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Abstract

We study when a map between two subsets of a Boolean domain W can be extended
to an automorphism of W . Under many hypotheses, if the underlying Boolean al-
gebra is complete or if the sets are finite or Boolean domains, the necessary and
sufficient condition is that it preserves the Boolean distance between every couple
of points.

1 Introduction

Boolean domains and Boolean transformations are the Boolean analogues of
algebraic varieties and morphisms of algebraic varieties. We fix once and for
all a Boolean algebra B. A Boolean function f : Bn −→ B is a function which
admits a polynomial expression in terms of the operations and elements of B,
such as for instance f(x1, x2) = (x1 ∨x2)4 a, where a is a fixed element of B.
A Boolean domain (over B) is a subset V ⊂ Bn which is the set of solutions
to a Boolean equation, namely

V = {(x1, . . . , xn) ∈ Bn : f(x1, . . . , xn) = 0},

for some Boolean function f : Bn −→ B. If U ⊂ Bn and V ⊂ Bm are Boolean
domains, a map F : U −→ V is a Boolean transformation if there are Boolean
functions F1, . . . , Fm : Bn −→ B such that

F (x) = (F1(x), . . . , Fm(x))

for all x ∈ U . A Boolean isomorphism is a bijective Boolean transformation (its
inverse map is, in fact, a Boolean transformation too). Two Boolean domains
are isomorphic if there exists a Boolean isomorphism between them. We must
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mention the books [8] and [9] as reference treaties about Boolean functions
and equations.

In this paper, we consider the problem of when a given bijection between two
subsets of a Boolean domain W can be extended to a Boolean isomorphism
from the whole W onto itself. One main result is the following:

Theorem 1 Let U, V,W ⊂ Bn be Boolean domains with U ∪ V ⊂ W and let
F : U −→ V be a Boolean isomorphism. Then, F is the restriction of some
Boolean isomorphism F ′ : W −→ W .

A Boolean domain U ⊂ Bn can always be considered as a Boolean metric space
with the metric d(x, y) =

∨n
i=1(xi 4 yi). A Boolean metric space (over B) is a

set X together with a symmetric map d : X×X −→ B satisfying the following
two properties: d(x, y) = 0 if and only if x = y, and d(x, z) ≤ d(x, y) ∨ d(y, z)
for all x, y, z ∈ X. This constitutes a category with maps f : X −→ Y which
are contractive, that is, d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X. When this
inequality is an equality and f is bijective, then f is called an isometry. This
concept was early studied in a series of works like [2], [3], [4], [5] and [6]. In [1]
the close relation between the metric and the algebraic structure of Boolean
domains, in a more general context, is investigated. The Boolean transfor-
mations between Boolean domains coincide with the contractive maps and
the Boolean isomorphisms with the isometries. Also, the category of Boolean
domains and transformations is equivalent to the category of CFG-spaces (a
subclass of Boolean metric spaces, whose definition is recalled below) and
contractive maps and therefore Theorem 1 is equivalent to the following:

Theorem 2 Let U, V, W be CFG-spaces with U∪V ⊂ W and let F : U −→ V
be an isometry. Then, F is the restriction of some isometry F ′ : W −→ W .

A direct consequence of this theorem, together with [1, Theorem 1.15] is that
the necessary and sufficient condition for a bijection between finite subsets of
a Boolean domain W to be extended to a Boolean isomorphism of W is to be
an isometry between these two finite sets.

It turns out in fact, that when B is a complete Boolean algebra, then U and
V need not be assumed CFG-spaces:

Theorem 3 Suppose that B is complete. Let W be a CFG-space, U, V subsets
of W and F : U −→ V an isometry. Then, F is the restriction of some
isometry F ′ : W −→ W .

If A is a p-ring for some prime number p (that is, a ring in which xp = x and
px = 0 for all x) then A happens to be a Boolean metric space over its ring of
idempotents with distance d(x, y) = (x−y)p−1. These spaces were investigated
in the papers [10] and [7] which study, among others, problems of extension of
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isometries. Namely, [10, theorem 5] is the same statement as our Theorem 3
but only for the particular case in which W is a p-ring.

The statement of Theorem 3 also holds for contractive maps instead of isome-
tries:

Theorem 4 Suppose that B is complete. Let W be a CFG-space, U, V subsets
of W and F : U −→ V a contractive map. Then, F is the restriction of some
contractive map F ′ : W −→ W .

We give examples that the hypothesis of completeness cannot be weakened in
Theorems 3 and 4.

2 Notations

The operations in Boolean algebras will be denoted as a ∨ b and a ∧ b for the
supremum and infimum and a \ b for the difference, 0 and 1 denote the lowest
and greatest element, a = 1 \ a is the complement and a4 b = (a \ b)∨ (b \ a)
is the symmetric difference which allows to consider B as a ring with sum 4
and product ∧. Elements a0, . . . , an of B are disjoint if ai ∧ aj = 0 whenever
i 6= j and they are a partition if moreover a0 ∨ · · · ∨ an = 1. The lattice order
of B is denoted as a ≤ b.

With respect to Boolean metric spaces, the distance will be always denoted
by d. The product space of the Boolean metric spaces X and Y is X×Y with
the metric

d((x, y), (x′, y′)) = d(x, x′) ∨ d(y, y′).

We will work in pointed Boolean metric spaces, that is, metric spaces X in
which a point 0 ∈ X has been fixed. Formally,

Definition 5 A pointed Boolean metric space is a couple (X, 0) where X is a
Boolean metric space with metric d and 0 is an element of X. A contractive
map between two pointed spaces f : (X, 0) −→ (X ′, 0′) is a contractive map
f : X −→ X ′ such that f(0) = 0′.

In such spaces we will also use the notation |x| = d(x, 0). There is no deep
difference in dealing with pointed spaces but it will be convenient for technical
reasons. We shall make use of several tools in this context, as convexity and
orthogonality, developed in [1], that are explained below.

Let a0, . . . , an be a partition of B and x0, . . . , xn be elements of the metric
space X. An element x ∈ X is said to be a convex combination of x0, . . . , xn
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with coefficients a0, . . . , an if ai ∧ d(x, xi) = 0 for all i. In this case we write
a0x0 + · · ·+ anxn = x.

It turns out that X can be always embedded into a module over B considered
as a ring (sending the fixed element 0 to the zero of the module) in such a way
that these convex combinations correspond exactly with the usual linear com-
binations, cf. [1, Theorem 1.6] and [1, Proposition 1.11]. This means that the
notation is coherent and all the usual properties of sum and multiplication by
scalars apply. When (X, 0) is a pointed metric space then we may suppress the
term corresponding to 0 in notation a00+a1x1+· · ·+anxn = a1x1+· · ·+anxn,
where a1, . . . , an are just disjoint. We also recall that, in product spaces, con-
vex combinations can be calculated coordinatewise.

A set S ⊂ X is a system of generators of X, shortly X = conv(S), if any
element of X can be expressed as a convex combination of elements of S with
some coefficients. We mention the fact that if two contractive maps coincide
on a system of generators, then they are equal.

A metric space X is a CFG-space if it verifies the following two properties:

(1) It is convex, that is, for any x0, . . . , xn ∈ X and any partition a0, . . . , an

of B, the convex combination x = a0x0 + · · ·+ anxn is an element of X.
(2) It is finitely generated, that is, there is a finite system of generators of X.

We also mention the fact that X is a CFG-space if and only if it is isometric
to a Boolean domain, as it follows from [1, Theorem 3.8].

The elements x and y of the pointed space (X, 0) are orthogonal (x ⊥ y) if
d(x, y) = |x| ∨ |y|. For a subset U ⊂ (X, 0) with 0 ∈ U we set

U⊥ = {y ∈ X : x ⊥ y ∀x ∈ U}.

It turns out that U⊥ is a CGF-space provided U is [1, Proposition 2.11]. The
relation of this concept of orthogonality with the extension of isometries is the
following statement:

Proposition 6 Let U,X, Y be CFG-spaces with 0 ∈ U ⊂ X and f : (U, 0) −→
(Y, 0′) and g : (U⊥, 0) −→ (Y, 0′) be isometries. Then, there is a unique isom-
etry f ⊥ g : (X, 0) −→ (Y, 0′) which extends both f and g.

This is the content of Proposition 2.12 in [1] except that there it is written
contractive map instead of isometry. However, it is straightforward to check
in that proof, that if f and g are assumed to be isometries, then f ⊥ g that
is obtained is again an isometry.
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3 The first extension theorem

In this section we will prove Theorem 2. What we will really prove instead of
it will be the following statement about orthogonal spaces:

Theorem 7 Let (X, 0) be a pointed CFG-space and U1, U2 CFG-subspaces of
X with 0 ∈ U1 ∩ U2. If U1 is isometric to U2, then U⊥

1 is isometric to U⊥
2 .

Let us see, first, that Theorem 2 follows from Theorem 7. For this, apart from
Proposition 6, we need another result [1, Theorem 4.6], that CFG-spaces are
homogeneous, that is, if X is a CFG-space and x, y ∈ X, there is an isometry
φ : X −→ X such that φ(x) = y. Let U , V , W and F be as in the hypotheses of
Theorem 2 and, by homogeneity, fix 0 ∈ U and an isometry φ : W −→ W such
that φ(F (0)) = 0. We apply Theorem 7 to X = W , U1 = U , U2 = φ(V ) and we
obtain that U⊥ and φ(V )⊥ are isometric. Again, by homogeneity, we find an
isometry g : (U⊥, 0) −→ (φ(V )⊥, 0). Finally, the map F ′ = φ−1 ◦ ((φ ◦F ) ⊥ g)
is the desired isometry.

Before passing to the proof of Theorem 7, we must recall the criteria of isom-
etry and the concept of base developed in [1].

For a space X and an integer k > 0, we define an element

αk(X) = sup{ ∧

0≤i<j≤k

d(ui, uj) : u0, . . . , uk ∈ X}

This supremum exists and is indeed attained whenever X is either finite or
a CFG-space. In the latter case in addition, there exists k0 with αk(X) = 0
for all k > k0 and αk(X) ≥ αk+1(X) for all k. Another property is that if
A is a system of generators of X, X = conv(A), then αk(A) = αk(X) for
all k. The importance of these functions is that they determine the isometry
classes of CFG-spaces: two CFG-spaces X and Y are isometric if and only if
αk(X) = αk(Y ) for all k, cf. [1, §4].

Another result that we need is the existence of bases : Any pointed CFG-space
(X, 0) has a base, that is, a set {x1, . . . , xn} such that

(1) X = conv(0, x1, . . . , xn),
(2) xi ⊥ xj for any i 6= j,
(3) αi(X) = |xi| > 0 for i = 1, . . . , n.

We point out that condition (1) above implies that αi(X) = 0 for i > n.
The following lemma investigates the relation between the functions αk(U),
αk(U

⊥) and αk(X) when U is a CFG-subspace of X. It will be useful now to
convene that α0(Y ) = 1 for any space Y .
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Lemma 8 Let (X, 0) be a CFG-space and U a CFG-subspace with 0 ∈ U .
Then, for all n ∈ N,

αn(X) =
n∨

i=0

αi(U) ∧ αn−i(U
⊥).

PROOF: Take bases B1 = {x1, . . . , xr} and B2 = {y1, . . . , ys} of (U, 0) and
(U⊥, 0), respectively and define B = B1∪B2∪{0}. From [1, Proposition 2.11]
we have X = conv(U ∪ U⊥) and hence X = conv(B) and αn(X) = αn(B).
Now the result follows by applying the definition of the function αn to that
set, having in mind the relations

|x1| ≥ |x2| ≥ · · · , (1)

|y1| ≥ |y2| ≥ · · · , (2)

d(xi, xj) = |xi| ∨ |xj| = |xmin(i,j)|, (3)

d(yi, yj) = |yi| ∨ |yj| = |ymin(i,j)|. (4)

Namely, for a subset A of B we define

φ(A) =
∧

u,v∈A,u6=v

d(u, v),

so that αn(B) is the supremum of all φ(A) when A runs over all subsets of B
of cardinality n + 1. Whenever n− s ≤ i ≤ r, we can consider the set

Ai = {0, x1, . . . , xi, y1, . . . , yn−i}

of cardinality n + 1, so that αn(X) ≥ φ(Ai) and by the relations mentioned
above, it is easily calculated that φ(Ai) = |xi| ∧ |yn−i| = αi(U) ∧ αn−i(U

⊥).
When n − s ≤ i ≤ r does not hold, then αi(U) ∧ αn−i(U

⊥) = 0. This proves
that αn(X) ≥ ∨n

i=0 αi(U) ∧ αn−i(U
⊥). For the other inequality, we take an

arbitrary subset A of B of cardinality n + 1 and we shall prove that φ(A) ≤∨n
i=0 αi(U) ∧ αn−i(U

⊥). For such an A, we find i1 < · · · < it and j1 < · · · < ju

such that

A ∩B1 = {xi1 , . . . , xit},
A ∩B2 = {yj1 , . . . , yju}.

Now, if 0 ∈ A then t + u = n and using relations (1)− (4) above

φ(A) ≤ d(0, xit) ∧ d(0, yju) = |xit | ∧ |yju| ≤ |xt| ∧ |yu| = αt(U) ∧ αu(U
⊥).

On the other hand, if 0 6∈ A, then u + t = n + 1 and calculating again,
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if t, u ≥ 2, φ(A)≤ d(xit , yju) ∧ d(xit , xit−1) ∧ d(yju , yju−1)

= (|xit| ∨ |yju |) ∧ |xit−1| ∧ |yju−1|
= (|xit| ∧ |yju−1|) ∨ (|xit−1| ∧ |yju|)
≤ (|xt| ∧ |yu−1|) ∨ (|xt−1| ∧ |yu|),

if t = 1, u > 1, φ(A)≤ d(xi1 , yju) ∧ d(yju , yju−1)

= (|xi1| ∨ |yju|) ∧ |yju−1|
= (|xi1| ∧ |yju−1|) ∨ |yju |)
≤ (|x1| ∧ |yu−1|) ∨ |yu|
= (α1(U) ∧ αu−1(U

⊥)) ∨ (α0(U) ∧ αu(U
⊥)),

and the other cases are checked similarly. ¤

PROOF OF THEOREM 7: For every i ∈ N, we set

ai = αi(U1) = αi(U2), bi = αi(X), ri = αi(U
⊥
1 ), si = αi(U

⊥
2 ).

What we must prove is that ri = si for every i. Let d be the greatest integer
with αd(X) > 0. Clearly, ri = si = 0 for all i > d and by Lemma 8 both (ri)

d
i=1

and (si)
d
i=1 are solutions to the following system of equations in the variables

x1, . . . , xd:

x1 ≥ · · · ≥ xd, (5)
n∨

i=0

(an−i ∧ xi) = bn n = 1, . . . , d + 1, (6)

where x0 = a0 = 1 and xd+1 = 0 are constants.

Hence, we must see that this system of equations has a unique solution, under
the hypotheses that b1 ≥ · · · ≥ bd+1 = 0, a1 ≥ · · · ≥ ad+1 = 0 and ai ≤ bi

for all i. We need, therefore, a criterion to ensure the uniqueness of solutions
of a certain system of Boolean equations, which is provided by the following
lemma:

Lemma 9 Let Y be a CFG-space and {y0, . . . , yn} a system of generators of
Y such that d(yi, yj) = 1 for all i 6= j. Let f : Y −→ B be a contractive
function such that f(yi)∨ f(yj) = 1 for all i 6= j. If the equation f(x) = 0 has
a solution for x ∈ Y , then this solution is unique.

PROOF: Notice that, even if i = j we always have d(yi, yj) ≤ f(yi) ∨ f(yj)
for all i, j = 0, . . . , n. The set of all couples (yi, yj) is a system of gen-
erators of the product space Y × Y . We consider the function h(x, y) =
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d(x, y)\(f(x)∨f(y)) on Y ×Y . First, we notice that h is contractive. The map
(x, y) 7→ f(x) ∨ f(y) is contractive since it is the composition of contractive
maps (x, y) 7→ (f(x), f(y)) and (a, b) 7→ a∨b. The map (x, y) 7→ d(x, y) is also
contractive, cf. property (3’) after [1, Definition 1.1]. Hence h is contractive
since it is a Boolean operation of two contractive maps. On the other hand, h
is equal to zero on the system of generators {(yi, yj)} and therefore, it is con-
stant equal to zero on all Y × Y . Hence, if f(x) = f(y) = 0, then d(x, y) = 0
and x = y. ¤

Back to the proof of Theorem 7, we shall apply Lemma 9 to

Y = {(x1, . . . , xd) ∈ Bd : x1 ≥ · · · ≥ xd},

which is a metric space with the usual metric d(x, x′) =
∨d

i=1(xi 4 x′i). It is
checked in [1] that in these metric spaces, convex combinations are calculated
simply coordinatewise in the natural way. It is straightforward to check that
in fact, Y is a CFG-space with the set of generators

y0 = (0, 0, . . . , 0, 0),

y1 = (1, 0, . . . , 0, 0),

· · ·
yd−1 = (1, 1, . . . , 1, 0),

yd = (1, 1, . . . , 1, 1).

Namely, if c = (c1, · · · , cd) then c = (c1\c2)y1+(c2\c3)y2+· · ·+cdyd+(1\∨ ci)y0.
After [1, Theorem 3.8], the contractive functions from Y to B are exactly the
Boolean functions. We will finish the proof provided we can apply Lemma 9
to the Boolean function f(x) =

∨d+1
n=1 fn(x), where

fn(x1, . . . , xd) = bn 4
(

n∨

i=0

an−i ∧ xi

)
.

It remains to check that f(yj)∨f(yk) = 1 whenever j, k = 0, . . . , d, j 6= k. First,
we calculate the value of the fn(yj)’s. For notational simplicity we convene that
(yj)0 = 1.
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fn(yj) = bn 4
n∨

i=0

an−i ∧ (yj)i = bn 4 (an−0 ∨ an−1 ∨ · · · ∨ an−j)

= an−j 4 bn if j < n;

fn(yj) = bn 4
n∨

i=0

an−i ∧ (yj)i = bn 4 a0 = bn 4 1

= bn if j ≥ n.

The value of the f(yj)’s is then

f(y0) = (a1 4 b1) ∨ (a2 4 b2) ∨ · · · ∨ (ad 4 bd) ∨ 0;

f(y1) = b1 ∨ (a1 4 b2) ∨ · · · ∨ (ad−1 4 bd) ∨ ad;

f(y2) = b1 ∨ b2 ∨ (a1 4 b3) ∨ · · · ∨ (ad−2 4 bd) ∨ ad−1;

· · ·
f(yj) = b1 ∨ · · · bj ∨ (a1 4 bj+1) ∨ · · · ∨ (ad−j 4 bd) ∨ ad−j+1;

· · ·
f(yd−1) = b1 ∨ · · · ∨ bd−1 ∨ (a1 4 bd) ∨ a2;

f(yd) = b1 ∨ · · · ∨ bd ∨ a1.

We can simplify since b1 ≥ b2 ≥ · · · ≥ bd:

f(y0) = (a1 4 b1) ∨ (a2 4 b2) ∨ · · · ∨ (ad 4 bd);

f(y1) = b1 ∨ (a1 4 b2) ∨ · · · ∨ (ad−1 4 bd) ∨ ad;

f(y2) = b2 ∨ (a1 4 b3) ∨ · · · ∨ (ad−2 4 bd) ∨ ad−1;

· · ·
f(yj) = bj ∨ (a1 4 bj+1) ∨ · · · ∨ (ad−j 4 bd) ∨ ad−j+1;

· · ·
f(yd−1) = bd−1 ∨ (a1 4 bd) ∨ a2;

f(yd) = bd ∨ a1.

Now, we fix i, j and a1 ≥ · · · ≥ ad. We must see that for any (b1 . . . , bd) ∈ Y ,
f(yi) ∨ f(yj) = 1. Again, the function φ(b) which associates to each b =
(b1, . . . , bd) ∈ Y the corresponding value of φ(b) = f(yi) ∨ f(yj) is a Boolean
function, and in order to see that φ is constant equal to one on Y it is enough
to check that φ(yk) = 1 for k = 0, . . . , d. For (b1, . . . , bd) = yk we obtain:
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f(y0) = (a1 4 1) ∨ · · · ∨ (ak 4 1) ∨ ak+1 ∨ · · · ∨ ad;

f(y1) = (a1 4 1) ∨ · · · ∨ (ak−1 4 1) ∨ ak ∨ · · · ∨ ad;

· · ·
f(yj) = (a1 4 1) ∨ · · · ∨ (ak−j 4 1) ∨ ak−j+1 ∨ · · · ∨ ad−j+1;

· · ·
f(yk−1) = (a1 4 1) ∨ a2 ∨ · · · ∨ ad−k+2;

f(yk) = a1 ∨ a2 ∨ · · · ∨ ad−k+1;

f(yk+1) = f(yk+2) = · · · = f(yd) = 1.

Now, it is clear that f(yi) ∨ f(yj) = 1 for i 6= j because if i < j then
ak−j+1 ≤ f(yj) and ak−j+1 4 1 ≤ f(yi). This finishes the proof of Theo-
rem 7 and hence, also the proofs of Theorems 2 and 1. ¤

4 The second extension theorem

In this section we prove Theorems 3 and 4. Hence, we assume from now on
that our fixed Boolean algebra B is complete, that is, that whenever S is a
subset of B there exists s =

∨
S ∈ B the supremum of S. We recall that the

distributivity law still holds in the infinite case: x∧∨{yi : i ∈ I} =
∨{x∧ yi :

i ∈ I} whenever x ∈ B and yi ∈ B for all i ∈ I.

Lemma 10 Let X be a metric space over B and {fi : X −→ B}i∈I a family
of contractive maps. Then, the pointwise supremum

∨
fi is again a contractive

map.

PROOF: Recall that the metric on B is given by d(x, y) = x4 y and hence
f : X −→ B is contractive if and only if f(x)4f(y) ≤ d(x, y) for all x, y ∈ X.
Moreover, this can be rewritten as

d(x, y) ∧ f(y) ≤ f(x) ≤ f(y) ∨ d(x, y)

for all x, y ∈ X. With this characterization and using the infinite distributivity
law, the proof of the lemma becomes apparent. ¤

Lemma 11 Let X be a CFG space over the complete Boolean algebra B and
let {Ki}i∈I be a family of CFG-subspaces of X. Then

⋂
I Ki is a CFG-space.

PROOF: By [1, Lemma 3.5] a subspace K ⊂ X is a CFG-space if and only if
there exists f : X −→ B contractive with K = f−1({0}). This together with
Lemma 10 proves the Lemma. ¤
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By Lemma 11, given a subset U of a CFG-space X, we can consider Conv(U)
the least CFG-space that contains U , obtained as the intersection of all CFG-
subspaces that contain U . Any nonprincipal I ideal of B is an example in
which I = conv(I) 6= Conv(I) since I is convex but not a CFG-space.

Theorem 12 Let X and Y be CFG-spaces over the complete Boolean algebra
B and let f : U −→ V be a contractive map between two arbitrary subsets
U ⊂ X and V ⊂ Y . Then there is a unique contractive map Conv(f) :
Conv(U) −→ Conv(V ) that extends f . In addition, if f is an isometry, so is
Conv(f).

Notice that Theorem 3 is a direct consequence of Theorem 12 above together
with Theorem 2, while Theorem 4 follows from Theorem 12 and [1, Proposi-
tion 2.12].

PROOF OF THEOREM 12: First, we check that Conv(f), provided it exists,
is uniquely determined. Suppose that g, h : Conv(U) −→ Conv(V ) are two
contractive extensions of f . Then the set

K = {x ∈ Conv(U) : d(g(x), h(x)) = 0}

is, by [1, Lemma 3.5] a CFG-space which contains U , hence Conv(U) ⊂ K
and g = h.

For the existence of Conv(f), we prove first a particular case, namely, that
any contractive function f : U −→ B extends to a contractive map G :
Conv(U) −→ B. For every u ∈ U we consider the contractive map gu :
Conv(U) −→ B given by

gu(x) = f(u) \ d(u, x)

and we set G =
∨{gu : u ∈ U}. On the one hand, for any u ∈ U , f(u) =

gu(u) ≤ G(u). On the other hand for any u, v ∈ U , f(u) 4 f(v) ≤ d(u, v)
and hence f(v) ≥ f(u) \ d(u, v) = gu(v), so taking suprema over U , also
f(v) ≥ G(v). Now we pass to the general case and we use the fact that Y can be
viewed as a subspace of Bn for some natural number n. Extending coordinate
by coordinate, we know that there is a contractive map h : Conv(U) −→ Bn

which extends f . It remains to show that the range of h verifies h(Conv(U)) ⊂
Conv(V ) ⊂ Y . Again, by [1, Lemma 3.5] there is a contractive map s : Bn −→
B such that Conv(V ) = s−1({0}). Notice that for every u ∈ U , h(u) ∈
V ⊂ Conv(V ) = s−1({0}) so s(h(u)) = 0. Therefore the composed map
s ◦ h : Conv(U) −→ B is a contractive map which extends the constant map
c : U −→ B, c(u) = 0. By the uniqueness of extensions to Conv(U) that we
have already proved, we obtain that s ◦ h = 0, so h(Conv(U)) ⊂ s−1({0}) =
Conv(V ).
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With respect to the last assertion of the theorem, if f is an isometry then
f−1 : V −→ U is a contractive map and Conv(f−1) must be a contractive
inverse map for Conv(f) (since the compositions in both senses are contractive
extensions of the identity maps in Conv(U) and Conv(V )). This implies that
Conv(f) is an isometry. ¤

We finish by presenting an example which shows that the hypotheses of The-
orems 2 and 3 cannot be essentially weakened.

Assuming that B is not complete we construct a CFG space X and an isom-
etry f : U −→ V between subsets of X which cannot be extended to any
contractive map F : X −→ X. Take S a subset of B which does not have a
supremum and set

I = {a ∈ B : ∃a1, . . . , an ∈ S : a ≤ a1 ∨ · · · ∨ an};

the ideal generated by S which neither has a supremum. Namely, if x were
the supremum of I, then it would be also the supremum of S because S and
I have the same upper bounds: if y is an upper bound of S and a ∈ I, then
a ≤ a1 ∨ · · · ∨ an for some elements ai ∈ S, so that ai ≤ y for all i and finally
a ≤ y. Set

J = {a ∈ B : a ∧ x = 0 ∀x ∈ I},
I + J = {a4 b : a ∈ I, b ∈ J},

X = {(x, y) ∈ B2 : x ∧ y = 0},
V = {(x, y) ∈ X : x ∈ I, y ∈ J},
U = {(z, 0) ∈ X : z ∈ I + J}.

Observe that X is a CFG-space since it is a Boolean domain, in fact X =
conv{(0, 0), (0, 1), (1, 0)}. The isometry is f = g−1, the inverse map of g :
V −→ U given by g(x, y) = (x4 y, 0). Namely g is an isometry because it is
clearly onto and for any x, x′ ∈ I and y, y′ ∈ J ,

d(g(x, y), g(x′, y′)) = x4 y4 x′4 y′ = (x4 x′)4 (y4 y′);
d((x, y), (x′, y′)) = (x4 x′) ∨ (y 4 y′)

and the two expressions are equal because x4 x′ ∈ I and y4 y′ ∈ J , so they
are disjoint.

Suppose that we could extend f to some contractive map F : X −→ X.
We claim that if F (1, 0) = (a, b) then a is the supremum of I, which is a
contradiction. Namely, for every x ∈ I,

(x4 a) ∨ b = d((x, 0), (a, b)) = d(F (x, 0), F (1, 0)) ≤ d((x, 0), (1, 0)) = x
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so that x ≤ a and analogously for every y ∈ J ,

(y4 b) ∨ a = d((0, y), (a, b)) = d(F (y, 0), F (1, 0)) ≤ d((y, 0), (1, 0)) = y

and y ≤ b. This means that a is an upper bound of I and b an upper bound
of J . If c is now an arbitrary upper bound of I then c ∈ J , so c ≤ b, so
a ∧ c ≤ a ∧ b = 0 and a ≤ c.

Observe that the space X in the example is “two-dimensional”. In fact the
case X = B is special and even if B is not complete, arbitrary isometries
between subsets can be always extended. This is because if f : U −→ V is
an isometry between U, V ⊂ B then f(x) 4 f(y) = x 4 y for all x, y ∈ U
and this implies that the function x4 f(x) is constant equal to some a ∈ B,
and then F (x) = a 4 x is an isometry of B that extends F . However, this
particularity does not apply when we consider extensions of contractive maps
instead of isometries. Take for instance two infinite sets M ⊂ Ω and B the
Boolean algebra of the finite or cofinite subsets of Ω and U ⊂ B the family
of the finite subsets of Ω. Then the contractive map f : U −→ U given by
f(x) = M ∩ x cannot be contractively extended to B.
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