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Abstract. We study the validity of Vitali’s convergence theorem for the

Birkhoff integral of functions taking values in a Banach space X. On the
one hand, we show that the theorem is true whenever X is isomorphic to a

subspace of `∞(N). On the other hand, we prove that if X is super-reflexive

and has density character the continuum, then there is a uniformly bounded
sequence of Birkhoff integrable X-valued functions (defined on [0, 1] with the

Lebesgue measure) converging pointwise to a non Birkhoff integrable function.

1. Introduction

The Lebesgue integral admits different extensions to the case of functions with
values in Banach spaces. In this framework the Bochner and Pettis integrals have
been widely studied by many authors over the years, see [4] and [14, 15, 23], re-
spectively. The Birkhoff integral [1] (see below for the definition) is an intermediate
notion that had hardly been analyzed until the last years. In several recent papers
it is shown that this integral plays a relevant role in the setting of vector integration,
see [2], [6], [12], [13], [18], [19], [20] and [22].

It is well known that for the Bochner and Pettis integrals there are “good”
convergence theorems (for norm and weak convergence, respectively) along the line
of the classical Vitali’s theorem, cf. [4] and [14, 15]. However, in general this is
not the case for the Birkhoff integral: in [19] we present an example of a uniformly
bounded sequence of Birkhoff integrable functions fn : [0, 1] −→ c0(c) converging
pointwise to a non Birkhoff integrable function (where c stands for the cardinality of
the continuum). Notice that such an example can not be constructed in a separable
Banach space, since in that case Birkhoff and Pettis integrability are equivalent (and
coincide with Bochner integrability for bounded functions), see [16].

The aim of this paper is to discuss the validity of Vitali’s convergence theorem for
the Birkhoff integral in some special classes of Banach spaces. Our main “positive”
result is the following theorem that applies to subspaces of `∞(N). It is worth
to mention here that within this class of spaces Birkhoff integrability lies strictly
between Bochner and Pettis integrability, see [1] and [8].

Theorem 1.1. Let (Ω,Σ, µ) be a complete probability space and X a Banach space
isomorphic to a subspace of `∞(N). Let fn : Ω −→ X be a sequence of Birkhoff
integrable functions and f : Ω −→ X a function such that:

(i) limn fn(t) = f(t) weakly (resp. in norm) for every t ∈ Ω.
(ii) The family {x∗ ◦ fn : n ∈ N, x∗ ∈ BX∗} is uniformly integrable.

2000 Mathematics Subject Classification. Primary: 28B05, 46G10; Secondary: 46B20, 46B26.
Key words and phrases. Birkhoff integral; Vitali’s convergence theorem; super-reflexive Banach

space; projectional resolution of the identity.
This research was partially supported by MEC (Spain), project MTM2005-08379, and Fun-
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Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A

fn dµ −→
∫
A

f dµ weakly (resp. in norm).

On the other hand, we use ideas from our previous work [19] and a paper by
L. Di Piazza and D. Preiss [3] to prove the following “negative” result.

Theorem 1.2. Let X be a super-reflexive Banach space with density character c.
Then there is a uniformly bounded sequence fn : [0, 1] −→ X of Birkhoff integrable
functions converging pointwise (in norm) to a function f : [0, 1] −→ X that is not
Birkhoff integrable.

Recall that the density character of a topological space S, denoted by dens(S),
is the minimal cardinality of a dense subset of S.

Throughout this paper we consider the unit interval [0, 1] endowed with the
Lebesgue measure λ on the σ-algebra of all Lebesgue measurable subsets.

Our standard reference about Banach spaces is [5]. All the Banach spaces X
considered in this work are real. If the norm of X is needed explicitly, we denote it
by ‖·‖. We write X∗ to denote the dual of X and BX∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}. For
our purposes, super-reflexivity of X may be defined as existence of an equivalent
uniformly convex norm on X. Recall that a norm ‖ · ‖ on X is called uniformly
convex if for every ε > 0 there is δ > 0 such that ‖x − y‖ ≤ ε for every x, y ∈ X,
‖x‖ ≤ 1, ‖y‖ ≤ 1, with ‖x+y2 ‖ ≥ 1− δ. Standard examples of super-reflexive spaces
are the Hilbert spaces and, more generally, the Lp spaces of non negative measures,
where 1 < p <∞. For more information on super-reflexive Banach spaces we refer
the reader to [5, Chapter 9] and the references therein.

Our standard references about vector integration and vector measures are [4]
and [23]. Let (Ω,Σ, µ) be an arbitrary complete probability space. A function
f : Ω −→ X is Birkhoff integrable, with integral

∫
Ω
f dµ ∈ X, if for every ε > 0

there is a partition of Ω into countably many measurable sets A1, A2, . . . such that
‖

∑
n µ(An)f(tn) −

∫
Ω
f dµ‖ ≤ ε for every choice of points tn ∈ An, the series

involved being unconditionally convergent. Notice that the last requirement holds
true automatically if f is bounded. The notion of Birkhoff integrability does not
change if we consider another equivalent norm on X.

Recall also that a family H of real-valued integrable functions defined on Ω is
uniformly integrable if suph∈H

∫
Ω
|h| dµ < ∞ and, for each ε > 0, there is δ > 0

such that suph∈H
∫
A
|h| dµ ≤ ε for every A ∈ Σ satisfying µ(A) ≤ δ.

2. Proof of Theorem 1.1

Throughout this section (Ω,Σ, µ) is a complete probability space and X is a
Banach space. In order to prove Theorem 1.1 we will use the relationship between
Birkhoff integrability and the so-called Bourgain property of a family of real-valued
functions (see [2] and [18]). Recall that a family H ⊂ RΩ has the Bourgain prop-
erty [17] if for each ε > 0 and eachA ∈ Σ with µ(A) > 0, there existA1, . . . , An ⊂ A,
Ai ∈ Σ with µ(Ai) > 0, such that min1≤i≤n osc(h|Ai

) ≤ ε for every h ∈ H, where
we write osc(h|B) = sup{|h(t)−h(t′)| : t, t′ ∈ B}. In [2], together with B. Cascales,
we have proved the following characterization.

Fact 2.1. A function f : Ω −→ X is Birkhoff integrable if and only if the family

Zf = {x∗ ◦ f : x∗ ∈ BX∗} ⊂ RΩ

is uniformly integrable and has the Bourgain property.

Therefore, for our purposes it is sufficient to study the stability of uniform inte-
grability and Bourgain property under limit operations.
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Lemma 2.2. Let fn : Ω −→ X be a sequence of functions and f : Ω −→ X a
function such that:

(i) limn fn(t) = f(t) weakly for every t ∈ Ω.
(ii) The family

⋃
n∈N Zfn is uniformly integrable.

Then Zf is uniformly integrable.

Proof. Fix ε > 0. By the uniform integrability of
⋃
n∈N Zfn

, we have
(a) M = supx∗∈BX∗ supn∈N

∫
Ω
|x∗ ◦ fn| dµ <∞.

(b) There exists δ > 0 such that supx∗∈BX∗ supn∈N
∫
A
|x∗ ◦fn| dµ ≤ ε for every

A ∈ Σ satisfying µ(A) ≤ δ.
For each x∗ ∈ BX∗ , the classical Vitali’s convergence theorem (see e.g. [11, p. 203])
applied to the uniformly integrable sequence (x∗ ◦ fn) ensures that its pointwise
limit x∗ ◦ f is integrable and that

(1) lim
n

∫
Ω

|x∗ ◦ fn − x∗ ◦ f | dµ = 0.

In view of (a), (b) and (1) we conclude that supx∗∈BX∗

∫
Ω
|x∗ ◦f | dµ ≤M <∞ and

that supx∗∈BX∗

∫
A
|x∗ ◦ f | dµ ≤ ε whenever µ(A) ≤ δ. It follows that the family

Zf is uniformly integrable. �

Suppose that BX∗ has a countable weak∗-dense subset D. Given a function
f : Ω −→ X, we can write ‖f(t)‖ = sup{|(x∗ ◦ f)(t)| : x∗ ∈ D} for every t ∈ Ω. It
follows that if f is scalarly measurable (i.e. x∗ ◦f is measurable for every x∗ ∈ X∗),
then the real-valued mapping t 7→ ‖f(t)‖ is measurable. This easy observation will
be used in the proofs of the next lemma and Theorem 1.1.

Lemma 2.3. Suppose that X is isomorphic to a subspace of `∞(N). Let fn : Ω −→
X be a sequence of functions and f : Ω −→ X a function such that:

(i) limn fn(t) = f(t) weakly for every t ∈ Ω.
(ii) For each n ∈ N the family Zfn

has the Bourgain property.
Then Zf has the Bourgain property.

Proof. Clearly, we can assume without loss of generality that X is isometric to a
subspace of `∞(N), that is, BX∗ is weak∗-separable.

Fix A ∈ Σ with µ(A) > 0 and ε > 0. Let us consider the countable set

I = {(q1, . . . , qp) ∈ ([0, 1] ∩Q)p :
p∑
i=1

qi = 1, p ∈ N}.

Given (q1, . . . , qp) ∈ I, we define

E(q1, . . . , qp) =
{
t ∈ Ω :

∥∥∥ p∑
i=1

qifi(t)− f(t)
∥∥∥ ≤ ε

}
.

Notice that the X-valued function t 7→
∑p
i=1 qifi(t) − f(t) is scalarly measurable

(bear in mind that every family with the Bourgain property is made up of mea-
surable functions, see e.g. [17, Theorem 11]). Since BX∗ is weak∗-separable, the
comments preceding this lemma say that E(q1, . . . , qp) ∈ Σ.

By (i), for every t ∈ Ω we have

f(t) ∈ {fn(t) : n ∈ N}
weak

⊂ co({fn(t) : n ∈ N})
norm

and therefore
Ω =

⋃
{E(q1, . . . , qp) : (q1, . . . , qp) ∈ I}.

This equality and the fact that µ(A) > 0 ensure us that there is (q1, . . . , qp) ∈ I
such that µ(A ∩ E(q1, . . . , qp)) > 0. Define g : Ω −→ X by g(t) =

∑p
i=1 qifi(t).
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It is clear that Zg has the Bourgain property. Hence we can find finitely many
measurable sets with positive measure A1, . . . , Ak ⊂ A ∩ E(q1, . . . , qp) such that
min1≤i≤k osc(x∗ ◦ g|Ai) ≤ ε for every x∗ ∈ BX∗ . Since ‖g(t) − f(t)‖ ≤ ε for every
t ∈ Ai and every 1 ≤ i ≤ k, we infer that min1≤i≤k osc(x∗ ◦ f |Ai) ≤ 3ε for every
x∗ ∈ BX∗ . It follows that Zf has the Bourgain property and the proof is over. �

Proof of Theorem 1.1. The Birkhoff integrability of f follows directly from Fact 2.1
and Lemmas 2.2 and 2.3. The proof of the convergence of the integrals is standard
and we include it for the sake of completeness. We distinguish two cases.

Case 1.- Assume that limn fn(t) = f(t) weakly for every t ∈ Ω. Then, for each
A ∈ Σ, equation (1) yields

lim
n
x∗

(∫
A

fn dµ
)

= lim
n

∫
A

x∗ ◦ fn dµ =
∫
A

x∗ ◦ f dµ = x∗
(∫

A

f dµ
)

for every x∗ ∈ X∗, that is, limn

∫
A
fn dµ =

∫
A
f dµ for the weak topology.

Case 2.- Assume that limn fn(t) = f(t) in norm for every t ∈ Ω. Again, we can
suppose without loss of generality that BX∗ is weak∗-separable. Given n ∈ N, the
weak∗-separability of BX∗ and the fact that fn − f is scalarly measurable ensure
that the real-valued function t 7→ ‖fn(t) − f(t)‖ is measurable. Fix ε > 0. Since
the family (

⋃
n∈N Zfn

) ∪ Zf is uniformly integrable, there is δ > 0 such that

(2)
∥∥∥∫

E

fn dµ−
∫
E

f dµ
∥∥∥ = sup

x∗∈BX∗
x∗

(∫
E

(fn − f) dµ
)

≤ sup
x∗∈BX∗

∫
E

|x∗ ◦ fn − x∗ ◦ f | dµ ≤ ε

for every E ∈ Σ satisfying µ(E) ≤ δ. On the other hand, by the assumption
there is n0 ∈ N such that µ({t ∈ Ω : ‖fn(t) − f(t)‖ > ε}) ≤ δ for every n ≥ n0.
Take any A ∈ Σ and n ≥ n0. Write A′ = {t ∈ A : ‖fn(t) − f(t)‖ ≤ ε} and
A′′ = {t ∈ A : ‖fn(t)− f(t)‖ > ε}. Then (2) yields∥∥∥∫

A

fn dµ−
∫
A

f dµ
∥∥∥ ≤ ∥∥∥∫

A′
(fn − f) dµ

∥∥∥ +
∥∥∥∫

A′′
fn dµ−

∫
A′′

f dµ
∥∥∥ ≤ 2ε.

This proves that limn

∫
A
fn dµ =

∫
A
f dµ for the norm topology, uniformly in

A ∈ Σ. The proof of the theorem is complete. �

Remark 2.4. When µ is a quasi-Radon probability (e.g. a Radon probability)
on a topological space, McShane’s approach to integration can be extended to the
case of functions f : Ω −→ X, see [7, 8, 9]. D. H. Fremlin [7] showed that for
the McShane integral the analogue of Theorem 1.1 holds true for arbitrary X. In
general, the McShane integral lies strictly between the Birkhoff and Pettis integrals,
but it coincides with Birkhoff’s one when X is isomorphic to a subspace of `∞(N),
see [6]. This provides another proof of our theorem in the particular case of functions
defined on a quasi-Radon topological probability space.

In the proofs of Lemma 2.3 and Theorem 1.1 the weak∗-separability of BX∗ is
used only to ensure the measurability of ‖f(·)‖ for any scalarly measurable function
f : Ω −→ X. In [18, Corollary 4.6] we prove that the latter property is also valid
in a more general situation, namely, when dens(BX∗ ,weak∗) is smaller than the
following uncountable cardinal number:

κ(µ) = min{cardinality of E : E ⊂ Σ, µ(E) = 0 for every E ∈ E , µ∗(∪E) > 0},

defined if there exist such families E (this happens, for instance, if µ is atomless).
Here µ∗ denotes the outer measure induced by µ. It is well known (see e.g. [21])
that Martin’s Axiom implies the statement “κ(λ) = c”, usually called Axiom M.
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As a consequence, we conclude that Theorem 1.1 is true whenever X admits an
equivalent norm for which dens(BX∗ ,weak∗) < κ(µ). We stress that the inequality
dens(BX∗ ,weak∗) ≤ dens(X) is valid for arbitrary X. For more information on the
role played by κ(µ) in the Birkhoff integral theory, we refer the reader to [18].

3. Proof of Theorem 1.2

Throughout this section X is a non separable super-reflexive Banach space with
dens(X) = κ and we fix an equivalent uniformly convex norm ‖ · ‖ on X.

Since X is reflexive (see e.g. [5, Theorem 9.12]), there exists a projectional
resolution of the identity on X (see e.g. [5, Theorem 11.6]), that is, a family
{Pα}ω≤α≤κ of linear continuous projections Pα : X −→ X such that Pω = 0, Pκ is
the identity operator and, for each ω < α ≤ κ, we have

• ‖Pα‖ = 1.
• dens(Pα(X)) ≤ α.
• Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω ≤ β ≤ α.
•

⋃
ω≤β<α Pβ+1(X) is norm dense in Pα(X).

A key ingredient for the proof of Theorem 1.2 is the following fact, due to L. Di
Piazza and D. Preiss (see Lemma 5 and the proof of Theorem 1 in [3]). They used
this geometric property to prove that Pettis and McShane integrability coincide for
functions with values in super-reflexive spaces.

Fact 3.1. Given n ∈ N, let dn be the supremum of the norms of those vectors x ∈ X
for which there are ω ≤ β0 ≤ β1 ≤ · · · ≤ βn ≤ κ such that x ∈ (Pβn − Pβ0)(X) and
‖(Pβi − Pβi−1)(x)‖ ≤ 1 for every 1 ≤ i ≤ n. Then

lim
n

dn
n

= 0.

Lemma 3.2. Let f : [0, 1] −→ X be a bounded function satisfying the following
properties:

(i) For each t ∈ [0, 1] there is some ω ≤ α < κ such that

f(t) ∈ (Pα+1 − Pα)(X).

(ii) For each ω ≤ α < κ there is at most one t ∈ [0, 1] such that

(Pα+1 − Pα)(f(t)) 6= 0.

Then f is Birkhoff integrable and
∫ 1

0
f dλ = 0.

Proof. We can assume without loss of generality that ‖f(t)‖ ≤ 1 for every t ∈ [0, 1].
Fix ε > 0. By Fact 3.1, we can find n ∈ N large enough such that d2n/(2n) ≤ ε.
Let {I1, . . . , In} be a finite partition of [0, 1] into Lebesgue measurable sets with
λ(Ii) = 1/n for every 1 ≤ i ≤ n, and take ti ∈ Ii for every 1 ≤ i ≤ n. Properties
(i) and (ii) allow us to find ω ≤ α1 < α2 < · · · < αn < κ such that

x :=
n∑
i=1

λ(Ii)f(ti) =
1
n

n∑
j=1

yj

for some yj ∈ (Pαj+1 − Pαj )(X) with ‖yj‖ ≤ 1. Set β2j = αj + 1 and β2j−1 = αj
for every 1 ≤ j ≤ n, with β0 = β1. Then ω ≤ β0 ≤ β1 ≤ · · · ≤ β2n < κ,
nx ∈ (Pβ2n

− Pβ0)(X) and, for each 1 ≤ i ≤ 2n, we have

(Pβi
− Pβi−1)(nx) =

{
yj if i = 2j for some 1 ≤ j ≤ n,

0 otherwise.
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It follows that ‖nx‖ ≤ d2n and therefore∥∥∥ n∑
i=1

λ(Ii)f(ti)
∥∥∥ ≤ d2n

n
≤ 2ε.

As ε > 0 is arbitrary, f is Birkhoff integrable, with integral 0. �

Observe that a function as in Lemma 3.2 is even Riemann integrable, i.e. its
Birkhoff integrability can be checked by means of finite partitions into intervals.
We refer the reader to [10] for a detailed survey on this topic.

Notice also that Lemma 3.2 still holds true if [0, 1] is replaced by an arbitrary
complete probability space without atoms.

In order to prove Theorem 1.2 we will use some ideas from our counterexam-
ple [19] to Vitali’s convergence theorem for c0(c)-valued Birkhoff integrable func-
tions. We first need to recall the construction isolated in Fact 3.3 below, see [19,
Lemma 2.2] for a proof.

Fact 3.3. Let {Γβ : β < c} be an enumeration of the collection of all countable
partitions of [0, 1] by Borel sets. Then there exist collections {Aβ}β<c and {A′β}β<c

of countable subsets of [0, 1] such that:
(i) Aβ ∩Aγ = ∅ and A′β ∩A′γ = ∅ for every β, γ < c with β 6= γ.
(ii) Aβ ∩A′γ = ∅ for every β, γ < c.
(iii) For each β < c and each E ∈ Γβ with λ(E) > 0, we have Aβ ∩ E 6= ∅ and

A′β ∩ E 6= ∅.

Proof of Theorem 1.2. By the assumption, κ = dens(X) = c. For each ω ≤ α < c,
fix xα ∈ (Pα+1 − Pα)(X) with ‖xα‖ = 1. Fix two injective maps φ, ψ : c −→ [ω, c)
with disjoint ranges. Define f : [0, 1] −→ X by

f(t) =


xφ(β) if t ∈ Aβ , β < c,

xψ(β) if t ∈ A′β , β < c,

0 if t 6∈
⋃
β<c(Aβ ∪A′β).

Enumerate Aβ = {aβ,1, aβ,2, . . . } and A′β = {a′β,1, a′β,2, . . . } for every β < c and
define Dk = {aβ,k : β < c} ∪ {a′β,k : β < c} for every k ∈ N. It is easy to check that
each fχDk

: [0, 1] −→ X satisfies properties (i) and (ii) in Lemma 3.2 (as usual, χDk

denotes the characteristic function ofDk), hence it is Birkhoff integrable. Therefore,
fn :=

∑n
k=1 fχDk

is Birkhoff integrable for every n ∈ N. It is clear that (fn) is a
uniformly bounded sequence that converges pointwise (in norm) to f .

To finish the proof we will show that f is not Birkhoff integrable. Suppose, if
possible, otherwise. Then there exists a countable partition of [0, 1] into Lebesgue
measurable sets B1, B2, . . . such that

(3)
∥∥∥∑
n

λ(Bn)f(tn)−
∑
n

λ(Bn)f(t′n)
∥∥∥ < 1

2

for arbitrary choices tn, t′n ∈ Bn. By the inner regularity of λ with respect to the
Borel σ-algebra of [0, 1], we can assume further that each Bn is a Borel set, that
is, {B1, B2, . . . } = Γβ for some β < c. By property (iii) in Fact 3.3, for each
Bm ∈ Γβ we can choose two points tm, t′m ∈ Bm such that

∑
n λ(Bn)f(tn) = xφ(β)

and
∑
n λ(Bn)f(t′n) = xψ(β). It follows that

2 ·
∥∥∥∑
n

λ(Bn)f(tn)−
∑
n

λ(Bn)f(t′n)
∥∥∥ = 2 · ‖xφ(β) − xψ(β)‖

≥ ‖(Pφ(β)+1 − Pφ(β))(xφ(β) − xψ(β))‖ = ‖xφ(β)‖ = 1,
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which contradicts inequality (3). This shows that f is not Birkhoff integrable. The
proof of the theorem is complete. �

Remark 3.4. Observe that the super-reflexivity of X has only been used to handle
the property isolated in Fact 3.1. We stress that this property is also valid for c0(Γ)
(where Γ is any uncountable set) equipped with its canonical projectional resolution
of the identity. Thus, as regards the non validity of Vitali’s convergence theorem
for the Birkhoff integral, the approach presented here unifies the already known
case of c0(c) and the case of super-reflexive spaces with density character c.

The comments at the end of Section 2 show that, at least under Axiom M, the
conclusion of Theorem 1.2 (and its analogue for spaces of the form c0(Γ)) does not
remain true if dens(X) < c; in fact, in this case every Birkhoff integrable function
f : [0, 1] −→ X is strongly measurable, see e.g. [18, Corollary 4.12].
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[20] , Universal Birkhoff integrability in dual Banach spaces, Quaest. Math. 28 (2005),

no. 4, 525–536. MR 2182459

[21] J. R. Shoenfield, Martin’s axiom, Amer. Math. Monthly 82 (1975), 610–617. MR 0373887
(51 #10087)

[22] A. P. Solodov, On the limits of the generalization of the Kolmogorov integral, Mat. Zametki
77 (2005), no. 2, 258–272. MR 2157094 (2006c:46037)

[23] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307,

ix+224. MR 756174 (86j:46042)
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