundary
- ▶ If $C = \log(1 \mu)$: Shadow price = Bid price ⇒ higher sell boundary
- ▶ If $C = \log(1 + \lambda)$: Shadow price = Ask price \Rightarrow lower buy boundary
- ▶ Hence: f is decreasing, $f' = -\infty$ at the boundary

Application to Merton problem with transaction costs The decisive ODE

Have to solve second-order ODE

$$f''(x) = somefunction(f(x))$$

s.t.

$$f(\log(1-\mu)) = \log\left(\frac{\overline{\pi}}{1-\overline{\pi}}\right), \quad f(\log(1+\lambda)) = \log\left(\frac{\underline{\pi}}{1-\underline{\pi}}\right)$$

and

$$f'(\log(1-\mu)) = -\infty, \quad f'(\log(1+\lambda)) = -\infty$$

- ▶ Same number of conditions and degrees of freedom
- ▶ But $f' = -\infty$ is difficult both for existence proof and numerics
- ▶ Way out: Consider $g = f^{-1}$ instead

The decisive free boundary problem

$$g''(y) = \left(\frac{1-e^{-y}}{1+e^{-y}} + 1 - \frac{2\alpha}{\sigma^{2}}\right) \\ + \left(\frac{4\alpha}{\sigma^{2}} - 2 - \frac{1-e^{-y}}{1+e^{-y}} - \frac{2\delta}{\sigma^{2}}(1+e^{y})\right)g'(y) \\ + \left(-\frac{2\alpha}{\sigma^{2}} + 1 - \frac{4\delta}{\sigma^{2}}(1+e^{y})\right)(g'(y))^{2} \\ - \left(\frac{2\delta}{\sigma^{2}}(1+e^{y})\right)(g'(y))^{3}$$

s.t.

$$g\left(\log\left(\frac{\overline{\pi}}{1-\overline{\pi}}\right)\right) = \log(1-\mu), \quad g\left(\log\left(\frac{\underline{\pi}}{1-\pi}\right)\right) = \log(1+\lambda)$$

and

$$g'\left(\log\left(\frac{\overline{\pi}}{1-\overline{\pi}}\right)\right)=0,\quad g'\left(\log\left(\frac{\underline{\pi}}{1-\pi}\right)\right)=0$$

Boundaries determine no-trade region

$$g''(y) = somefunction(y)$$

s.t.

$$g\left(\log\left(rac{\overline{\pi}}{1-\overline{\pi}}
ight)
ight) = \log(1-\mu), \quad g'\left(\log\left(rac{\overline{\pi}}{1-\overline{\pi}}
ight)
ight) = 0$$

and

$$g\left(\log\left(rac{\overline{\pi}}{1-\pi}
ight)
ight) = \log(1+\lambda) \quad g'\left(\log\left(rac{\overline{\pi}}{1-\overline{\pi}}
ight)
ight) = 0$$

- Numerically compute solution g to initial value proble for given boundary, find next zero of g'
- ▶ Adjust boundary to get right value of g there
- ▶ This is also the basis for the existence proof

Numerical solution ct'd

Simulation ct'd

Summary

Computation of conditions:

- 1. Optimality without transaction costs,
- 2. Constant trading strategy within bounds,
- 3. Boundary conditions via Itô process assumption.

Verification:

- 1. Prove existence of a solution to free boundary problem.
- 2. Prove existence of corresponding processes \tilde{S} etc.
- 3. Show that optimal investment in \tilde{S} trades only at boundary.

References

This talk:

- Kallsen, J. and J. Muhle-Karbe (2008). On using shadow prices in portfolio optimization with transaction costs. The Annals of Applied Probability. To appear.
- ▶ Kallsen, J. and J. Muhle-Karbe (2009). On the existence of shadow prices in finite discrete time. Preprint.

Portfolio optimization with transaction costs:

- ▶ Magill, M. and G. Constantinidis (1976) Portfolio selection with transaction costs. *Journal of Economic Theory* **13** 245-263.
- ▶ Davis, M. and A. Norman (1990). Portfolio selection with transaction costs. *Mathematics of Operations Research* 15 676-713.
- Shreve, S. and M. Soner (1994). Optimal investment and consumption with transaction costs. The Annals of Applied Probability 4 609-692.