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Abstract. We prove that every fragmentable linearly ordered compact space
is almost totally disconnected. This combined with a result of Arvanitakis
yields that every linearly ordered quasi Radon-Nikodým compact space is
Radon-Nikodým, providing a new partial answer to the problem of contin-
uous images of Radon-Nikodým compacta.

It is an open problem posed by Namioka [8] whether the class of Radon-Nikodým
compact spaces is closed under continuous images. Several authors [5] [2] [1, p. 104]
who have studied this problem have introduced some superclasses of the class of
Radon-Nikodým compacta which are closed under continuous images, although all
these classes turned out to be equal to the class of quasi Radon-Nikodým compacta
as shown in [9] and [3]. Let us recall that

(1) A compact space K is Radon-Nikodým compact if and only if there exists
a lower semicontinuous metric d : K ×K −→ [0,+∞) which fragments K.

(2) A compact space K is quasi Radon-Nikodým compact if and only if there
exists a lower semicontinuous quasi metric d : K × K −→ [0,+∞) which
fragments K.

(3) A compact space K is a fragmentable compact if and only if there exists a
quasi metric d : K ×K −→ [0, +∞) which fragments K.

Here, a quasi metric is a symmetric map d : K × K −→ [0,+∞) such that
d(x, y) = 0 if and only if x = y but which may fail triangle inequality. Also, a
map d : K × K −→ [0,+∞) is said to fragment the topological space K if for
every nonempty (closed) subset L of K and every ε > 0 there exists a relative open
subset U of L of diameter less than ε, that is, sup{d(x, y) : x, y ∈ U} < ε. Lower
semicontinuity means that the set {(x, y) : d(x, y) ≤ a} is closed for every a ≥ 0.

The class of fragmentable compacta is larger than the other two, for instance
any Gul’ko non Eberlein compact is an example of fragmentable and not quasi
Radon-Nikodým compact. It is again an open problem whether every quasi Radon-
Nikodým compact is Radon-Nidkodým compact (as mentioned earlier, the class of
quasi Radon-Nikodým compacta is closed under continuous images, and it is even
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unknown whether every quasi Radon-Nikodým compact is the continuous image
of a Radon-Nikodým compact). Mainly two partial answers to this question are
known:

(1) (Arvanitakis [2]) If K is an almost totally disconnected quasi Radon-Nikodým
compact, then K is Radon-Nikodým compact.

(2) (Avilés [3]) If K is a quasi Radon-Nikodým compact of weight less than b,
then K is Radon-Nikodým compact.

In addition, we also mention that some conditions are given by Matoušková and
Stegall [7] for a union of two Radon-Nikodým compacta to be Radon-Nikodým
compact. In this paper we are mainly concerned with Arvanitakis’ result, which
generalizes previous work of [11] and [5]. We recall the concept of almost totally
disconnected compact. We denote by Σ[0, 1]Γ the set of all elements of [0, 1]Γ with
countable support and by Σ1

0[0, 1]Γ the subspace of [0, 1]Γ formed by the elements
such that all but countably many coordinates belong to {0, 1}.

Definition 1. A compact space is said to be almost totally disconnected if it home-
omorphic to a subset of Σ1

0[0, 1]Γ for some set Γ.

This class contains both the classes of Corson compacta (compact subsets of
Σ[0, 1]Γ) and of totally disconnected compacta. On the other hand, an idea of
the limitations of Arvanitakis’ theorem may be suggested by the following remark,
which shows that the class of almost totally disconnected spaces does not provide
anything new with respect to Corson compacta, when we restrict our attention to
path-connected compacta, and this includes the important case of probability mea-
sure spaces. We noticed this fact in conversation with Ondřej Kalenda during his
visit to Murcia in March 2006.

Proposition 2. Every path-connected almost totally disconnected compact space is
a Corson compact.

PROOF: Take K ⊂ Σ1
0[0, 1]Γ. We fix a point x ∈ K and without loss of gener-

ality we shall suppose that xγ = 0 for all but countably many γ’s. In other words,
there exists a countable set Γx ⊂ Γ such that xγ = 0 for every γ ∈ Γ \ Γx. Now we
take any other point y ∈ K and we shall check that y has also countable support.
Since K is path connected, there is a separable and connected compact L ⊂ K
with x, y ∈ L ⊂ K. Let Q be a countable dense subset of L. For every q ∈ Q
there is a countable set Γq ⊂ Γ such that qγ ∈ {0, 1} for every γ ∈ Γ \ Γq. The set
ΓL =

⋃
q∈Q Γq is a countable subset of Γ such that pγ ∈ {0, 1} for every p ∈ L and

every γ ∈ Γ \ ΓL. Since L is connected, the set {pγ : p ∈ L} must be connected
for every γ ∈ Γ. If we take γ ∈ Γ \ (ΓL ∪ Γx) then {0} ⊂ {pγ : p ∈ L} ⊂ {0, 1}, so
connectedness implies {pγ : p ∈ L} = {0}. Applying this in particular to p = y, we
found that yγ = 0 whenever γ ∈ Γ \ (ΓL ∪ Γx), so y has countable support. ¤

Apparently, we used a weaker hypothesis than path-connected in this result,
namely that every two points are contained in a separable connected compact.



3

However this is equivalent in this context, because a separable connected compact
which is almost totally disconnected must be metrizable: Take K ⊂ Σ1

0[0, 1] and
suppose that D ⊂ K is a countable dense subset of K. Then, we can find a count-
able subset Γ′ ⊂ Γ such that D ⊂ [0, 1]Γ

′×{0, 1}Γ\Γ′ . Hence K ⊂ [0, 1]Γ
′×{0, 1}Γ\Γ′

and the connectedness of K implies that we have an embedding K ↪→ [0, 1]Γ
′
, so K

is metrizable. On the other hand, the assumption of being path-connected cannot
be weakened to just being connected: several examples of connected almost totally
disconnected compacta which are not Corson will be described below.

The following Theorem 3 is the main result of this note. Its proof is presented
in Section 1.

Theorem 3. Let K be a linearly ordered fragmentable compact. Then K is almost
totally disconnected.

Corollary 4. Let K be a linearly ordered quasi Radon-Nikodým compact. Then K
is a Radon-Nikodým compact.

A typical example of a linearly ordered compact which is not fragmentable is the
split interval (also known as double-arrow space), that is, the set K = [0, 1]×{0, 1}
ordered lexicographically. Indeed any variant of the split interval on which un-
countably many points are splitted fails to be fragmentable. The reason is that if
d is any quasi metric on K, then there is an uncountable set A ⊂ (0, 1) and ε > 0
such that d((x, 0), (x, 1)) > ε for every x ∈ A. If B is a subset of A in which every
point of B is the limit of elements of B both from the right and from the left, then
the set B × {0, 1} fails to contain any relative open subset of diameter less than ε.

The class of linearly ordered compacta is a rather restrictive class of compact
spaces. For example, it is a result of Efimov and Čertanov [4], with an alternative
proof due to Gruenhage [6], that every linearly ordered Corson compact space is
metrizable. In the view of this result and also of Proposition 2, one may be suspi-
cious about real application of Theorem 3. This is not the case and indeed one of
the examples of Radon-Nikodým compact proposed by Namioka [8] is the so-called
extended long line. This is a linearly ordered compact obtained from the ordinals
less or equal to ω1 by inserting a copy of the interval (0, 1) between every two
consecutive countable ordinals. More examples of linearly ordered Radon-Nikodým
compacta are constructed in Section 2, where Corollary 4 will find application.

It is an open question for us whether every fragmentable linearly ordered com-
pact must be a Radon-Nikodým compact.

1. Proof of the main theorem

We begin with a couple of lemmas, stating reformulations of the concept of al-
most totally disconnected compact, the second of them in the framework of linearly
ordered compacta.
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Lemma 5. For a compact space K the following are equivalent:
(1) K is almost totally disconnected.
(2) There is a collection {(Fi,Hi)}i∈I of pairs of closed subsets of K such that

(a) Fi ∩Hi = ∅ for all i ∈ I.
(b) For any x in K, the set {i ∈ I : x 6∈ Fi ∪Hi} is countable.
(c) For any two different points x, y in K there is some i ∈ I such that

x ∈ Fi and y ∈ Hi or viceversa.

PROOF: For (1) ⇒ (2), suppose K ⊂ Σ1
0[0, 1]Γ. For each γ ∈ Γ and each pair

r, s of rational numbers with 0 ≤ r < s ≤ 1, call i = (γ, r, s),

Fi = {x ∈ K : xγ ≤ r}
Hi = {x ∈ K : xγ ≥ s}

These (Fi,Hi) satisfy all desired conditions.

Conversely, suppose we are given a family like in (2). For each i, by Tietze’s
theorem, there is a continuous map fi : K −→ [0, 1] such that fi(Fi) = {0} and
fi(Hi) = {1}. In this case we have an embedding f : K −→ Σ1

0[0, 1]I given by
f(x) = (fi(x))i∈I . ¤

Lemma 6. Let (K,≤) be a linearly ordered compact space. The following are
equivalent:

(1) K is almost totally disconnected.
(2) There is a collection {(ai, bi)}i∈I ⊂ K ×K such that

(a) ai < bi for every i ∈ I.
(b) For all x in K, the set {i ∈ I : ai < x < bi} is countable.
(c) For all x < y in K, there is some i ∈ I such that x ≤ ai < bi ≤ y.

PROOF: Clearly (2) implies (1) because Fi =]−∞, ai] and Hi = [bi, +∞[ satisfy
the conditions of Lemma 5. Conversely, suppose that we have a family (Fj ,Hj)j∈J

of couples of closed subsets of K satisfying the conditions of Lemma 5. Take as
{(ai, bi)}i∈I the set of all pairs in K ×K such that

(1) ai < bi

(2) There is some j(i) ∈ J such that
(a) Either ai ∈ Fj(i) and bi ∈ Hj(i), or viceversa, bi ∈ Fj(i) and ai ∈ Hj(i).
(b) There is no x ∈ Fj(i) ∪Hj(i) such that ai < x < bi.

First, we check that for every x ∈ K, the set {i ∈ I : ai < x < bi} is count-
able. Notice that whenever ai < x < bi, then x 6∈ Fj(i) ∪ Hj(i) and we know
that, since the family {(Fj ,Hj)}j∈J satisfies condition (b) of Lemma 5, the set
{j ∈ J : x 6∈ Fj ∪Hj} is countable. The fact that {i ∈ I : ai < x < bi} is countable
follows now from the observation that whenever j(i) = j(i′) and i 6= i′, the intervals
]ai, bi[ and ]ai′ , bi′ [ are disjoint.

Second, we check condition (c) of the lemma. Take x < y. Since condition (c)
of Lemma 5 is satisfied, we suppose that there is some j ∈ J such that x ∈ Fj and
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y ∈ Hj . Let z = max{t ∈ Fj : t ≤ y} and z′ = min{t ∈ Hj : z ≤ t}. Then, (z, z′)
equals some (ai, bi) and x ≤ ai < bi ≤ y. ¤

We pass now to the proof of Theorem 3 itself. Let K be a linearly ordered
compact and let d be a quasi metric which fragments K. We construct our family
{(ai, bi)} ⊂ K ×K as in Lemma 6 as follows. First, let {(ai, bi)}i∈I0 be the set of
all pairs of immediate successors (that is, all ai < bi such that the open interval
]ai, bi[ is empty). For n ≥ 1, by virtue of Zorn’s Lemma, we can choose a family
(ai, bi)i∈In which is maximal for the following properties:

(1) ai < bi for every i ∈ In.
(2) The d-diameter of the open interval ]ai, bi[ is less than 1/n.
(3) [ai, bi] ∩ [aj , bj ] = ∅ whenever i, j are different indices in In.

We take I =
⋃∞

n=0 In and (ai, bi)i∈I as the family required in Lemma 6. Condi-
tion (a) of Lemma 6 is clearly satisfied and condition (b) follows from property (3)
in the definition of In. Only condition (c) needs to be checked. Take x < y, and
we suppose that

(A) there is no index i ∈ I such that x ≤ ai < bi ≤ y.

This implies, by the definition of I0, that no immediate successors can occur
between x and y. This means that the interval [x, y] is connected (and so all its
subintervals).

It is not possible that for all n, there is j ∈ In such that ]x, y[⊂]aj , bj [. This
is because, by property (2) of In, the d-diameter of ]x, y[ would be 0, which is a
contradiction. Hence,

(B) for some fixed n0 ∈ ω, there is no j ∈ In0 such that ]x, y[⊂]aj , bj [.

Claim 1: There exists i0 ∈ In0 such that either x < ai0 < y or x < bi0 < y.

Proof of the claim: If such an i0 does not exist, assertion (B) implies that
]x, y[∩]ai, bi[= ∅ for all i ∈ In0 . Since d fragments K there is a nonempty open
interval ]u, v[⊂]x, y[ of d-diameter less than 1

n0
. By passing to a subinterval (recall

that all intervals are connected now) it can be supposed that even [u, v] ⊂]x, y[ and
then, the pair (u, v) could be added to the family {(ai, bi)}i∈In0

in contradiction
with its maximality.

Without loss of generality, we assume that x < ai0 < y in Claim 1.

Claim 2: There exists j0 ∈ In0 such that x < bj0 < ai0 < y.

Proof of the claim: Again, if such a j0 does not exist, then ]x, ai0 [∩]aj , bj [ is
empty for all j ∈ In0 and, because of the fragmentability condition, we can find an
interval [u, v] ⊂]x, ai0 [ of d-diameter less than 1

n0
. In this case, the couple (u, v)
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could be added to the family {(aj , bj)}j∈In0
in contradiction with its maximality.

Claim 3: There exists k0 ∈ In0 such that x < bj0 < ak0 < bk0 < ai0 < y.

Proof of the claim: Similarly, if such a k0 did not exist, then ]bj0 , ai0 [∩]ak, bk[= ∅
for all k ∈ In0 . Since d fragments K, there should be an interval [u, v] ⊂]bj0 , ai0 [ of
d-diameter less than 1

n0
which leads once again to a contradiction.

Claim 3 is incompatible with assumption (A) and this finishes the proof of The-
orem 3. ¤

Notice that we did not use the full strength of the definition of fragmentability.
We just needed that d(x, y) > 0 if x 6= y and that every interval contains an open
subinterval of d-diameter less than ε for every ε > 0.

2. Examples of linearly ordered Radon-Nikodým compacta

We recall a different characterization of quasi Radon-Nikodým compacta. A
metric d : K × K −→ [0, +∞) on the compact space K is called a Reznichenko
metric [1, p. 104] if for every two different points x, y ∈ K there exist neighbor-
hoods U and V of x and y respectively such that inf{d(u, v) : u ∈ U, v ∈ V } > 0.
The following theorem is due to Namioka [9]:

Theorem 7. A compact space K is quasi Radon-Nikodým if and only if there exists
a Reznichenko metric on K which fragments K.

We present now a method for constructing linearly ordered Radon-Nikodým com-
pact spaces inspired on Ribarska’s characterization of fragmentability [10]. We con-
sider {Tn : n = 1, 2, . . .} to be a sequence of well ordered sets such that Tn ⊂ Tn+1.
Without loss of generality, we shall assume that all Tn’s have the same minimum
and the same maximum. Let T be the linearly ordered set T =

⋃∞
n=1 Tn and let T̄

be the completion of T (by the completion of T we mean the only linearly ordered
set T̄ such that T ⊂ T̄ , T̄ is compact in the order topology and ]x, y] ∩ T 6= ∅ for
every x, y ∈ T̄ , x < y). Then, T̄ is a linearly ordered compact space and moreover:

Theorem 8. The space T̄ is Radon-Nikodým compact.

This theorem produces different examples of linearly ordered Radon-Nikodým
compacta depending on the growing sequence of well ordered sets T1 ⊂ T2 ⊂ · · ·
that we may take as a basis. Before passing to the proof, we shall have a look at
how these different constructions may look like. Notice that T̄ is connected when-
ever for all x < y in Tn there exists z ∈ Tn+1 such that x < z < y.

• If T0 = {0, 1} and Tn+1 is constructed by adding a single new point between
every two consecutive elements of Tn, then T̄ = [0, 1].
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• If T0 is the set of all ordinals which are less than or equal to ω1 and again
Tn+1 is constructed by adding a single new point between every two con-
secutive elements of Tn, then T̄ is the extended long line.

• If T0 is the set of all ordinals which are less than or equal to ω1 and Tn+1

is constructed by adding a copy of the set of all countable ordinals between
every two consecutive elements of Tn, then T̄ has no metrizable open sub-
sets, since every open interval contains a copy of ω1.

Proof of Theorem 8: For x, y ∈ T̄ , x < y we define:

d(x, y) =
1

min{n :]x, y] ∩ Tn 6= ∅}
and also d(x, y) = 0 if x = y, and d(x, y) = d(y, x) if x > y. Observe that:

(1) Since T̄ is the completion of T , if x < y then T∩]x, y] is nonempty. This
implies that d(x, y) exists and is a positive real whenever x 6= y.

(2) An easy case-by-case consideration proves that d verifies triangle inequal-
ity: d(x, z) ≤ d(x, y) + d(y, z).

(3) The metric d is a Reznichenko metric, that is, every two different points
have neighborhoods at a positive d-distance. Namely, if x < y and there is
some z ∈]x, y[, then ]x, z] ∩ T is nonempty and there is u ∈ Tn∩]x, z] for
some n. In this case ] −∞, u[ and ]u, +∞[ are neighborhoods at at least
1
n -d-distance. The other possibility is that ]x, y[ is empty. Then y ∈ T and
hence, y ∈ Tn for some n. In this case (−∞, x] and [y, +∞[ are neighbor-
hoods of x and y at at least 1

n -d-distance.

(4) The metric d fragments T̄ . Given L a closed subset of T̄ of more than one
point, and n ∈ ω, let x = min(L) and y = min{z ∈ Tn : z > x}. Then,
L ∩ [x, y[ is a nonempty relative open subset of L of d-diameter less than
1
n .

It follows from Theorem 7 that K is quasi Radon-Nikodým compact and hence,
by Corollary 4, it is Radon-Nikodým compact. ¤

We point out that the metric d that we have defined is not lower semicontinuous
except in trivial cases and hence, the use of Corollary 4 cannot be avoided unless we
want to embark in the construction of a more complicated metric. In some cases, a
nice lower semicontinuous fragmenting metric may be available, as for the extended
long line [8].
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