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Abstract. The Bartle-Dunford-Schwartz integral for scalar func-

tions with respect to vector measures is characterized by means of

Riemann-type sums based on partitions of the domain into count-

ably many measurable sets. In this setting, two natural notions of

integrability (Birkhoff integrability and Kolmogoroff integrability)

turn out to be equivalent to Bartle-Dunford-Schwartz integrability.

1. Introduction

Bartle, Dunford and Schwartz [1] developed a theory of integration

of scalar functions with respect to vector measures in order to provide

an analogue of Riesz’s representation theorem for weakly compact op-

erators defined on a Banach space of continuous functions on a compact
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2 A. FERNÁNDEZ, F. MAYORAL, F. NARANJO, AND J. RODRÍGUEZ

Hausdorff space. Further studies on this notion of integrability were

carried out by Lewis [14,15] and Kluvanek and Knowles [12]. More re-

cently, the spaces of scalar functions integrable with respect to vector

measures have shown to play an important role within the theory of

Banach lattices, see e.g. [4], [5] and [9].

The original definition of the Bartle-Dunford-Schwartz integral is

based on approximation by simple functions, whereas Lewis’ approach

uses scalar measures through a barycentric formula. In this paper we

provide two characterizations of Bartle-Dunford-Schwartz integrability

involving Riemann-type sums based on partitions of the domain into

countably many measurable sets, with a Birkhoff integral flavour. The

notion of Birkhoff integrability for vector functions with respect to non-

negative finite measures was introduced in [2] and has attracted the

attention of several authors pretty recently, being an important notion

in vector integration, see e.g. [3, 11] and [17, 19]. The difficulties of

adapting Birkhoff’s approach to the case of scalar functions and vector

measures were already pointed out by Lewis in [15, p. 307].

We relate the Bartle-Dunford-Schwartz integral and the S∗-integral.

This notion of integral has its origins in Kolmogoroff’s approach to

integration theory [13, 21] and was intensively studied by Dobrakov

[7] in the more general case of vector functions and operator-valued



BIRKHOFF INTEGRABILITY AND VECTOR MEASURES 3

vector measures, nowadays known as the Dobrakov integral. Further

research on the S∗-integral has been done recently in [18,20]. We stress

that no measurability assumption is needed to define the notion of S∗-

integrability.

Our main results state that a scalar function is Bartle-Dunford-

Schwartz integrable (with respect to a vector measure m) if and only

if it is S∗-integrable (see Theorem 13), which in turn is also equivalent

to saying that f is measurable and there is a partition of the domain

into countably many measurable sets such that, for every finer (count-

able) partition {An}n and any choice of points ωn ∈ An, the series∑
n f(ωn)m(An) is unconditionally convergent (see Theorem 9).

Notation and terminology. Our standard reference on vector mea-

sures and integration is [6]. Throughout this paper m : Σ −→ X will

be a countably additive vector measure defined on a σ-algebra Σ on a

non-empty set Ω with values in a real Banach space X. We denote by

‖ · ‖ the norm of X if it is needed explicitly. We denote by X ′ the dual

of X and by B(X ′) the closed unit ball of X ′. The semivariation of m

is the (monotone) set function defined by

‖m‖ (A) := sup {|〈m,x′〉| (A) : x′ ∈ B(X ′)} , A ∈ Σ,
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where |〈m, x′〉| is the total variation measure of the scalar measure

〈m,x′〉 given by 〈m, x′〉 (A) := 〈m(A), x′〉 , for all A ∈ Σ. It is well-

known that ‖m‖(Ω) < ∞, since m is strongly additive, cf. [6], Propo-

sition 11 on p. 4 and Corollary 19 on p. 9. A control measure of m is a

non-negative finite measure µ on Σ such that ‖m‖(A) = 0 if and only

if µ(A) = 0. It is a classical result of Bartle, Dunford and Schwartz [1]

that a control measure always exists. Moreover, Rybakov proved (see

[6, Theorem 2, p. 268]) that a control measure µ of m can be taken

of the form µ = |〈m,x′〉| for some x′ ∈ B(X ′). Such control measures

are called Rybakov control measures. We will need Rybakov control

measures in order to show that S∗-integrability implies measurability

(see Proposition 12).

Recall that a Σ-measurable function f : Ω −→ R is called Bartle-

Dunford-Schwartz integrable (with respect to m) if:

(1) f is integrable with respect to |〈m, x′〉| for all x′ ∈ X ′; and

(2) for each A ∈ Σ there exists a vector

∫
A

fdm ∈ X (necessarily

unique and called the integral of f over A) such that

〈∫
A

fdm, x′
〉

=

∫
A

fd 〈m, x′〉

for all x′ ∈ X ′.
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We use here this equivalent definition of Bartle-Dunford-Schwartz inte-

grability obtained by Lewis in [14, Theorem 2.4] (cf. [1, Definition 2.5]).

2. The results

We denote by P(Ω) the set of all countable partitions of Ω in Σ. We

say that A ∈ P(Ω) is finer than B ∈ P(Ω) (and we write A � B for

short) if each A ∈ A is a subset of some B ∈ B. Given a function

f : Ω −→ R, denote also by P(Ω, f) the set of all A := {An}n ∈ P(Ω)

such that the series
∑

n f(ωn)m(An) converges unconditionally in X

for every choice of points (ωn)n ∈
∏

n An.

As we mentioned in the introduction we will use quite simple tech-

niques involving countable partitions as a tool in proving results about

integrability of scalar functions with respect to vector measures. This

approach goes back to the pioneering papers by Frechet [10], Kolmogo-

roff [13,21] and Birkhoff [2].

Following [7, Definition 1] in the particular case of scalar functions,

we have:

Definition 1. A function f : Ω −→ R is called S∗-integrable (with

respect to m), with integral s∗
∫

Ω

fdm ∈ X, if for every ε > 0 there is
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A0 ∈ P(Ω) such that A = {An}n ∈ P(Ω, f) for every A � A0, and

∥∥∥∥∥
∞∑

n=1

f(ωn)m(An)− s∗
∫

Ω

fdm

∥∥∥∥∥ ≤ ε

for every choice of points (ωn)n ∈
∏

n An.

Note that the vector s∗
∫

Ω

fdm in the above definition is necessarily

unique.

The notion of S∗-integrability becomes the analogue of Birkhoff in-

tegrability in our setting, that is, scalar functions and vector measures

(cf. [3, Proposition 2.6]). Lewis [15, p. 307] already noted that the

original definition of Birkhoff (for vector functions and non-negative

finite measures) does not work properly in our setting: for instance, it

may happen that B ∈ P(Ω, f) but A 6∈ P(Ω, f) for some A � B, as the

following simple example shows.

Example 2. Let λ be the Lebesgue measure defined on the σ-algebra

M of all Lebesgue measurable subsets of the interval [0, 1]. Define the

vector measure

m : M −→ R, m(E) := λ

(
E ∩

[
0,

1

2

])
− λ

(
E ∩

[
1

2
, 1

])
.

Any function f : [0, 1] −→ R satisfies f(ω) m([0, 1]) = 0, for all ω ∈

[0, 1], and so the trivial partition {[0, 1]} belongs to P([0, 1], f). For a
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particular function f it is easy to construct partitions A ∈ P ([0, 1])

such that A 6∈ P ([0, 1] , f) .

In order to compare the Bartle-Dunford-Schwartz integral with the

S∗-integral it is convenient to use the following concept, which is some-

how an adaptation of the notion of Birkhoff integrability to our context

of scalar functions and vector measures (cf. [3, Lemma 3.2.(iii)]).

Definition 3. We say that a Σ-measurable function f : Ω −→ R is

B-integrable (with respect to m) if there exists A0 ∈ P(Ω) such that

A ∈ P(Ω, f) for every A � A0.

The following lemma about scalar absolutely convergent series is

well-known and will be used in the proof of Lemma 5.

Lemma 4. Let (αn)n be a sequence of real numbers such that the series∑
n αn is absolutely convergent. Let {Jk}k ∈ P(N) and denote by βk

the sum βk :=
∑
n∈Jk

αn. Then the series
∑

k βk is absolutely convergent

and
∞∑

n=1

αn =
∞∑

k=1

βk.

Given a function f : Ω −→ R and A ⊂ Ω, we write

osc(f, A) := sup {|f(ω)− f(ς)| : ω, ς ∈ A} .
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Lemma 5. Let f : Ω −→ R be a function and let A = {An}n and

B = {Bk}k be two partitions in P(Ω, f) such that A � B. Suppose

osc(f, Bk) ≤ K for every k = 1, 2, ... Then∥∥∥∥∥
∞∑

n=1

f(ωn)m(An)−
∞∑

k=1

f(ςk)m(Bk)

∥∥∥∥∥ ≤ K‖m‖(Ω)

for all choices (ωn)n ∈
∏

n An and (ςk)k ∈
∏

k Bk.

Proof. Since A � B, each set An is a subset of a unique set Bk and

we can write Bk =
⋃

n∈Jk

An, where Jk := {n ∈ N : An ⊆ Bk} for all

k = 1, 2, . . . For each n ∈ N we denote by k(n) the unique k ∈ N such

that An ⊆ Bk. Take two sequences (ωn)n ∈
∏

n An and (ςk)k ∈
∏

k Bk.

Note that ωn ∈ An ⊆ Bk(n) for all n = 1, 2, . . . Note also that k(n) = k

for all n ∈ Jk. Since m(Bk) =
∑
n∈Jk

m(An), we have

∞∑
k=1

f(ςk)m(Bk) =
∞∑

k=1

f(ςk)

(∑
n∈Jk

m(An)

)

=
∞∑

k=1

(∑
n∈Jk

f(ςk(n))m(An)

)
.(1)

Let us show that the series
∑

n f(ςk(n))m(An) is unconditionally con-

vergent. Each of its terms f(ςk(n))m(An) can be written as

f(ςk(n))m(An) =
(
f(ςk(n))− f(ωn) + f(ωn)

)
m(An)

=
(
f(ςk(n))− f(ωn)

)
m(An) + f(ωn)m(An).



BIRKHOFF INTEGRABILITY AND VECTOR MEASURES 9

On the one hand, the series
∑

n

(
f(ςk(n))− f(ωn)

)
m(An) converges

unconditionally in X, since
∑

n m(An) does and

∣∣f(ςk(n))− f(ωn)
∣∣ ≤ osc(f, Bk(n)) ≤ K, n = 1, 2, . . .

because both ςk(n), ωn ∈ Bk(n) for all n = 1, 2, . . . On the other hand,∑
n f(ωn)m(An) converges unconditionally too, because we have chosen

A ∈ P(Ω, f). Therefore, the series
∑

n f(ςk(n))m(An) is unconditionally

convergent as well. Moreover, we have

(2)
∞∑

n=1

f(ςk(n))m(An) =
∞∑

k=1

f(ςk)m(Bk)

because, for every x′ ∈ X ′, Lemma 4 together with (1) yield

〈
∞∑

n=1

f(ςk(n))m(An), x′

〉
=

∞∑
n=1

f(ςk(n)) 〈m(An), x′〉

=
∞∑

k=1

(∑
n∈Jk

f(ςk(n))〈m(An), x′〉

)

=
∞∑

k=1

f(ςk) 〈m(Bk), x
′〉

=

〈
∞∑

k=1

f(ςk)m(Bk), x
′

〉
.
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Now, for every x′ ∈ B(X ′) we obtain from (2)∣∣∣∣∣
〈

∞∑
n=1

f(ωn)m(An)−
∞∑

k=1

f(ςk)m(Bk), x
′

〉∣∣∣∣∣
=

∣∣∣∣∣
〈

∞∑
n=1

f(ωn)m(An)−
∞∑

n=1

f(ςk(n))m(An), x′

〉∣∣∣∣∣
≤

∞∑
n=1

∣∣f(ωn)− f(ςk(n))
∣∣ |〈m, x′〉| (An)

≤ K ‖m‖ (Ω) ,

and we conclude that∥∥∥∥∥
∞∑

n=1

f(ωn)m(An)−
∞∑

k=1

f(ςk)m(Bk)

∥∥∥∥∥ ≤ K‖m‖(Ω).

�

Theorem 6. Let f : Ω −→ R be a B-integrable function. Then f is

S∗-integrable. Moreover, if for some A = {An}n ∈ P(Ω, f) we have

osc(f, An) ≤ K for every n = 1, 2, . . . , then

(3)

∥∥∥∥∥
∞∑

n=1

f(ωn)m(An)− s∗
∫

Ω

fdm

∥∥∥∥∥ ≤ K‖m‖(Ω)

for every choice (ωn)n ∈
∏

n An.

Proof. Let us consider a sequence (εn)n of positive real numbers de-

creasing to zero. For ε1 > 0 we take a partition I1 := {I1
k}k of R into

countably many intervals with length(I1
k) ≤ ε1. Since 0 < ε2 < ε1 we

can refine the former partition I1 in order to obtain a new partition
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I2 := {I2
k}k of R into countably many intervals with length(I2

k) ≤ ε2.

In this way we can obtain a sequence (In)n, with In := {In
k }k , of parti-

tions of R into countably many intervals with length(In
k ) ≤ εn in such

a way that I1 � · · · � In � · · · Now, since f is Σ-measurable, we have

Bn
k := f−1(In

k ) ∈ Σ for all k, n = 1, 2, . . . and we obtain a sequence

(Bn)n in P(Ω), just taking Bn := {Bn
k }k , such that B1 � · · · � Bn �

· · · and osc(f, Bn
k ) ≤ εn for all k, n = 1, 2, . . . Moreover, since f is

B-integrable, we can assume that A ∈ P(Ω, f) for all A � B1.

For each n = 1, 2 . . . , we consider a fixed choice of points (ωn
k )k ∈∏

k Bn
k , and the sum xn :=

∞∑
k=1

f(ωn
k )m(Bn

k ) of the associated uncondi-

tionally convergent series.

Step 1. The sequence (xn)n is a Cauchy sequence (converges) in X. In

fact, if we apply Lemma 5 to two arbitrary partitions Bp and Bq, with

p, q ≥ 1, we obtain that ‖xp − xq‖ ≤ εmin{p,q} ‖m‖ (Ω). Set x := lim
n→∞

xn

and note that

(4) ‖xp − x‖ ≤ εp ‖m‖ (Ω), p = 1, 2, . . .

Step 2. f is S∗-integrable with integral x. For a given ε > 0, fix n0 ∈ N

such that εn0‖m‖(Ω) <
ε

2
and consider the partition Bn0 . Then, if

A = {An}n � Bn0 and (ωn)n ∈
∏

n An, then the series
∑

n f (ωn) m(An)

is unconditionally convergent since A � Bn0 � B1. Moreover, its sum
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satisfies∥∥∥∥∥
∞∑

n=1

f (ωn) m(An)− x

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑

n=1

f (ωn) m(An)− xn0

∥∥∥∥∥+ ‖xn0 − x‖

≤ 2εn0 ‖m‖ (Ω) < ε,

which follows from inequality (4) and Lemma 5 applied to the partitions

A and Bn0 .

The moreover of the statement of the theorem follows from Lemma 5

in a similar way. �

It is known that any bounded Σ-measurable function g : Ω −→ R

is Bartle-Dunford-Schwartz integrable, see [14, p. 161]. The following

lemma establishes that such a function is also S∗-integrable.

Lemma 7. Let g : Ω −→ R be a bounded Σ-measurable function. Then

g is B-integrable and its S∗-integral coincides with its Bartle-Dunford-

Schwartz integral.

Proof. For every {Cn}n ∈ P(Ω), since the series
∑

n m(Cn) is uncon-

ditionally convergent, the boundedness of g ensures that the series∑
n g(ωn)m(Cn) is unconditionally convergent for every choice of points

(ωn)n ∈
∏

n Cn. This shows that g is B-integrable.

Now, in order to check the equality of the integrals it suffices to prove

that for each x′ ∈ X ′ the equality

〈
s∗
∫

Ω

gdm, x′
〉

=

∫
Ω

gd 〈m, x′〉 holds
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true. For a given ε > 0 we consider a partition {Cn}n ∈ P(Ω) such that

osc(g, Cn) <
ε

2‖m‖(Ω)
for every n = 1, 2, . . . , and a choice of points

(ωn)n ∈
∏

n Cn. Then for every x′ ∈ B(X ′) we have

∣∣∣∣〈s∗
∫

Ω

gdm, x′
〉
−
∫

Ω

gd 〈m,x′〉
∣∣∣∣

≤

∣∣∣∣∣
〈

s∗
∫

Ω

gdm−
∞∑

n=1

g(ωn)m(Cn), x′

〉∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=1

(
g(ωn) 〈m(Cn), x′〉 −

∫
Cn

gd 〈m, x′〉
)∣∣∣∣∣

≤

∥∥∥∥∥s∗
∫

Ω

gdm−
∞∑

n=1

g(ωn)m(Cn)

∥∥∥∥∥+
∞∑

n=1

∫
Cn

|g(ωn)− g| d |〈m, x′〉|

≤ ε

2
+

ε

2
= ε.

To estimate

∥∥∥∥∥s∗
∫

Ω

gdm−
∞∑

n=1

g(ωn)m(Cn)

∥∥∥∥∥ we have used the inequality

(3) of Theorem 6. As ε > 0 is arbitrary, we get

〈
s∗
∫

Ω

gdm, x′
〉

=

∫
Ω

gd 〈m,x′〉 .

�

Lemma 8. Let g : Ω −→ R be a function of the form g :=
∞∑

n=1

αnχAn
,

where (αn)n is a sequence of real numbers and {An}n ∈ P(Ω). The

following statements are equivalent:

(a) g is Bartle-Dunford-Schwartz integrable;

(b) g is B-integrable;
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(c) g is S∗-integrable;

(d) the series
∑

n αnm(Bn) is unconditionally convergent for each

sequence of measurable sets (Bn)n such that Bn ⊂ An for every

n = 1, 2, . . .

In this case, the S∗-integral of g coincides with its Bartle-Dunford-

Schwartz integral.

Proof. (a) =⇒ (b) Let us consider {Ck}k ∈ P(Ω) finer than {An}n .

Thus g is constant on each set Ck, and then, for each choice of points

(ωk)k ∈
∏

k Ck, the series

∑
k

g(ωk)m(Ck) =
∑

k

∫
Ck

gdm

is unconditionally convergent in X, see [14, Theorem 2.2].

(b) =⇒ (c) Follows from Theorem 6.

(c) =⇒ (d) We can find {Ck}k ∈ P(Ω, g) finer than {Bn, An r Bn}n .

Fix (ωk)k ∈
∏

k Ck. Since
∑

k g(ωk)m(Ck) is unconditionally conver-

gent, the same holds for its subseries
∑

ωk∈B g(ωk)m(Ck), where B :=
∞⋃

n=1

Bn. It is clear that
∑

n αnm(Bn) is obtained from
∑

ωk∈B g(ωk)m(Ck)

by introducing parentheses, and so it is unconditionally convergent too.

(d) =⇒ (a) The sequence (gn)n of simple functions gn :=
n∑

k=1

αkχAk

converges to g pointwise. In order to prove that g is Bartle-Dunford-

Schwartz integrable we only need to check that, for each E ∈ Σ, the
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sequence (∫
E

gndm

)
n

=

(
n∑

k=1

αkm(Ak ∩ E)

)
n

converges in X, see [14, Theorem 2.4]. For this, it is enough to take

Bn := An∩E in (d). In fact, [14, Theorem 2.4] also yields the equality

∫
Ω

gdm =
∞∑

n=1

αnm(An).

Finally, it is not difficult to check that the S∗-integral of g is neces-

sarily
∞∑

n=1

αnm(An). Indeed, from the implication (a) =⇒ (b) we know

that C = {Ck}k ∈ P(Ω, g) for every C � A = {An}n . Moreover, since

osc(g, An) = 0 for every n = 1, 2, . . . , Lemma 5 tells us that, for every

choice (ωk)k ∈
∏

k Ck, we have

∞∑
k=1

g(ωk)m(Ck) =
∞∑

n=1

αnm(An).

Then it is clear from the definition that s∗
∫

Ω

gdm =
∞∑

n=1

αnm(An), and

the proof is over. �

We arrive at our first Birkhoff-type characterization of Bartle-Dun-

ford-Schwartz integrability. Both notions of integrability deal with Σ-

measurable functions.
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Theorem 9. Let f : Ω −→ R be a function. Then f is B-integrable if

and only if it is Bartle-Dunford-Schwartz integrable. In this case

s∗
∫

A

fdm =

∫
A

fdm, A ∈ Σ.

Proof. The Σ-measurability of f allows us to write f = g + h, where

g :=
∞∑

n=1

αnχAn
for some sequence of real numbers (αn)n and some

{An}n ∈ P(Ω), and h is Σ-measurable and bounded. The result now

follows from Lemmas 7 and 8. �

The following folk characterization of measurability will be used in

the proof of Lemma 11. Recall that a function f : Ω −→ R is said to

be µ-measurable, µ being a non-negative measure on (Ω, Σ) , if there

exist a sequence of simple functions (ϕn)n and a µ-null set N such that

limn→∞ ϕn(ω) = f(ω) for all ω 6∈ N.

Lemma 10. Suppose µ is a non-negative finite measure on (Ω, Σ) . Let

f : Ω −→ R be a function. The following conditions are equivalent:

(i) f is µ-measurable.

(ii) For each ε > 0 and each E ∈ Σ with µ(E) > 0 there is B ⊂ E,

B ∈ Σ with µ(B) > 0, such that osc(f, B) ≤ ε.

It is a well-known fact that every Σ-measurable function is µ-measu-

rable, and for every µ-measurable function f there exists a Σ-measurable
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function g such that f = g µ-a.e. If the measure space (Ω, Σ, µ) is com-

plete, both notions of measurability coincide.

The following lemma goes back to Fréchet [10] and, naturally, it is

part of the proof that S∗-integrability is equivalent to Lebesgue in-

tegrability when m is a non-negative finite measure. We include the

proof here for the sake of completeness.

Lemma 11. Suppose µ is a non-negative finite measure on (Ω, Σ) . Let

f : Ω −→ R be an S∗-integrable function (with respect to µ). Then f

is µ-measurable.

Proof. We will apply the criterion of Lemma 10. Fix ε > 0 and E ∈ Σ

with µ(E) > 0. Since f is S∗-integrable with respect to µ, there is

{An}n ∈ P(Ω, f) such that

∣∣∣∣∣
∞∑

n=1

f(ωn)µ(An)−
∞∑

n=1

f(ςn)µ(An)

∣∣∣∣∣ ≤ εµ(E)

2

whenever (ωn)n and (ςn)n are in
∏

n An, or equivalently

(5)
∞∑

n=1

|f(ωn)− f(ςn)|µ(An) ≤ εµ(E)

2

whenever (ωn)n and (ςn)n are in
∏

n An. Take N ∈ N such that

N∑
n=1

µ(An ∩ E) >
µ(E)

2
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and define I := {1 ≤ n ≤ N : µ(An ∩ E) > 0} . We claim that there is

n ∈ I for which osc(f, An∩E) ≤ ε. Indeed, suppose not. Then for each

n ∈ I we can take ωn, ςn ∈ An ∩E such that f (ωn)− f (ςn) > ε, hence

εµ(E)

2
<
∑
n∈I

(f(ωn)− f(ςn)) µ(An ∩ E) ≤
∑
n∈I

(f(ωn)− f(ςn)) µ(An),

which contradicts inequality (5) and finishes the proof. �

Proposition 12. Let f : Ω −→ R be an S∗-integrable function (with

respect to m). Then f is µ-measurable with respect to any control

measure µ of m.

Proof. Obviously, it is enough to prove that f is µ-measurable, where

µ is any Rybakov control measure of m, that is, a control measure of

the form µ := |〈m,x′0〉| for some x′0 ∈ B(X ′). By Hahn’s decomposition

theorem, there is H ∈ Σ such that

〈m, x′0〉 (A) ≥ 0 for all A ∈ Σ, A ⊂ H, and

〈m, x′0〉 (B) ≤ 0 for all B ∈ Σ, B ⊂ Ω \H.

The function f |H is S∗-integrable with respect to the restriction of

m to the σ-algebra ΣH := {C ∩H : C ∈ Σ} on H and, therefore, it

is also S∗-integrable with respect to the non-negative finite measure
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µ+, defined as the restriction of 〈m, x′0〉 to ΣH . Therefore, f |H is µ+-

measurable (Lemma 11). A similar argument shows that f |Ω\H is µ−-

measurable, where µ− is the non-negative finite measure defined as the

restriction of −〈m, x′0〉 to the σ-algebra ΣΩ\H := {C \H : C ∈ Σ} . It

follows that f is µ-measurable and the proof is over. �

We are now able to prove the equivalence of S∗-integrability and

Bartle-Dunford-Schwartz integrability. The if part of the following the-

orem can bee seen as a particular case of a result of Dobrakov [7] saying

that a measurable vector function is S∗–integrable with respect to an

operator-valued vector measure if and only if it is Dobrakov integrable.

Recall that Dobrakov and Bartle-Dunford-Schwartz integrability coin-

cide for scalar functions and vector measures, see the papers by Do-

brakov and Panchapagesan [8] and Panchapagesan [16].

Theorem 13. Let f : Ω −→ R be a function. Then f is S∗-integrable

if and only if it coincides ‖m‖-a.e. with a Bartle-Dunford-Schwartz

integrable function. If, in addition, m is complete (i.e. any / every

control measure of m is complete), then f is S∗-integrable if and only

if it is Bartle-Dunford-Schwartz integrable.

Proof. The if part follows from Theorems 6 and 9. The only if part is

a consequence of Proposition 12 and Theorem 9. �
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[17] J. Rodŕıguez, On the existence of Pettis integrable functions which are not

Birkhoff integrable, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1157–1163 (elec-

tronic). MR 2117218 (2005k:28021)
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