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Abstract

We consider the class of all commutative reduced
rings for which there exists a finite subset T ⊂ A such
that all projections on quotients by prime ideals of A are
surjective when restricted to T . A complete structure
theorem is given for this class of rings, and it is studied
its relation with other finiteness conditions on the quo-
tients of a ring over its prime ideals.

Introduction

Our aim is to study the structure of commutative rings that satisfy
suitable finiteness conditions on its quotients by prime ideals. If A

is a commutative ring and A/p represents the quotient ring of A by
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a prime ideal p, we will be interested in the following conditions on A:

1. All A/p are finite.

2. The cardinal of all A/p is bounded by some n.

3. There are x1, . . . , xn ∈ A such that A/p = {x1 + p, . . . , xn +
p} for any prime ideal p of A.

Clearly, 3 ⇒ 2 ⇒ 1 and at the end of this article examples can be
found showing that no converse is true. Also, observe that the three
conditions are the same for A as for the reduced ring A/N(A), so we
may restrict ourselves to reduced rings, that is, to commutative rings
without nilpotent elements. One main result in this paper is that a
complete structure theorem can be given for reduced rings satisfying
condition (3). Namely, we associate to each such a ring A a tuple
(K1, B1, . . . ,Kn, Bn), where the Ki’s are non isomorphic finite fields
and the Bi’s are Boolean rings, in such a way that two of these rings
are isomorphic if and only if the associated tuples are equal, up to
isomorphism and order.

A reduced ring satisfying just condition (1) must be Von Neumann
regular (absolutely flat, in other terminology), as it is any reduced
ring in which all prime ideals are maximal [2, Theorem 1.16]. In this
sense, our work continues that of N. Popescu and C. Vraciu in [3],
where the structure of commutative Von Neumann regular rings is
studied. Here it is shown that imposing these kind of finiteness con-
ditions, strong structure results can be given. Let us note that C.
Vraciu had already found in [4], in other direction, the following
result concerning rings satisfying condition (1):

Theorem 1 Let B be a Boolean ring and k : Spec(B) −→ FFields

a map from the Zariski spectrum Spec(B) to the class of finite fields,
such that for each p ∈ Spec(B) there is a neighbourhood U of p

such that k(p) ⊆ k(p′) for all p′ ∈ U . Then, there is a commuta-
tive Von Neumann regular ring A such that B(A) = B and for each
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p ∈ Spec(B), A/pA is isomorphic to k(p).

On the other hand, the class of CFG-rings introduced in [1] is
exactly the class of reduced rings satisfying condition (3), so the
structure theorem for this class presented here is a precise measure
of the degree of generality of the results in [1] in terms of CFG-rings.
Also, a result in [1] suggests the addition of the following condition
to our list:

2.5. For any map f : A −→ A the following are equivalent
(i) There exists a polynomial F ∈ A[X] such that f(x) =

F (x) for all x ∈ A.
(ii) For all x, y ∈ A, (f(x)− f(y))A ⊆ (x− y)A.

Lemma 3.3 in [1] is just the assertion that (3) implies (2.5) and
Proposition 13 below states that (2.5) implies (2). We give an ex-
ample showing that the last converse is not true but we have been
unable to decide about the first one.

Notations and terminology

In the sequel, all rings will be supposed to be commutative with
identity. Letter A will always represent a ring. A reduced ring is a
ring without nilpotent elements.

A polynomial map f : An −→ Am is a map for which all compo-
nents fi : An −→ A are given by polynomials with coefficients in A.

A Boolean ring is a ring B such that x2 = x for all x ∈ B.

For a Boolean ring B and a, b ∈ B, the expression a ≤ b will mean
aB ⊆ bB.

Let A be a ring. We will denote by B(A) the set of all idempotent
elements of A. Recall that the set B(A) has a structure of Boolean
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ring with product inherited from A and with the sum a+̃b = (a− b)2.

A complete family of orthogonal idempotents (shortly c.f.o.i) of
A is a family a1, . . . , an of elements of B(A) such that aiaj = 0 for
i 6= j and

∑n
1 ai = 1.

A convex combination of elements x1, . . . , xn ∈ A is a linear com-
bination

∑n
1 aixi such that a1, . . . , an is a c.f.o.i. of A. The set of all

convex combinations of elements of a set S ⊆ A will be denoted by
conv(S) ⊆ A.

Regular ring will mean here commutative Von Neumann regular
ring (also called commutative absolutely flat rings), i.e. a (commuta-
tive) ring for which any principal ideal is generated by an idempotent.
If A is a regular ring, e : A −→ B(A) will be the map that sends each
a ∈ A to the only idempotent e(a) ∈ B(A) such that aA = e(a)A.

For a ring A, Spec(A) will denote its Zariski spectrum, that is, the
topological space whose underlying set is the set of all prime ideals of
A and whose closed subsets are of the form V (I) = {p : I ⊆ p} being
I an ideal of A. If A is a regular ring, B(A) can be identified with
the ring of closed-open sets of Spec(A) via the bijection b ↔ Ob =
{p : b 6∈ p}. In fact, for all a ∈ A, Oa = Oe(a) is a closed and open set
since its complement is O1−e(a). Also, recall that the correspondence
p 7→ p ∩B(A) induces a homeomorphism Spec(A) −→ Spec(B(A)),
so that both spectra can be identified.

1. Characterizations of CFG-rings

Theorem 2 Let A be a reduced ring and let x1, . . . , xn ∈ A. The
following are equivalent:

1. A = conv{x1, . . . , xn}.
2.

∏n
i=1(x− xi) = 0 for all x ∈ A.

3. A/p = {x1 + p, . . . , xn + p} for every prime ideal p of A.
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Proof: Suppose x ∈ conv{x1, . . . , xn}, so that x =
∑n

1 aixi and {ai}
is a c.f.o.i. Then,

n∏
i=1

(x− xi) =
n∏

i=1

n∑
j=1

aj(xj − xi) =
n∑

j=1

n∏
i=1

aj(xj − xi) = 0

and this proves that (1) implies (2).

Clearly (2) implies (3) since the ideal p is prime. If (3) holds, then∏n
i=1(x− xi) belong to all prime ideals, so since A is reduced, this

product is zero and (2) holds. So (2) and (3) are equivalent.

Suppose now that (2) holds. Let x ∈ A and we show that x ∈
conv{x1, . . . , xn}. We have the following equality in B(A):

n∏
i=1

e(x− xi) = 0.

Let bi = e(x− xi) and ai = (1− bi)
∏i−1

j=1 bj , then {ai}n
i=1 is a c.f.o.i

and
n∑

i=1

aie(x− xi) = 0

so that

e(x−
n∑
1

aixi) = e(
n∑
1

ai(x− xi)) =
n∑
1

aie(x− xi) = 0.

and finally x =
∑n

1 aixi. �

Observe that condition (3) in Theorem 2 implies that each prime
ideal is maximal, so A is regular by [2, Theorem 1.16]. Following [1],
a CFG-ring is a regular ring satisfying condition (1) of this theorem
for some x1, . . . , xn. Equivalently, a CFG-ring is a reduced ring for
which there are x1, . . . , xn satisfying any of the conditions of the
theorem.
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2. Boolean envelopes of fields

In this section we define a family of CFG-rings for which we will
prove in Theorem 9 that all CFG-rings are finite products of rings of
this type in a unique way. Given a field K and a Boolean ring B, it
is defined a K-algebra K [B] that will be a CFG-ring if K is a finite
field. This algebras were firstly introduced by C. Vraciu [4]. Roughly
speaking, K [B] will be the set of all “formal convex combinations”
of elements of K with coefficients in B, where the sum and product
are defined in order to extend the operations in K and to “commute
with convex combinations”. More precisely:

Definition 3 Let B be a Boolean ring and K a field. The K-algebra
of all continuous functions from Spec(B) to K (K is equipped with
the discrete topology) will be denoted by K [B].

We make some elementary remarks:

1. We identify K inside K [B], identifying each x ∈ K with the
corresponding constant map. In this way, K [B] is a K-algebra.

2. We identify B inside K [B], identifying each b ∈ B with the
map Spec(B) −→ K that is constant equal 1 on b and van-
ishes outside b. In fact, this gives all idempotent elements of
K [B]. Shortly, B(K [B]) = B.

3. The ring K [B] consists exactly of all functions u : Spec(B) −→
K with finite image, such that u−1(x) is a closed-open set
of Spec(B) for all x ∈ K. Making the identifications above,
this means that each element of K [B] has an expression like
u =

∑n
1 aixi where x1, . . . , xn are elements of K (the image of

u) and a1, . . . , an is c.f.o.i of B (ai = u−1({xi})). So conv(K) =
K [B].

4. K [B] is a regular ring. Clearly, each element is the product of a
unit (a (K \ {0})-valued continuous map) and an idempotent
(a {0, 1}-valued continuous map).
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5. If K is finite, then K [B] is a CFG-ring.

Proposition 4 Let K be a field, B a Boolean ring and A a Von
Neumann regular commutative K-algebra such that B(A) is isomor-
phic to B and A = conv(K). Then, A and K [B] are isomorphic K-
algebras.

Proof: We define a map f : K [B] −→ A in the following way: if
u =

∑n
1 aixi ∈ K [B] being a1, . . . , an a c.f.o.i of B and xi ∈ K, then

f(u) =
∑n

1 aixi ∈ A. First of all, we must check that this is a cor-
rect definition, that is, that f(u) does not depend on the expression
chosen for u as convex combination of elements of K. By elementary
reduction arguments, it is enough to prove the following:

(?) Let a1, . . . , an and b1, . . . , bn be c.f.o.i. of B, and let x1, . . . , xn

be n different elements of K. If
n∑
1

aixi =
n∑
1

bixi ∈ K [B]

then
n∑
1

aixi =
n∑
1

bixi ∈ A.

Under those hypotheses u =
∑n

1 aixi ∈ K [B] is the map u : Spec(B) −→
K that takes the value xi on ai. Therefore

n∑
1

aixi =
n∑
1

bixi ∈ K [B] ⇒ ai = bifor all i

and assertion (?) follows immediately.

We prove now that f is a K-algebra homomorphism. We check for
instance that f commutes with addition (it is analogous for prod-
uct). We take x =

∑
i aixi and y =

∑
j bjyj in K [B] being a1, . . . , an

and b1, . . . , bm c.f.o.i. of B and xi, yj ∈ K. Note that the cij = aibj
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constitute a c.f.o.i. of B,

f(x + y) = f

∑
i

aixi +
∑

j

bjyj

 = f

∑
i,j

cijxi +
∑
i,j

cijyj


= f

∑
i,j

cij(xi + yj)

 =
∑
i,j

cij(xi + yj)

=
∑
i,j

cijxi +
∑
i,j

cijyj =
∑

i

aixi +
∑

j

bjyj

= f(x) + f(y)

On the other hand, f is onto since A = conv(K). We check that
f is one to one. Suppose f(u) = 0 and u =

∑
i aixi with the ai’s a

c.f.o.i of B and x1 = 0, x2 6= 0, . . . , xn 6= 0 elements of K. Then, since
0 =

∑
i aixi ∈ A, by multiplication by ai, aixi = 0 for all i. Since

xi ∈ K \ {0} is a unit for all i > 1, ai = 0 for i > 1. This implies
that u = 0. �

3. Structure theorem for CFG-rings

Lemma 5 Let K be a finite field and B1, B2 Boolean rings. Then,
K [B1×B2] and K [B1] ×K [B2] are isomorphic K-algebras.

Proof: The ring A on the right is a K-algebra (we identify K in A

with the elements of the form (k, k) with k ∈ K) which is a regular
ring, and

B(K [B1] ×K [B2]) ∼= B(K [B1])×B(K [B2]) ∼= B1 ×B2.

Making use of Proposition 4, we check that A = conv(K). We know
that

A = K [B1] ×K [B2] = conv(K)× conv(K) = conv(K ×K)

so it suffices to see that any (k, k′) ∈ K ×K is in conv(K), and this
is trivial since (k, k′) = (1, 0)(k, k) + (0, 1)(k′, k′). �
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Lemma 6 Let A be a CFG-ring and f : A −→ A a polynomial map.
Then, the set of iterated maps {fk : k ∈ N} is finite.

Proof: First, it is easy to check that a polynomial map commutes
with convex combinations: the identity map and constant maps do
and this property is preserved under sums and products. Suppose
that A = conv{x1, . . . , xn}. For i = 1, . . . , n we can express f(xi) like
a convex combination f(xi) = a1ix1 + · · ·+ anixn. Call R the sub-
ring of B(A) generated by the aij ’s. The ring R is finite since it is
a finitely generated subring of a Boolean ring. An induction argu-
ment shows that for all k ∈ N, fk(xi) can be expressed as a convex
combination with coefficients in R: if fk−1(xi) = b1x1 + · · ·+ bnxn,
then

fk(xi) = f(fk−1(xi)) = f(
n∑

r=1

brxr) =
n∑

r=1

brf(xr)

=
n∑

r=1

br

n∑
t=1

atrxt =
n∑

t=1

(
n∑

r=1

bratr

)
xt.

Therefore, for each k ∈ N there is a n× n-matrix Mk = {ak
ij} of

elements of R such that fk(xj) =
∑

i a
k
ijxi. Since R is finite, the set

of n× n-matrices over R is finite too. �

Lemma 7 Let A be a CFG-ring and R a finitely generated subring
of A. Then R is finite.

Proof: We proceed by induction on n, the number of generators. For
n = 0, R is the prime ring of A, that is finite, by applying Lemma 6
to the map x 7→ x + 1. Suppose the assertion of the lemma for n, and
we will prove it for n + 1. Any subring generated by n + 1 elements is
of the form T [x] with T generated by n elements and hence, by the
induction hypothesis, finite. T [x] = {

∑k
i=1 aix

i : ai ∈ T}. Applying
again Lemma 6 to a 7→ ax, we deduce that {xk : k ∈ N} is finite, so
T [x] is finite. �

Lemma 8 Let K be a field, B a Boolean ring, and let p be a prime
ideal of A = K [B]. Then A/p is isomorphic to K.
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Proof: Let us check that the composition f : K ↪→ A −→ A/p is
an isomorphism. It is injective, since K is a field. It is surjective:
for all x ∈ A, express x as a convex combination of elements of K,
x =

∑n
i=1 aiki. When mapping to the quotient ring, all idempotents

ai map into idempotents of the domain A/p, that is, 0 or 1. So
x + p ∈ K/p = Im(f). �

Theorem 9 Let A be a CFG-ring. Then, there are Boolean rings
B1, . . . , Bn and non-isomorphic finite fields K1, . . . ,Kn such that

A ∼= K
[B1]
1 × · · · ×K [Bn]

n

Furthermore, this decomposition is unique, up to isomorphism and
order.

Proof: Existence of such a decomposition: By Lemma 5, it suffices
to find a decomposition where there may be isomorphic finite fields.
Suppose A = conv(H) where H = {x1, . . . , xn}. Call T the subring
generated by H, that is finite, by Lemma 7. Therefore, T is a finite
reduced ring, so it is a product of finite fields (just apply the Chi-
nese Remainder Theorem to the set of prime ideals of T ). Take an
isomorphism h : K1 × · · · ×Km −→ T ↪→ A. Call ei = (δij)m

j=1 (δij

is the Kronecker delta) and εi = h(ei). We have a ring decomposi-
tion A ∼=

∏m
i=1 Aεi since the εi’s constitute a c.f.o.i. of A. The re-

striction h : Ki = Kei −→ Aεi provides a ring homomorphism, so
we can view Aεi as a Ki-algebra, that is regular, since it is a factor
of a regular ring. If we prove that conv(h(Ki)) = Aεi =: Ai we will
deduce, by Proposition 4, that Ai

∼= K
[B(Ai)]
i . We have to see that

any element of Ai is a convex combination of elements of h(Ki) with
scalars in B(Ai). Take x ∈ Ai. There is a convex combination in A,
x =

∑
j bjrj with rj = h(kj) ∈ T . Then, x = ε2

i x =
∑

j(εibj)(εirj) =∑
j(εibj)h(eikj) provides us the expression desired.

Uniqueness: Suppose given one such a decomposition A ∼= A1 ×
· · · ×An. Each Ai = K

[Bi]
i can be seen as a principal ideal of A. Any

prime ideal of A is of the form pe
i = A1 × · · · ×Ai−1 × pi ×Ai+1 ×

· · · ×An for some prime ideal pi of Ai, and by Lemma 8, Ki
∼=

Ai/pi
∼= A/pe

i . Therefore, the fields Ki are uniquely determined, up
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to isomorphism, by A, since they are those that appear as quo-
tients by prime ideals. Furthermore, since Ai is regular, the in-
tersection of all prime ideals of Ai is 0. Hence, the intersection
of all prime ideals of A whose quotients are isomorphic to Ki is
A1 × · · · ×Ai−1 × 0×Ai+1 × · · · ×An. Then, the intersection of all
prime ideals of A whose quotients are not isomorphic to Kj is 0×
· · · × 0×Aj × · · · × 0 ≡ Aj . Therefore, the factor ring of the decom-
position corresponding to Kj is also uniquely determined by A, and
also the Boolean ring Bj because it must be (isomorphic to) the ring
of idempotents of that factor ring. �

4. Other finiteness conditions

During the proof of Lemma 6, it was observed that any polynomial
map f : A −→ A commutes with convex combinations. Maps with
this property and their relation with polynomials are object of study
in [1]. We summarize in the following proposition the information
that we need about this:

Proposition 10 Let A be a regular ring. For a function f : A −→
A the following are equivalent:

1. The map f commutes with convex combinations, that is, for
any x1, . . . xn ∈ A and any c.f.o.i of A, a1, . . . , an, f(

∑n
1 aixi) =∑n

1 aif(xi).
2. e(f(x)− f(y)) ≤ e(x− y) for all x, y ∈ A.

Furthermore, if A is a CFG-ring, then the following condition is also
equivalent:

3. f is polynomial map.

A map verifying conditions (1) and/or (2) above will be called
a contractive map. We observe that the map e : A −→ A is always
contractive. The equivalence of (3) with the others is the statement
of [1, Lema 3.3].
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We recall the four finiteness conditions exposed in the introduc-
tion:

(1) All quotients by prime ideals are finite.
(2) The cardinality of the quotients by prime ideals is bounded by

an integer.
(2.5) All contractive maps f : A −→ A are polynomial maps.
(3) A is a CFG-ring.

We complete the diagram of implications, except for (2.5) ⇒ (3),
which we do not know whether it is true or not. We begin with a
characterization of condition (2) which shows that (2.5) implies (2):

Proposition 11 For a regular ring A, the following are equivalent:

i. The map e : A −→ A is a polynomial map.
ii. There exists a natural number n such that |A/p| < n for all

prime ideals p of A.

Proof: Suppose that e(x) = akx
k + · · ·+ a0. Take a prime ideal p

of A and the natural projection π : A −→ A/p. Since e(x) is idem-
potent, π(e(x)) is an idempotent of the field A/p, so π(e(x)) ∈ {0, 1}
and

0 = (π(e(x))− 1)π(e(x))

= (π(ak)π(x)k + · · ·+ π(a0)− 1)(π(ak)π(x)k + · · ·+ π(a0))

for all x ∈ A. Therefore, all elements in the field A/p are roots of a
polynomial of degree 2k and |A/p| < 2k.

Conversely, suppose that {n1, . . . , nr} is the set of cardinalities of
quotients of A by prime ideals and call mi = ni − 1, m = m1 · · ·mr,
ki = m/mi. We prove that e(x) = xm. Since the intersection of all
prime ideals is zero, it is sufficient to check that π(e(x)) = π(x)m for
every projection π : A −→ A/p. If |A/p| = ni, then

π(x)m = π(x)miki = (π(x)ni−1)ki = (1− δπ(x)0)
ki = 1− δπ(x)0
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where δπ(x)0 is the Kronecker delta. On the other hand, since e(x) is
an idempotent associated to x, π(e(x)) is an idempotent associated
to π(x) in the field A/p, so π(e(x)) = 1− δπ(x)0.

�

A counterexample for (1 6⇒ 2): Let B be a Boolean ring and

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

a descending chain of ideals of B such that for any prime ideal p of
B there is some n with p ⊃ In. Fix also a prime number q ∈ N and
a tower of finite fields of characteristic q,

F1 ⊂ F2 ⊂ F3 ⊂ · · ·

and call |Fi| = qni , F =
⋃∞

1 Fi. From these data, we will construct a
ring A = F

[I∗]
∗ that verifies (1), and that if all ideals Ii are nonzero,

it does not verify (2). For instance, we can take B = {0, 1}N and

In = {x ∈ B : {j : xj = 1} is finite, xi = 0 for i < n}.

(If p is a prime ideal of B, either it contains I1 or it is of the form
pi = {x : xi = 0}).

We define A to be the subset of F [B] formed by the convex com-
binations of elements of F for which the coefficients of elements that
are not in Fi are in Ii.

First we check that A is a subring. It clearly contains 0, 1 and −1.
Suppose x, y ∈ A. We express x and y as convex combinations of el-
ements of F like x =

∑n
1 aixi and y =

∑m
1 bjyj in such a way that if

xi 6∈ Fk then ai ∈ Ik and the same for y. Then x + y =
∑

i,j aibj(xi +
yj). Now, if xi + yj 6∈ Fk then either xi 6∈ Fk or yj 6∈ Fk. In any case,
aibj ∈ Ik. So x + y ∈ A. The same reasoning leads to xy ∈ A.

Since F [B] is regular, A is reduced. Also,

B ∼= B(F [B]) = conv{0, 1} ⊆ A.

We will see that |A/p| is finite for all prime ideals of A. That
will prove also that A is regular, by [2, Theorem 1.16]. Take p a
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prime ideal of A. Then, p ∩B(A) is a prime ideal of B(A) ∼= B, so
p ∩B(A) ⊃ Ik for some k. Take x ∈ A and express it as a convex com-
bination of elements of F , x =

∑n
1 aixi where ai ∈ Ik ⊂ p whenever

xi 6∈ Fk. Hence, the class of any x modulo p is a linear combination of
classes of elements of Fk with coefficients idempotents of the domain
A/p and therefore |A/p| ≤ |Fk| < ∞.

Finally, supposing all Ii are nonzero, we will prove that for any
k > 0 there is a prime ideal p of A such that |Fk| ≤ |A/p|. Since
A is reduced, the intersection of all prime ideals of A is zero and
there exists a prime ideal p of A such that 0 6= IkA 6⊆ p. Take a ∈ Ik,
a 6∈ p. We claim that the elements {ax : x ∈ Fk} are in A and are all
distinct modulo p. First, ax = ax + (1− a)0 and provided x ∈ Fk, if
x 6∈ Fi then i > k and a ∈ Ik ⊂ Ii. This shows the ax ∈ A whenever
x ∈ Fk. Now, suppose ax equals ay modulo p for x, y ∈ Fk, x 6= y.
Then a(x− y) ∈ p, and since (x− y)−1 ∈ Fk, a(x− y)−1 ∈ A and on
the other hand, p is an ideal in A, so a(x− y)a(x− y)−1 = a ∈ p and
this leads to a contradiction.

A counterexample for (2 6⇒ 2.5): Let K = {0, 1, a, b} be a field with
four elements, and A the subring of KN formed by the sequences in
which only a finite number of terms are different from 0 and 1 (This
example appears also in [2] for other purposes).

It is plain that A is a reduced ring.

Since x(x + 1)(x2 + x + 1) = 0 for all x ∈ K, the same relation
holds for all x ∈ A. If p is a prime ideal of A, then A/p is a domain
and this formula implies that |A/p| ≤ 4. In particular, every A/p is
a field, so A is a regular ring, by [2, Theorem 1.16].

Finally, we find a contractive map f : A −→ A that is not poly-
nomial. Consider â ∈ KN

4 the sequence constant equal to a, and
f : A −→ A given by f(x) = x(x + 1)(x + â). The map f is contrac-
tive, since it is the restriction of a polynomial in KN

4 . Let us see
now that f is not a polynomial map in A. Suppose it is: f(x) =
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i=0 c(i)xi for some c(i) ∈ A. Just by definition of A, there exists

an index k such that c
(i)
k ∈ {0, 1} for all i. Then, for all x ∈ A, we

have xk(xk + 1)(xk + a) = f(x)k =
∑m

i=0 c
(i)
k xi

k with c
(i)
k ∈ {0, 1} =

Z2. This is a contradiction because the map h : K4 −→ K4 given by
h(t) = t(t + 1)(t + a) cannot be given by a polynomial with coeffi-
cients in Z2 since h(a) = 0 but h(b) 6= 0.

One natural question is up to which point the strong structure the-
orem we have obtained for CFG-rings can be generalized to larger
classes of reduced rings with finite quotient fields. We finish by mak-
ing a remark and posing a problem in that direction.

Proposition 12 Let A be a reduced ring with all quotient fields
finite. Then, char(A) = q1 · · · qn 6= 0 with q1, . . . , an different prime
numbers and there is a canonical decomposition A ∼= A1 × · · · ×An

with char(Ai) = qi.

Proof: For each prime number q > 0, since A is a regular ring,
V (q) = {p ∈ Spec(A) : q ∈ p} is a closed open set. Since all quotient
fields are finite, and hence have prime characteristic, the set of all
V (q) is an open covering of Spec(A). By compactness Spec(A) =
V (q1) ∪ · · · ∪ V (qm). Therefore q1 · · · qm is in all prime ideals of A

and char(A) divides q1 · · · qm.

Since V (q) ∩ V (q′) = ∅ for different prime numbers q, q′, also e(q) ∨
e(q′) = 1 ∈ A, and (1− e(q))(1− e(q′)) = 0. On the other hand, since
Spec(A) = V (q1) ∪ · · · ∪ V (qm),

e(q1) · · · e(qn) = 0 and
m∨
1

(1− e(qi)) = 1.

All this gives

A = (1− e(q1))A⊕ · · · ⊕ (1− e(qn))A

what induces the desired decomposition. �

Problem 1 Are all reduced rings with finite quotient fields of prime
characteristic isomorphic to rings of type F

[I∗]
∗ as constructed in the



16 Antonio Avilés

counterexample for (1 6⇒ 2)?

If the answer were positive, there would be a complete structure
theorem, not only for CFG-rings but for reduced rings verifying con-
dition (2).
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