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Abstract. We prove that a continuous image of a Radon-Nikodým compact
of weight less than b is Radon-Nikodým compact. As a Banach space counter-
part, subspaces of Asplund generated Banach spaces of density character less
than b are Asplund generated. In this case, in addition, there exists a sub-
space of an Asplund generated space which is not Asplund generated which
has density character exactly b.

The concept of Radon-Nikodým compact, due to Reynov [12], has its origin in
Banach space theory, and it is defined as a topological space which is homeomor-
phic to a weak∗ compact subset of the dual of an Asplund space, that is, a dual
Banach space with the Radon-Nikodým property (topological spaces will be here
assumed to be Hausdorff). In [9], the following characterization of this class is given:

Theorem 1. A compact space K is Radon-Nikodým compact if and only if there
is a lower semicontinuous metric d on K which fragments K.

Recall that a map f : X ×X −→ R on a topological space X is said to fragment
X if for each (closed) subset L of X and each ε > 0 there is a nonempty relative
open subset U of L of f -diameter less than ε, i.e. sup{f(x, y) : x, y ∈ U} < ε. Also,
a map g : Y −→ R from a topological space to the real line is lower semicontinuous
if {y : g(y) ≤ r} is closed in Y for every real number r.

It is an open problem whether a continuous image of a Radon-Nikodým compact
is Radon-Nikodým. Arvanitakis [2] has made the following approach to this prob-
lem: if K is a Radon-Nikodým compact and π : K −→ L is a continuous surjection,
then we have a lower semicontinuous fragmenting metric d on K, and if we want
to prove that L is Radon-Nikodým compact, we should find such a metric on L. A
natural candidate is:

d1(x, y) = d(π−1(x), π−1(y)) = inf{d(t, s) : π(t) = x, π(s) = y}.
The map d1 is lower semicontinuous and fragments L and it is a quasi metric,

that is, it is symmetric and vanishes only if x = y. But it is not a metric because,
in general, it lacks triangle inequality. Consequently, Arvanitakis [2] introduced the
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following concept:

Definition 2. A compact space L is said to be quasi Radon-Nikodým if there exists
a lower semicontinuous quasi metric which fragments L.

The class of quasi Radon-Nikodým compacta is closed under continuous im-
ages but it is unknown whether it is the same class as that of Radon-Nikodým
compacta or even the class of their continuous images. At least other two su-
perclasses of continuous images of Radon-Nikodým compacta appear in the liter-
ature. Reznichenko [1, p. 104] defined a compact space L to be strongly frag-
mentable if there is a metric d which fragments L such that each pair of different
points of L possess disjoint neighbourhoods at a positive d-distance. It has been
noted by Namioka [10] that the classes of quasi Radon-Nikodým and strongly frag-
mentable compacta are equal. The other superclass of continuous images of Radon-
Nikodým compacta, called countably lower fragmentable compacta, was introduced
by Fabian, Heisler and Matoušková [5]. In section 3, we recall its definition and we
prove that this class is equal to the other two.

The main result in section 1 is the following:

Theorem 3. If K is a quasi Radon-Nikodým compact space of weight less than b,
then K is Radon-Nikodým compact.

The weight of a topological space is the least cardinality of a base for its topol-
ogy. We also recall the definition of cardinal b. In the set NN we consider the order
relation given by σ ≤ τ if σn ≤ τn for all n ∈ N. Cardinal b is the least cardinality
of a subset of NN which is not σ-bounded for this order (a set is σ-bounded if it is
a countable union of bounded subsets). It is consistent that b > ω1. In fact, Mar-
tin’s axiom and the negation of the continuum hypothesis imply that c = b > ω1,
cf. [6, 11D and 14B]. It is also possible that c > b > ω1, cf. [17, section 5]. On the
other hand, cardinal d is the least cardinality of a cofinal subset of (NN,≤), that
is, a set A such that for each σ ∈ NN there is some τ ∈ A such that σ ≤ τ . In a
sense, the following proposition puts a rough bound on the size of the class of quasi
Radon-Nikodým compacta with respect to Radon-Nikodým compacta.

Proposition 4. Every quasi Radon-Nikodým compact space embeds into a product
of Radon-Nikodým compact spaces with at most d factors.

In section 2 we discuss the Banach space counterpart to Theorem 3. A Banach
space V is Asplund generated, or GSG, if there is some Asplund space V ′ and a
bounded linear operator T : V ′ −→ V such that T (V ′) is dense in V . Our main
result for this class is the following:
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Theorem 5. Let V be a Banach space of density character less than b and such
that the dual unit ball (BV ∗ , w

∗) is quasi Radon-Nikodým compact, then V is As-
plund generated.

The density character of a Banach space is the least cardinal of a norm-dense
subset, and it equals the weight of its dual unit ball in the weak∗ topology.

Examples constructed by Rosenthal [13] and Argyros [4, section 1.6] show that
there exist Banach spaces which are subspaces of Asplund generated spaces but
which are not Asplund generated. However, since the dual unit ball of a subspace
of an Asplund generated space is a continuous image of a Radon-Nikodým compact
[4, Theorem 1.5.6], we have the following corollary to Theorem 5:

Corollary 6. If a Banach space V is a subspace of an Asplund generated space
and the density character of V is less than b, then V is Asplund generated.

Also, a Banach space is weakly compactly generated (WCG) if it is the closed
linear span of a weakly compact subset. The same examples mentioned above show
that neither is this property inherited by subspaces. A Banach space V is weakly
compactly generated if and only if it is Asplund generated and its dual unit ball
(BV ∗ , w

∗) is Corson compact [11], [14]. Having Corson dual unit ball is a heredi-
tary property since a continuous image of a Corson compact is Corson compact [7],
hence:

Corollary 7. If a Banach space V is a subspace of a weakly compactly generated
space and the density character of V is less than b, then V is weakly compactly
generated.

Corollary 7 can also be obtained from the following theorem, essentially due to
Mercourakis [8]:

Theorem 8. If a Banach space V is weakly K-analytic and the density character
of V is less than b, then V is weakly compactly generated.

The class of weakly K-analytic spaces is larger than the class of subspaces of
weakly compactly generated spaces. We recall its definition in section 2. The result
of Mercourakis [8, Theorem 3.13] is that, under Martin’s axiom, weakly K-analytic
Banach spaces of density character less than c are weakly compactly generated, but
his arguments prove in fact the more general Theorem 8. We give a more elemen-
tary proof of this theorem, obtaining it as a consequence of a purely topological
result: Any K-analytic topological space of density character less than b contains
a dense σ-compact subset. We also remark that it is not possible to generalize
Theorem 8 for the class of weakly countably determined Banach spaces.

Cardinal b is best possible for Theorem 5, Theorem 8 and their corollaries, as it
is shown by slight modifications of the mentioned example of Argyros [4, section 1.6]
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and of the example of Talagrand [15] of a weakly K-analytic Banach space which
is not weakly compactly generated, so that we get examples of density character
exactly b.

For information about cardinals b and d we refer to [17]. Concerning Banach
spaces, our main reference is [4].

I want to express my gratitude to José Orihuela for valuable discussions and
suggestions and to Witold Marciszewski, from whom I learnt about cardinals b and
d. I also thank Isaac Namioka and the referee for suggestions which have improved
the final version of this article.

1. Quasi Radon-Nikodým compacta of low weight

In this section, we characterize quasi Radon-Nikodým compacta in terms of em-
beddings into cubes [0, 1]Γ and from this, we will derive proofs of Theorem 3 and
Proposition 4. Techniques of Arvanitakis [2] will play an important role in this
section, as well as the following theorem of Namioka [9]:

Theorem 9. Let K be a compact space. The following are equivalent.
(1) K is Radon-Nikodým compact.
(2) There is an embedding K ⊂ [0, 1]Γ such that K is fragmented by the uni-

form metric d(x, y) = supγ∈Γ |xγ − yγ |.

Let P ⊂ NN be the set of all strictly increasing sequences of positive integers.
Note that this is a cofinal subset of NN. For each σ ∈ P we consider the lower
semicontinuous non decreasing function hσ : [0, +∞] −→ R given by:

• hσ(0) = 0,

• hσ(t) = 1
σn

whenever 1
n+1 < t ≤ 1

n .

• hσ(t) = 1
σ1

whenever t > 1.

Also, if f : X × X −→ R is a map and A,B ⊂ X, we will use the notation
f(A,B) = inf{f(x, y) : x ∈ A, y ∈ B}.

Theorem 10. Let K be a compact subset of the cube [0, 1]Γ. The following are
equivalent:

(1) K is quasi Radon-Nikodým compact.
(2) There is a map σ : Γ −→ P such that K is fragmented by

f(x, y) = sup
γ∈Γ

hσ(γ)(|xγ − yγ |)

which is a lower semicontinuous quasi metric.
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PROOF: Observe that f in (2) is expressed as a supremum of lower semicon-
tinuous functions, and therefore, it is lower semicontinuous. Also, f(x, y) = 0 if
and only if hσ(γ)(|xγ − yγ |) = 0 for all γ ∈ Γ if and only if |xγ − yγ | = 0 for all
γ ∈ Γ. Hence, f is indeed a lower semicontinuous quasi metric and it is clear that
(2) implies (1). Assume now that K is quasi Radon-Nikodým compact and let
g : K × K −→ [0, 1] be a lower semicontinuous quasi metric which fragments K.
For γ ∈ Γ, we call pγ : K −→ [0, 1] the projection on the coordinate γ, pγ(x) = xγ ,
and we define a quasi metric gγ on [0, 1] by the rule:

gγ(t, s) =

{
g(p−1

γ (t), p−1
γ (s)) if p−1

γ (t) and p−1
γ (s) are nonempty,

1 otherwise.

Note that gγ is lower semicontinuous because for r < 1

{(t, s) : gγ(t, s) ≤ r} =
⋂

r′>r

(pγ × pγ){(x, y) ∈ K2 : g(x, y) ≤ r′}

Observe also that if x, y ∈ K, then gγ(xγ , yγ) = gγ(pγ(x), pγ(y)) ≤ g(x, y).
Hence, K is fragmented by

g′(x, y) = sup
γ∈Γ

gγ(xγ , yγ) ≤ g(x, y)

The proof finishes by making use of the following lemma, where we put g0 := gγ :

Lemma 11. Let g0 : [0, 1]× [0, 1] −→ [0, 1] be a lower semicontinuous quasi metric
on [0, 1]. Then, there exists τ ∈ P such that hτ (|t− s|) ≤ g0(t, s) for all t, s ∈ [0, 1].

PROOF: We define τ recursively. Suppose that we have defined τ1, . . . , τn in
such a way that if |t− s| > 1

n+1 , then hτ (|t− s|) ≤ g0(t, s). Let

Km =
{

(t, s) ∈ [0, 1]× [0, 1] : |t− s| ≥ 1
n + 2

and g0(t, s) ≤ 1
m

}

Then, {Km}∞m=1 is a decreasing sequence of compact subsets of [0, 1]2 with empty
intersection. Hence, there is m1 such that Km is empty for m ≥ m1. We define
τn+1 = max{m1, τn + 1}. ¤

Now, we state a lemma which is just a piece of the proof of [2, Proposition 3.2].
We include its proof for the sake of completeness.

Lemma 12. Let K, L be compact spaces, let f : K×K −→ R be a symmetric map
which fragments K and p : K −→ L a continuous surjection. Then L is fragmented
by g(x, y) = f(p−1(x), p−1(y)) and in particular, L is fragmented by any g′ with
g′ ≤ g.

PROOF: Let M be a closed subset of L and ε > 0. By Zorn’s lemma a set
N ⊂ K can be found such that p : N −→ M is onto and irreducible (that is, for
every N ′ ⊂ N closed, p : N ′ −→ M is not onto). We find U ⊂ N a relative open
subset of N of f -diameter less than ε. By irreducibility, p(U) has nonempty relative
interior in M . This interior is a nonempty relative open subset of M of g-diameter
less than ε. ¤
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In the sequel, we use the following notation: If A ⊂ Γ are sets, dA states for the
pseudometric in [0, 1]Γ given by dA(x, y) = supγ∈A |xγ − yγ |.

Lemma 13. Let K be a compact subset of the cube [0, 1]Γ and let σ : Γ −→ P be
a map such that the quasi metric

f(x, y) = sup
γ∈Γ

hσ(γ)(|xγ − yγ |)

fragments K and such that σ(Γ) is a σ-bounded subset of NN. Then, K is Radon-
Nikodým compact. In addition, there exist sets Γn ⊂ Γ such that Γ =

⋃
n∈N Γn and

each dΓn
fragments K.

PROOF: There is a decomposition Γ =
⋃

n∈N Γn such that each σ(Γn) has a
bound τn in (NN,≤). We choose τn ∈ P. First, we prove that each dΓn

fragments
K. For every n ∈ N, K is fragmented by the map

fn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |) ≤ f(x, y)

and

fn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |) ≥ sup
γ∈Γn

hτn(|xγ − yγ |)

= hτn

(
sup

γ∈Γn

|xγ − yγ |
)

= hτn(dΓn(x, y)).

Hence, a set of fn-diameter less than 1
τn

in K is a set of dΓn -diameter less than
1
n and therefore, since fn fragments K, also dΓn fragments K.

Consider now pn : [0, 1]Γ −→ [0, 1]Γn the natural projection and Kn = pn(K).
By Lemma 12, since K is fragmented by fn, Kn is fragmented by

gn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |).

and hence, Kn is Radon-Nikodým compact. Moreover, since Γ =
⋃

n∈N Γn, K
embeds into the product

∏
n∈NKn and the class of Radon-Nikodým compacta is

closed under taking countable products and under taking closed subspaces [9], so
K is Radon-Nikodým compact. ¤

PROOF OF THEOREM 3: If the weight of K is less than b, then K can be
embedded into a cube [0, 1]Γ with |Γ| < b. Any subset of NN of cardinality less than
b is σ-bounded, so Theorem 3 follows directly from Theorem 10 and Lemma 13.¤

PROOF OF PROPOSITION 4: Let K be quasi Radon-Nikodým compact, sup-
pose K is embedded into some cube [0, 1]Γ and let σ : Γ −→ P be as in Theorem 10.
Let A ⊂ P be a cofinal subset of P of cardinality d. For α ∈ A, let

Γα = {γ ∈ Γ : σ(γ) ≤ α},
let pα : [0, 1]Γ −→ [0, 1]Γα be the natural projection, and let Kα = pα(K). Again,
since Γ =

⋃
α∈A Γα, K embeds into the product

∏
α∈A Kα. By Lemma 12, Kα is
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fragmented by
gα(x, y) = sup

γ∈Γα

hσ(γ)(|xγ − yγ |)

The set {σ(γ) : γ ∈ Γα} is a bounded, and hence σ-bounded, set. Hence, by
Lemma 13, Kα is Radon-Nikodým compact. ¤

We note that from Lemma 13, we obtain something stronger than Theorem 3:

Theorem 14. For every quasi Radon-Nikodým compact subset of a cube [0, 1]Γ with
|Γ| < b there is a countable decomposition Γ =

⋃
n∈N Γn such that dΓn fragments

K for all n ∈ N.

A similar result holds also for generalized Cantor cubes (cf. [5, Theorem 3], [2,
Theorem 3.6]): If K is a quasi Radon-Nikodým compact subset of {0, 1}Γ, then
there is a decomposition Γ =

⋃
n∈N Γn such that dΓn

fragments K for all n ∈ N.
We give now an example which shows that this phenomenon does not happen for
general cubes, even if the compact K has weight less than b or it is zero-dimensional:

Proposition 15. There exist a set Γ of cardinality b and a compact subset K of
[0, 1]Γ homeomorphic to the metrizable Cantor cube {0, 1}N such that for any de-
composition Γ =

⋃
n∈N Γn there exists n ∈ N such that dΓn does not fragment K.

PROOF: First, we take Γ a subset of NN of cardinality b which is not σ-bounded.
We call A = {γn : γ ∈ Γ, n ∈ N} the set of all terms of elements of Γ. We define

K ′ = {x ∈ {0, 1}Γ×N : xγ,n = xγ′,n′ whenever γn = γ′n′}.
Observe that K ′ is homeomorphic to {0, 1}N: namely, for each a ∈ A choose

some γa, na ∈ Γ × N such that γa
na = a; in this case we have a homeomorphism

K ′ −→ {0, 1}A given by x 7→ (xγa,na)a∈A.
Now, we consider the embedding φ : {0, 1}Γ×N −→ [0, 1]Γ given by

φ(x) =

(∑

n∈N

(
2
3

)n

xγ,n

)

γ∈Γ

We claim that the space K = φ(K ′) ⊂ [0, 1]Γ verifies the statement. Let Γ =⋃
n∈N Γn any countable decomposition of Γ. Since Γ is not σ-bounded, there is

some n ∈ N such that Γn is not bounded. For this fixed n, since Γn is not bounded,
there is some m ∈ N such that the set S = {γm : γ ∈ Γn} ⊂ A is infinite. We
consider

K0 = {x ∈ K ′ : xγ,k = 0 whenever γk 6∈ S} ⊂ K.

By the same arguments as for K ′, K0 is homeomorphic to the Cantor cube {0, 1}N
by a map K0 −→ {0, 1}S given by x 7→ (xγa,na)a∈S . Now, we take two different
elements x, y ∈ K0. Then, there must exist some γ ∈ Γn such that xγ,m 6= yγ,m,
and this implies that |φ(x)γ − φ(y)γ | ≥ 3−m and therefore dΓn(φ(x), φ(y)) ≥ 3−m.
This means that any nonempty subset of φ(K0) of dΓn -diameter less than 3−m must
be a singleton. If dΓn fragmented K, this would imply that φ(K0) has an isolated
point, which contradicts the fact that it is homeomorphic to {0, 1}N. ¤
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2. Banach spaces of low density character

In this section we find that cardinal b is the least possible density character of
Banach spaces which are counterexamples to several questions. First, we introduce
some notation: If A is a subset of a Banach space V , we call dA to the pseudo-
metric dA(x∗, y∗) = supx∈A |x∗(x) − y∗(x)| on BV ∗ . Also, we recall the following
definition [4, Definition 1.4.1]:

Definition 16. A nonempty bounded subset M of a Banach space V is called an
Asplund set if for each countable set A ⊂ M the pseudometric space (BV ∗ , dA) is
separable.

By [3, Theorem 2.1], M is an Asplund subset of V if and only if dM fragments
(BV ∗ , w

∗). Also, by [4, Theorem 1.4.4], a Banach space V is Asplund generated if
and only if it is the closed linear span of an Asplund subset.

PROOF OF THEOREM 5: Let Γ be a dense subset of the unit ball BV of V of
cardinality less than b. Then, we have a natural embedding (BV ∗ , w

∗) ⊂ [−1, 1]Γ.
Since (BV ∗ , w

∗) is quasi Radon-Nikodým compact, we apply Theorem 14 and we
have Γ =

⋃
Γn and each dΓn fragments (BV ∗ , w

∗). This means that for each n, Γn

is an Asplund set, and by [4, Lemma 1.4.3], M =
⋃

n∈N
1
nΓn is an Asplund set too.

Finally, since the closed linear span of M is V , by [4, Theorem 1.4.4], V is Asplund
generated. ¤

We recall now the concepts that we need for the proof of Theorem 8. We follow
the terminology and notation of [4, sections 3.1, 4.1]. Let X and Y be topological
spaces. A map φ : X → 2Y from X to the subsets of Y is said to be an usco if the
following conditions hold:

(1) φ(x) is a compact subset of Y for all x ∈ X.
(2) {x : φ(x) ⊂ U} is open in X, for every open set U of Y .

In this situation, for A ⊂ X we denote φ(A) =
⋃

x∈A φ(x).

A completely regular topological space X is said to be K-analytic if there exists
an usco φ : NN → 2X such that φ(NN) = X. A Banach space is weakly K-analytic
if it is a K-analytic space in its weak topology.

We note that if a Banach space V contains a weakly σ-compact subset M which
is dense in the weak topology, then V is WCG. This is because if M =

⋃∞
n=1 Kn

being Kn a weakly compact set bounded by cn > 0, then {0}∪⋃
1

ncn
Kn is a weakly

compact subset of V whose linear span is (weakly) dense in V . Hence, Theorem 8
is deduced from the following:

Proposition 17. If X is a K-analytic topological space which contains a dense
subset of cardinality less than b, then X contains a dense σ-compact subset.

PROOF: We have an usco φ : NN −→ 2X with φ(NN) = X and also a set Σ ⊂ NN
such that |Σ| < b and φ(Σ) is dense in X. Any subset of NN of cardinal less than
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b is contained in a σ-compact subset of NN [17, Theorem 9.1]. Uscos send compact
sets onto compact sets, so if Σ′ ⊃ Σ is σ-compact, then φ(Σ′) is a dense σ-compact
subset of X. ¤

We recall that a completely regular topological space X is K-countably deter-
mined if there exists a subset Σ of NN and an usco φ : Σ −→ 2X such that φ(Σ) = X
and that a Banach space is weakly countably determined if it is K-countably deter-
mined in its weak topology. Talagrand [16] has constructed a Banach space which
is weakly countably determined but which is not weakly K-analytic. A slight mod-
ification of this example gives a similar one with density character ω1. This shows
that no analogue of Theorem 8 is possible for weakly countably determined Banach
spaces. The change in the example consists in substituting the set T considered
in [16, p. 78] by any subset T ′ ⊂ T of cardinal ω1 such that {o(X) : X ∈ T ′} is
uncountable andA byA′ = {A ⊂ T ′ : A ∈ A1} (the notations are explained in [16]).

Now, we turn to the fact that cardinal b is best possible in Theorem 5, Theo-
rem 8 and their corollaries. We fix a subset S of NN of cardinality b which is not
σ-bounded.

Following the exposition of the example of Argyros in [4, section 1.6] we just sub-
stitute the space Y = span{πσ : σ ∈ NN} in [4, Theorem 1.6.3] by Y ′ = span{πσ :
σ ∈ S} and we obtain a Banach space of density character b which is a subspace
of a WCG space C(K) but which is not Asplund generated. The same arguments
in [4, section 1.6] hold just changing NN by S where necessary. Only the proof of [4,
Lemma 1.6.1] is not good for this case. It must be substituted by the following:

Lemma 18. Let Γn, n ∈ N, be any subsets of S such that
⋃

n∈N Γn = S. Then
there exist n, m ∈ N and an infinite set A ∈ Am such that A ⊂ Γn.

Here, as in [4, section 1.6], Am is the family of all subsets A ⊂ NN such that
if σ, τ ∈ A and σ 6= τ , then σi = τi if i ≤ m and σm+1 6= τm+1. Also, A =

⋃∞
m=1Am.

PROOF OF LEMMA 18: We consider Γi,j = {σ ∈ Γi : σ1 = j}, i, j ∈ N. Note
that S =

⋃
i,j Γi,j . Since S is not σ-bounded, there exist n, l with Γn,l unbounded.

This implies that for some m, the set {σm : σ ∈ Γn,l} is infinite. We take m the
least integer with this property (m > 1). Let B ⊂ Γn,l be an infinite set such that
σm 6= σ′m for σ, σ′ ∈ B, σ 6= σ′. Since all σk with σ ∈ B, k < m, lie in a finite set,
an infinite set A ⊂ B can be chose such that A ∈ Am−1. ¤

On the other hand, if we follow the proof in [4, section 4.3] that the Banach
space C(K) of Talagrand is weakly K-analytic but not WCG, and we change K
in [4, p. 76] by K ′ = {χA : A ∈ A, A ⊂ S} ⊂ {0, 1}S then C(K ′) still verifies this
conditions and has density character b. Observe that C(K ′) is weakly K-analytic
because K ′ is a retract of the original K. The fact that C(K ′) is not WCG (not
even a subspace of a WCG space) follows from [4, Theorem 4.3.2] and Lemma 18
above by the same arguments as in [4, p. 78].
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3. Countably lower fragmentable compacta

In this section we prove that the concept of quasi Radon Nikodým compact [2] is
equivalent to that of countably lower fragmentable compact [5]. The main result for
this class in [5] is that if K is countably lower fragmentable, then so is (BC(K)∗ , w

∗).
We note that, with these two facts at hand, together with the fact that if C(K)
is Asplund generated, then K is Radon-Nikodým [4, Theorem 1.5.4], Theorem 3 is
deduced from Theorem 5.

We need some notation: if K is a compact space and A ⊂ C(K) is a bounded set
of continuous functions over K, we define the pseudometric dA on K as dA(x, y) =
supf∈A |f(x) − f(y)|. If X is a topological space, d : X ×X −→ R is a map, and
∆ is a positive real number, it is said that d ∆-fragments X if for each subset L of
X there is a relative open subset U of L of d-diameter less than or equal to ∆.

Definition 19. A compact space K is said to be countably lower fragmentable if
there are bounded subsets {An,p : n, p ∈ N} of C(K) such that C(K) =

⋃
n∈NAn,p

for every p ∈ N, and the pseudometric dAn,p

1
p -fragments K.

This is the definition as it appears in [5]. However, variable p is superfluous in
it. If the sets An,1 exist, it is sufficient to define An,p = { 1

pf : f ∈ An,1}.

On the other hand, we recall a concept introduced by Namioka [9]: For a topo-
logical space K, a set L ⊂ K × K is said to be an almost neighborhood of the
diagonal if it contains the diagonal ∆K = {(x, x) : x ∈ K} and satisfies that for
every nonempty subset X of K there is a nonempty relative open subset U of X
such that U × U ⊂ L. The use of this was suggested to us by I. Namioka and
simplifies our original proof.

Theorem 20. For a compact subset K of [0, 1]Γ the following are equivalent:
(1) K is quasi Radon-Nikodým compact
(2) K is countably lower fragmentable.
(3) There are subsets Γn,p, n, p ∈ N, of Γ such that dΓn,p

1
p -fragments K for

every n, p ∈ N.

PROOF: Suppose K is quasi Radon-Nikodým compact and let φ be a lower
semicontinuous quasi metric which fragments K. Then, we just define

An,p =
{

f ∈ C(K) : |f(x)− f(y)| < 1
p

whenever φ(x, y) ≤ 1
n

}
∩ {f : ‖f‖∞ ≤ n}

Clearly, dAn,p

1
p -fragments K because any subset of K of φ-diameter less than 1

n

has dAn,p -diameter less than 1
p , and we know that φ fragments K. On the other

hand, for a fixed p ∈ N, in order to prove that C(K) =
⋃

n∈NAn,p, observe that, if
f ∈ C(K), then

Cn =
{

(x, y) ∈ K ×K : |f(x)− f(y)| ≥ 1
p

and φ(x, y) ≤ 1
n

}
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is a decreasing sequence of compact subsets of K ×K with empty intersection so
there is some n > ‖f‖∞ such that Cn is empty, and then, f ∈ An,p.

That (2) implies (3) is evident, just to take Γn,p = An,p ∩ Γ whenever An,p,
n, p ∈ N are the sets in the definition of countably lower fragmentability.

Now, suppose (3). For every n, p ∈ N, since dAn,p

1
p -fragments K, this means

that the set Cn,p = {(x, y) ∈ K ×K : dΓn,p
(x, y) ≤ 1

p} is an almost neighborhood
of the diagonal which, in addition, is closed. On the other hand, observe that, for
each n, p ∈ N, (x, y) ∈ Cn,p if and only if |xγ − yγ | ≤ 1

p for all γ ∈ Γn,p so that

⋂

n,p∈N
Cn,p =

⋂

p∈N

{
(x, y) : |xγ − yγ | ≤ 1

p
∀γ ∈

⋃

n∈N
Γn,p = Γ

}
= ∆K

Now, K is quasi Radon-Nikodým by virtue of [10, Theorem 1], which states that
K is quasi Radon-Nikodým compact if and only if there is a countable family of
closed almost neighborhoods of the diagonal whose intersection is the diagonal ∆K .
¤
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