RADON-NIKODYM COMPACT SPACES OF LOW WEIGHT AND
BANACH SPACES

ANTONIO AVILES

ABSTRACT. We prove that a continuous image of a Radon-Nikodym compact
of weight less than b is Radon-Nikodym compact. As a Banach space counter-
part, subspaces of Asplund generated Banach spaces of density character less
than b are Asplund generated. In this case, in addition, there exists a sub-
space of an Asplund generated space which is not Asplund generated which
has density character exactly b.

The concept of Radon-Nikodym compact, due to Reynov [12], has its origin in
Banach space theory, and it is defined as a topological space which is homeomor-
phic to a weak* compact subset of the dual of an Asplund space, that is, a dual
Banach space with the Radon-Nikodym property (topological spaces will be here
assumed to be Hausdorff). In [9], the following characterization of this class is given:

Theorem 1. A compact space K is Radon-Nikodiym compact if and only if there
s a lower semicontinuous metric d on K which fragments K.

Recall that a map f : X x X — R on a topological space X is said to fragment
X if for each (closed) subset L of X and each € > 0 there is a nonempty relative
open subset U of L of f-diameter less than e, i.e. sup{f(z,y):z,y € U} <e. Also,
amap g : Y — R from a topological space to the real line is lower semicontinuous
if {y: g(y) <r}isclosed in Y for every real number r.

It is an open problem whether a continuous image of a Radon-Nikodym compact
is Radon-Nikodym. Arvanitakis [2] has made the following approach to this prob-
lem: if K is a Radon-Nikodym compact and 7 : K — L is a continuous surjection,
then we have a lower semicontinuous fragmenting metric d on K, and if we want
to prove that L is Radon-Nikodym compact, we should find such a metric on L. A
natural candidate is:

di(z,y) = d(n"'(2), 7" (y)) = inf{d(t,s) : 7(t) = x, 7(s) = y}.

The map d; is lower semicontinuous and fragments L and it is a quasi metric,
that is, it is symmetric and vanishes only if x = y. But it is not a metric because,
in general, it lacks triangle inequality. Consequently, Arvanitakis [2] introduced the
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following concept:

Definition 2. A compact space L is said to be quasi Radon-Nikodym if there exists
a lower semicontinuous quasi metric which fragments L.

The class of quasi Radon-Nikodym compacta is closed under continuous im-
ages but it is unknown whether it is the same class as that of Radon-Nikodym
compacta or even the class of their continuous images. At least other two su-
perclasses of continuous images of Radon-Nikodym compacta appear in the liter-
ature. Reznichenko [1, p. 104] defined a compact space L to be strongly frag-
mentable if there is a metric d which fragments L such that each pair of different
points of L possess disjoint neighbourhoods at a positive d-distance. It has been
noted by Namioka [10] that the classes of quasi Radon-Nikodym and strongly frag-
mentable compacta are equal. The other superclass of continuous images of Radon-
Nikodym compacta, called countably lower fragmentable compacta, was introduced
by Fabian, Heisler and Matouskové [5]. In section 3, we recall its definition and we
prove that this class is equal to the other two.

The main result in section 1 is the following:

Theorem 3. If K is a quasi Radon-Nikodym compact space of weight less than b,
then K is Radon-Nikodym compact.

The weight of a topological space is the least cardinality of a base for its topol-
ogy. We also recall the definition of cardinal b. In the set NN we consider the order
relation given by o < 7 if ¢, < 7, for all n € N. Cardinal b is the least cardinality
of a subset of NN which is not o-bounded for this order (a set is o-bounded if it is
a countable union of bounded subsets). It is consistent that b > w;. In fact, Mar-
tin’s axiom and the negation of the continuum hypothesis imply that ¢ = b > wy,
cf. [6, 11D and 14B]. It is also possible that ¢ > b > wy, cf. [17, section 5]. On the
other hand, cardinal d is the least cardinality of a cofinal subset of (NV, <), that
is, a set A such that for each ¢ € NN there is some 7 € A such that ¢ < 7. In a
sense, the following proposition puts a rough bound on the size of the class of quasi
Radon-Nikodym compacta with respect to Radon-Nikodym compacta.

Proposition 4. Every quasi Radon-Nikodym compact space embeds into a product
of Radon-Nikodym compact spaces with at most d factors.

In section 2 we discuss the Banach space counterpart to Theorem 3. A Banach
space V is Asplund generated, or GSG, if there is some Asplund space V' and a
bounded linear operator T : V' — V such that T(V’) is dense in V. Our main
result for this class is the following:



Theorem 5. Let V' be a Banach space of density character less than b and such
that the dual unit ball (By~,w*) is quasi Radon-Nikodgm compact, then V is As-
plund generated.

The density character of a Banach space is the least cardinal of a norm-dense
subset, and it equals the weight of its dual unit ball in the weak™ topology.

Examples constructed by Rosenthal [13] and Argyros [4, section 1.6] show that
there exist Banach spaces which are subspaces of Asplund generated spaces but
which are not Asplund generated. However, since the dual unit ball of a subspace
of an Asplund generated space is a continuous image of a Radon-Nikodym compact
[4, Theorem 1.5.6], we have the following corollary to Theorem 5:

Corollary 6. If a Banach space V is a subspace of an Asplund generated space
and the density character of V is less than b, then V is Asplund generated.

Also, a Banach space is weakly compactly generated (WCGQG) if it is the closed
linear span of a weakly compact subset. The same examples mentioned above show
that neither is this property inherited by subspaces. A Banach space V' is weakly
compactly generated if and only if it is Asplund generated and its dual unit ball
(By+,w*) is Corson compact [11], [14]. Having Corson dual unit ball is a heredi-
tary property since a continuous image of a Corson compact is Corson compact [7],
hence:

Corollary 7. If a Banach space V is a subspace of a weakly compactly generated
space and the density character of V is less than b, then V is weakly compactly
generated.

Corollary 7 can also be obtained from the following theorem, essentially due to
Mercourakis [8]:

Theorem 8. If a Banach space V is weakly K-analytic and the density character
of V is less than b, then V is weakly compactly generated.

The class of weakly K-analytic spaces is larger than the class of subspaces of
weakly compactly generated spaces. We recall its definition in section 2. The result
of Mercourakis [8, Theorem 3.13] is that, under Martin’s axiom, weakly K-analytic
Banach spaces of density character less than ¢ are weakly compactly generated, but
his arguments prove in fact the more general Theorem 8. We give a more elemen-
tary proof of this theorem, obtaining it as a consequence of a purely topological
result: Any IC-analytic topological space of density character less than b contains
a dense o-compact subset. We also remark that it is not possible to generalize
Theorem 8 for the class of weakly countably determined Banach spaces.

Cardinal b is best possible for Theorem 5, Theorem 8 and their corollaries, as it
is shown by slight modifications of the mentioned example of Argyros [4, section 1.6]
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and of the example of Talagrand [15] of a weakly K-analytic Banach space which
is not weakly compactly generated, so that we get examples of density character
exactly b.

For information about cardinals b and d we refer to [17]. Concerning Banach
spaces, our main reference is [4].

I want to express my gratitude to José Orihuela for valuable discussions and
suggestions and to Witold Marciszewski, from whom I learnt about cardinals b and
d. I also thank Isaac Namioka and the referee for suggestions which have improved
the final version of this article.

1. QUASI RADON-NIKODYM COMPACTA OF LOW WEIGHT

In this section, we characterize quasi Radon-Nikodym compacta in terms of em-
beddings into cubes [0,1]'" and from this, we will derive proofs of Theorem 3 and
Proposition 4. Techniques of Arvanitakis [2] will play an important role in this
section, as well as the following theorem of Namioka [9]:

Theorem 9. Let K be a compact space. The following are equivalent.

(1) K is Radon-Nikodym compact.
(2) There is an embedding K C [0,1]' such that K is fragmented by the uni-
form metric d(x,y) = sup,cr |2y — Y|

Let P C NN be the set of all strictly increasing sequences of positive integers.
Note that this is a cofinal subset of NN¥. For each ¢ € P we consider the lower
semicontinuous non decreasing function A7 : [0, +00] — R given by:

o 17(0) =0,
e h7(t) = L whenever n%rl <t< i
e h?(t) = = whenever t > 1.

Also, if f: X x X — R is a map and A,B C X, we will use the notation
f(A,B) =inf{f(z,y) :x € A, y € B}.

Theorem 10. Let K be a compact subset of the cube [0,1]F. The following are
equivalent:

(1) K is quasi Radon-Nikodym compact.
(2) There is a map o : T' — P such that K is fragmented by

fa,y) = sup k7D (|2 —y,])
yel

which is a lower semicontinuous quasi metric.
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PROOF: Observe that f in (2) is expressed as a supremum of lower semicon-
tinuous functions, and therefore, it is lower semicontinuous. Also, f(z,y) = 0 if
and only if A7) (|z, — y,|) = 0 for all v € T if and only if |z, — y,| = 0 for all
v € I'. Hence, f is indeed a lower semicontinuous quasi metric and it is clear that
(2) implies (1). Assume now that K is quasi Radon-Nikodym compact and let
g: K x K — [0,1] be a lower semicontinuous quasi metric which fragments K.
For v € T, we call p, : K — [0, 1] the projection on the coordinate v, p,(z) = x5,
and we define a quasi metric g, on [0, 1] by the rule:

B g(p;l(t),pv_l(s)) if p;l(t) and p;l(s) are nonempty,
9~ (t, 3) = .
1 otherwise.

Note that g, is lower semicontinuous because for r < 1
{(t,9) 2 g5 (t,5) <} = () (03 x p){(w,y) € K : g(a,y) < o'}
r’'>r

Observe also that if z,y € K, then g,(zy,y,) = gv(p4(2),py(¥)) < g(z,y).
Hence, K is fragmented by

g (z,y) = sup g, (z4,yy) < g(z,y)
~el’

The proof finishes by making use of the following lemma, where we put go := g:

Lemma 11. Let go : [0,1] x [0,1] — [0, 1] be a lower semicontinuous quasi metric
on [0,1]. Then, there exists T € P such that h™ (|t — s|) < go(t, s) for all t,s € [0,1].

PROOF: We define 7 recursively. Suppose that we have defined 7,...,7, in

such a way that if |t — s| > n%rl, then h7 (|t — s|) < go(t, s). Let

K, = {(t,s) €[0,1] x [0,1] : |t — 5| > L 5 and go(t, s) < ;}

n

Then, { K, }5°_; is a decreasing sequence of compact subsets of [0, 1]? with empty
intersection. Hence, there is m such that K,, is empty for m > m;. We define
Tn+1 = max{my, 7, + 1}. O

Now, we state a lemma which is just a piece of the proof of [2, Proposition 3.2].
We include its proof for the sake of completeness.

Lemma 12. Let K, L be compact spaces, let f: K x K — R be a symmetric map
which fragments K and p : K — L a continuous surjection. Then L is fragmented
by g(z,y) = f(p~(z),p ' (y)) and in particular, L is fragmented by any g' with
9 <g.

PROOF: Let M be a closed subset of L and € > 0. By Zorn’s lemma a set
N C K can be found such that p : N — M is onto and irreducible (that is, for
every N’ C N closed, p: N’ — M is not onto). We find U C N a relative open
subset of N of f-diameter less than €. By irreducibility, p(U) has nonempty relative
interior in M. This interior is a nonempty relative open subset of M of g-diameter
less than e. ]
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In the sequel, we use the following notation: If A C I" are sets, d4 states for the
pseudometric in [0, 1]" given by da(z,y) = sup,c4 |2y — y|.

Lemma 13. Let K be a compact subset of the cube [0,1]' and let o : T — P be
a map such that the quasi metric

f(a,y) = sup A7 (Jay =y, )
yel
fragments K and such that o(T) is a o-bounded subset of NN. Then, K is Radon-

Nikodygm compact. In addition, there exist sets T', C T such that T = I, and
each dr, fragments K.

neN

PROOF: There is a decomposition I' = J,, . ' such that each o(I',) has a
bound 7, in (N¥, <). We choose 7,, € P. First, we prove that each dr, fragments
K. For every n € N, K is fragmented by the map

fal@,y) = sup B (Jzy — yy]) < f(z,y)

RIS
and
fo(z,y) = sup h”(”)(lxw —yy]) = sup A (Jzy — y4)
~yel, ~yel,
=" (Sup |2y — y7|> =h™(dr, (z,y)).
YE

Hence, a set of f,-diameter less than % in K is a set of dr -diameter less than
% and therefore, since f, fragments K, also dr, fragments K.

Consider now p,, : [0,1]F' — [0,1]'» the natural projection and K,, = p,(K).

By Lemma 12, since K is fragmented by f,,, K, is fragmented by
gn(,y) = sup K70 (Jzy =y, ).
v€Eln

and hence, K, is Radon-Nikodym compact. Moreover, since I' = (J, ey, K
embeds into the product [], .y K, and the class of Radon-Nikodym compacta is
closed under taking countable products and under taking closed subspaces [9], so
K is Radon-Nikodym compact. O

PROOF OF THEOREM 3: If the weight of K is less than b, then K can be
embedded into a cube [0, 1] with || < b. Any subset of N¥ of cardinality less than
b is o-bounded, so Theorem 3 follows directly from Theorem 10 and Lemma 13.0J

PROOF OF PROPOSITION 4: Let K be quasi Radon-Nikodym compact, sup-
pose K is embedded into some cube [0, 1]* and let o : T — P be as in Theorem 10.
Let A C P be a cofinal subset of P of cardinality d. For a € A, let

Fo={yel:o(y) <a},

let po : [0,1]7 — [0,1]'= be the natural projection, and let K, = po(K). Again,
since I' = (J,c 4 T, K embeds into the product [],. 4 Ko. By Lemma 12, K, is



fragmented by
go(z,y) = sup hd(ﬁ{)(|$’y = yl)

RIS
The set {o(y) : v € T4} is a bounded, and hence o-bounded, set. Hence, by
Lemma 13, K, is Radon-Nikodym compact. (I

We note that from Lemma 13, we obtain something stronger than Theorem 3:

Theorem 14. For every quasi Radon-Nikodym compact subset of a cube [0, 1]" with
IT'| < b there is a countable decomposition T' = | _yT'n such that dr, fragments
K for allm € N.

neN

A similar result holds also for generalized Cantor cubes (cf. [5, Theorem 3], [2,
Theorem 3.6]): If K is a quasi Radon-Nikodym compact subset of {0,1}", then
there is a decomposition I' = J,, .y I'n such that dr, fragments K for all n € N.
We give now an example which shows that this phenomenon does not happen for
general cubes, even if the compact K has weight less than b or it is zero-dimensional:

Proposition 15. There exist a set I' of cardinality b and a compact subset K of
[0, 1]F homeomorphic to the metrizable Cantor cube {0,1}" such that for any de-

composition I' = J,, .y I'n there exists n € N such that dr, does not fragment K.

PROOF: First, we take I' a subset of N of cardinality b which is not o-bounded.
We call A ={~, :~v€T,neN} the set of all terms of elements of I'. We define

K ={ze€{0,1}""":x , =2, whenever v, =, }.

Observe that K’ is homeomorphic to {0, 1}": namely, for each a € A choose
some 7*,n* € I' x N such that 7%, = a; in this case we have a homeomorphism
K' — {07 1}A given by T (zva,n“)aeA-

Now, we consider the embedding ¢ : {0, 1} — [0, 1] given by

o) = (Z (:2)))357)

neN ~ET

We claim that the space K = ¢(K’) C [0,1]" verifies the statement. Let I' =
UnenT'n any countable decomposition of I'. Since I' is not o-bounded, there is
some n € N such that I',, is not bounded. For this fixed n, since I';, is not bounded,
there is some m € N such that the set S = {v,, : v € T';,} C A is infinite. We
consider

Ko={z € K': 2, =0 whenever v, € S} C K.

By the same arguments as for K’, K is homeomorphic to the Cantor cube {0, 1}
by a map Ko — {0,1}° given by 2 — (e ya)acs. Now, we take two different
elements z,y € Ky. Then, there must exist some v € I',, such that =, # Yy,m,
and this implies that |¢(z), — ¢(y),| > 37" and therefore dr, (¢(x), ¢(y)) > 37™.
This means that any nonempty subset of ¢(Ky) of dr, -diameter less than 3~™ must
be a singleton. If dr fragmented K, this would imply that ¢(Kj) has an isolated
point, which contradicts the fact that it is homeomorphic to {0, 1}. O
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2. BANACH SPACES OF LOW DENSITY CHARACTER

In this section we find that cardinal b is the least possible density character of
Banach spaces which are counterexamples to several questions. First, we introduce
some notation: If A is a subset of a Banach space V, we call ds to the pseudo-
metric da(z*,y*) = sup,ca |2*(z) — y*(x)| on By-. Also, we recall the following
definition [4, Definition 1.4.1]:

Definition 16. A nonempty bounded subset M of a Banach space V is called an
Asplund set if for each countable set A C M the pseudometric space (By»,d4) is
separable.

By [3, Theorem 2.1], M is an Asplund subset of V' if and only if dps fragments
(By+,w*). Also, by [4, Theorem 1.4.4], a Banach space V is Asplund generated if
and only if it is the closed linear span of an Asplund subset.

PROOF OF THEOREM 5: Let I' be a dense subset of the unit ball By of V' of
cardinality less than b. Then, we have a natural embedding (By~,w*) C [-1,1]F.
Since (By~,w*) is quasi Radon-Nikodym compact, we apply Theorem 14 and we
have I' = T, and each dr, fragments (By«,w*). This means that for each n, I,
is an Asplund set, and by [4, Lemma 1.4.3], M = J,, .y 1T, is an Asplund set too.
Finally, since the closed linear span of M is V', by [4, Theorem 1.4.4], V' is Asplund
generated. (I

We recall now the concepts that we need for the proof of Theorem 8. We follow
the terminology and notation of [4, sections 3.1, 4.1]. Let X and Y be topological
spaces. A map ¢ : X — 2¥ from X to the subsets of Y is said to be an usco if the
following conditions hold:

(1) ¢(z) is a compact subset of Y for all x € X.
(2) {x:¢(x) CU} is open in X, for every open set U of Y.

In this situation, for A C X we denote ¢(A4) = U, 4 ().

A completely regular topological space X is said to be K-analytic if there exists
an usco ¢ : NY — 2% such that ¢(N) = X. A Banach space is weakly K-analytic
if it is a C-analytic space in its weak topology.

We note that if a Banach space V' contains a weakly o-compact subset M which
is dense in the weak topology, then V' is WCG. This is because if M = Uzozl K,
being K, a weakly compact set bounded by ¢,, > 0, then {0} U nin K, is a weakly
compact subset of V' whose linear span is (weakly) dense in V. Hence, Theorem 8

is deduced from the following:

Proposition 17. If X is a K-analytic topological space which contains a dense
subset of cardinality less than b, then X contains a dense o-compact subset.

PROOF: We have an usco ¢ : N¥ — 2% with ¢(NV) = X and also a set ¥ C NV
such that |S| < b and ¢(X) is dense in X. Any subset of N of cardinal less than
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b is contained in a o-compact subset of NN [17, Theorem 9.1]. Uscos send compact
sets onto compact sets, so if &’ D ¥ is o-compact, then ¢(X’) is a dense o-compact
subset of X. |

We recall that a completely regular topological space X is C-countably deter-
mined if there exists a subset ¥ of NN and an usco ¢ : ¥ — 2% such that ¢() = X
and that a Banach space is weakly countably determined if it is KC-countably deter-
mined in its weak topology. Talagrand [16] has constructed a Banach space which
is weakly countably determined but which is not weakly /C-analytic. A slight mod-
ification of this example gives a similar one with density character w;. This shows
that no analogue of Theorem 8 is possible for weakly countably determined Banach
spaces. The change in the example consists in substituting the set T' considered
in [16, p. 78] by any subset T C T of cardinal w; such that {o(X) : X € T'} is
uncountable and Aby A’ = {A C T" : A € A;} (the notations are explained in [16]).

Now, we turn to the fact that cardinal b is best possible in Theorem 5, Theo-
rem 8 and their corollaries. We fix a subset S of N of cardinality b which is not
o-bounded.

Following the exposition of the example of Argyros in [4, section 1.6] we just sub-
stitute the space Y = span{m, : ¢ € N} in [4, Theorem 1.6.3] by Y’ = span{r, :
o € S} and we obtain a Banach space of density character b which is a subspace
of a WCG space C(K) but which is not Asplund generated. The same arguments
in [4, section 1.6] hold just changing NV by S where necessary. Only the proof of [4,
Lemma 1.6.1] is not good for this case. It must be substituted by the following:

Lemma 18. Let I';,, n € N, be any subsets of S such that J, ey = S. Then
there exist n,m € N and an infinite set A € A,,, such that A C T',.

Here, as in [4, section 1.6], A, is the family of all subsets A C NY such that
ifo,7 € Aando # 7, theno; = 7, if i <mand opyq1 # Ting1. Also, A=) A,

PROOF OF LEMMA 18: We consider I'; ; = {o € T'; : 01 = j}, 4,5 € N. Note
that S = U” I'; ;. Since S is not o-bounded, there exist n,! with I';, ; unbounded.
This implies that for some m, the set {0, : ¢ € I';;} is infinite. We take m the
least integer with this property (m > 1). Let B C I',; be an infinite set such that
Om # o), for 0,6’ € B, 0 # ¢’. Since all o, with o € B, k < m, lie in a finite set,
an infinite set A C B can be chose such that A € A,,_;. O

On the other hand, if we follow the proof in [4, section 4.3] that the Banach
space C(K) of Talagrand is weakly KC-analytic but not WCG, and we change K
in [4, p. 76) by K' = {xa: A€ A, AC S} C{0,1}" then C(K’) still verifies this
conditions and has density character b. Observe that C(K’) is weakly K-analytic
because K’ is a retract of the original K. The fact that C(K’) is not WCG (not
even a subspace of a WCG space) follows from [4, Theorem 4.3.2] and Lemma 18
above by the same arguments as in [4, p. 78].
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3. COUNTABLY LOWER FRAGMENTABLE COMPACTA

In this section we prove that the concept of quasi Radon Nikodym compact [2] is
equivalent to that of countably lower fragmentable compact [5]. The main result for
this class in [5] is that if K is countably lower fragmentable, then so is (B¢ (), w*).
We note that, with these two facts at hand, together with the fact that if C(K)
is Asplund generated, then K is Radon-Nikodym [4, Theorem 1.5.4], Theorem 3 is
deduced from Theorem 5.

We need some notation: if K is a compact space and A C C'(K) is a bounded set
of continuous functions over K, we define the pseudometric d4 on K as da(z,y) =
supse 4 |f(z) — f(y)|- If X is a topological space, d : X x X — R is a map, and
A is a positive real number, it is said that d A-fragments X if for each subset L of
X there is a relative open subset U of L of d-diameter less than or equal to A.

Definition 19. A compact space K is said to be countably lower fragmentable if
there are bounded subsets {4, , : n,p € N} of C(K) such that C(K) =, x4

neN “ n,p

op %—fragments K.

for every p € N, and the pseudometric d 4

This is the definition as it appears in [5]. However, variable p is superfluous in
it. If the sets A, 1 exist, it is sufficient to define 4, , = {%f cfeApat

On the other hand, we recall a concept introduced by Namioka [9]: For a topo-
logical space K, a set L C K x K is said to be an almost neighborhood of the
diagonal if it contains the diagonal Ax = {(z,z) : * € K} and satisfies that for
every nonempty subset X of K there is a nonempty relative open subset U of X
such that U x U C L. The use of this was suggested to us by I. Namioka and
simplifies our original proof.

Theorem 20. For a compact subset K of [0, 1] the following are equivalent:
(1) K is quasi Radon-Nikodym compact
(2) K is countably lower fragmentable.
(3) There are subsets I'y ,, n,p € N, of I' such that dr,, % fragments K for
every n,p € N.

PROOF: Suppose K is quasi Radon-Nikodym compact and let ¢ be a lower
semicontinuous quasi metric which fragments K. Then, we just define

1 1
Ay = {7 € CUEY: 17(0) = £ < 5 whenewer o(o.) < {0 (F+ o < )
Clearly, da,, , %—fragments K because any subset of K of ¢-diameter less than %
has d 4, ,-diameter less than %, and we know that ¢ fragments K. On the other
hand, for a fixed p € N, in order to prove that C(K) = |, cy An,p, Observe that, if
f e C(K), then

C, = {(w) € K1)~ S 2 L and oa,y) < jl}
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is a decreasing sequence of compact subsets of K x K with empty intersection so
there is some n > || f||o such that C,, is empty, and then, f € A, ,.

That (2) implies (3) is evident, just to take I', , = A, , N T whenever A4, ,,
n,p € N are the sets in the definition of countably lower fragmentability.

Now, suppose (3). For every n,p € N, since da, , %—fragments K, this means

that the set C, , = {(z,y) € K x K : dr, ,(z,y) < %} is an almost neighborhood
of the diagonal which, in addition, is closed. On the other hand, observe that, for
each n,p € N, (z,y) € Cyp if and only if |z, — y,| < % for all v € I'y, , so that

1
m Cn,p:m (x,y):|w7—yy|§fV’y€UFn’pZF =Ag
n,peN peN p neN

Now, K is quasi Radon-Nikodym by virtue of [10, Theorem 1], which states that
K is quasi Radon-Nikodym compact if and only if there is a countable family of
closed almost neighborhoods of the diagonal whose intersection is the diagonal A.
O
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