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Abstract. Some classical examples in vector integration due to
R.S. Phillips, J. Hagler and M. Talagrand are revisited from the
point of view of the Birkhoff and McShane integrals.

1. Introduction and preliminaries

Nowadays vector integration is considered as a classical and fruitful
branch of functional analysis. While the Bochner and Pettis integrals
have been the preeminent notions in this context, recent studies make
clear that others, like the Birkhoff and McShane integrals, play a rele-
vant role and can be an interesting alternative to the Pettis integral in
several situations; see e.g. [1], [3], [4], [5], [8], [9], [10], [17], [18], [19],
[20], [22] and [23].

In this note we revisit some classical examples which illuminated
some aspects of the Pettis integral theory, but now discussing their
relevance to the Birkhoff and McShane integrals. We pay attention to:

• R.S. Phillips’ example of a Pettis integrable function which is
not Birkhoff integrable [15, 10.2].
• J. Hagler’s example of a scalarly measurable `∞-valued function

which is not strongly measurable [6, p. 43].
• M. Talagrand’s example of a bounded Pettis integrable function

having no conditional expectation [24, 6-4-2].

Moreover, our discussion leads to several open questions which might
stimulate further research on vector integration.

The books [6] and [24] are two standard references on this topic.
Let us recall the definitions of the Birkhoff and McShane integrals. A
function f : Ω→ X, defined on a probability space (Ω,Σ, µ) and taking
values in a Banach space X, is called Birkhoff integrable, with ‘integral’
x ∈ X, if for every ε > 0 there is a countable partition (Am) of Ω in Σ
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such that, for any choice of points tm ∈ Am, the series
∑

m µ(Am)f(tm)
converges unconditionally in X and ‖

∑
m µ(Am)f(tm)− x‖X ≤ ε.

A function f : K → X, defined on a compact Radon probability
space (K,Σ, µ) and taking values in a Banach space X, is called Mc-
Shane integrable, with ‘integral’ x ∈ X, if for every ε > 0 there is a
gauge δ on K (i.e. a function that maps each t ∈ K to some open set
δ(t) ⊂ K containing t) such that the inequality∥∥∥ p∑

i=1

µ(Ei)f(ti)− x
∥∥∥
X
≤ ε

holds for every finite partition E1, . . . , Ep of K in Σ and every choice
of points ti ∈ K with Ei ⊂ δ(ti) for all 1 ≤ i ≤ p; such a collection
{(Ei, ti)}1≤i≤p is called a McShane partition of K subordinate to δ.

The relationship between these notions of integrability is

Bochner =⇒ Birkhoff =⇒ McShane =⇒ Pettis,

the corresponding ‘integrals’ coincide and none of the reverse arrows
holds in general, see e.g. [8], [9] and [10].

As usual, the topological dual and the closed unit ball of a Banach
space X are denoted by X∗ and BX , respectively. The norm of X is
denoted by ‖ · ‖X .

2. Phillips’ example

The first example of a Pettis integrable function which is not Birkhoff
integrable was given by Phillips in [15, 10.2]. His function (see Exam-
ple 2.1 below) is of the form f : [0, 1] → `∞([0, 1]), where [0, 1] is
equipped with the Lebesgue measure λ. Such a function cannot be
strongly measurable, since Pettis and Birkhoff integrability are always
equivalent for strongly measurable functions, [14, Corollary 5.11].

Phillips’ example was revisited by Riddle and Saab [16] who proved
that f is universally Pettis integrable (i.e. Pettis integrable with re-
spect to every Radon probability on [0, 1]) while the family of compo-
sitions of f with elements of B`1([0,1])

{〈f, y〉 : y ∈ B`1([0,1])} ⊂ R[0,1]

fails the so-called Bourgain property with respect to λ. In fact, this
failure is equivalent to the non Birkhoff integrability of f with respect
to λ, as follows from the recent results of Cascales and the author [3].

We next present Phillips’ function and prove that, in fact, it satisfies
a stronger integrability condition. Given two sets A ⊂ B, a Banach
space X and h : B → X, we write hχA to denote the X-valued function
on B which agrees with h on A and vanishes on B \ A.
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Example 2.1. The function f : [0, 1]→ `∞([0, 1]) defined by

f(t)(s) :=

{
1 if t− s is a dyadic rational

0 otherwise

is universally McShane integrable.

Proof. Let µ be a Radon probability on [0, 1]. Then we can find a
countable set (maybe empty) C ⊂ [0, 1] such that µ({s}) = 0 for all
s ∈ D := [0, 1] \ C. Since fχC is bounded and C is countable, fχC is
Bochner integrable and so McShane integrable with respect to µ. Since
f = fχC + fχD, it only remains to show that fχD is also McShane
integrable with respect to µ.

Define an equivalence relation ∼ on [0, 1] by saying that t ∼ s if and
only if t− s is a dyadic rational, and choose a set G ⊂ [0, 1] such that
for each s ∈ [0, 1] there is a unique t ∈ G with t ∼ s. For each t ∈ [0, 1],
let At be the (countable) set made up of all s ∈ [0, 1] for which t ∼ s.
Thus f(t) = χAt for every t ∈ [0, 1] and [0, 1] is the disjoint union of
{At : t ∈ G}. Write At = {at,1, at,2, . . . } for all t ∈ G.

Fix ε > 0. Given s ∈ D, we have s = at,n for some t ∈ G and
n ∈ N, and we can choose an open set δ(s) ⊂ [0, 1] containing s such
that µ(δ(s)) ≤ ε/2n. On the other hand, given s ∈ C, we define
δ(s) := [0, 1]. Then δ is a gauge on [0, 1].

Let {(Ei, si)}1≤i≤p be any McShane partition of [0, 1] subordinate
to δ. Assume without loss of generality that si 6= sj whenever i 6= j.
For each t ∈ G, let It be the set (maybe empty) of all i ∈ {1, . . . , p}
such that si ∈ At ∩D. Since [0, 1] is the disjoint union of {At : t ∈ G},
we can write

(1)

p∑
i=1

µ(Ei)fχD(si) =
∑
t∈G

(∑
i∈It

µ(Ei)χAsi

)
=
∑
t∈G

(∑
i∈It

µ(Ei)
)
χAt

(bear in mind that At = As whenever t ∼ s). Fix t ∈ G. For each
i ∈ It there is ni ∈ N such that si = at,ni . Since ni 6= nj whenever
i, j ∈ It are distinct, we have∑

i∈It

µ(Ei) ≤
∑
i∈It

µ(δ(at,ni)) ≤
∑
i∈It

ε

2ni
≤ ε.

From the previous inequality and (1) it follows that∥∥∥ p∑
i=1

µ(Ei)fχD(si)
∥∥∥
`∞([0,1])

≤ ε.

As ε > 0 is arbitrary, fχD is McShane integrable (with integral 0 ∈ X)
with respect to µ. �
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It should be mentioned that, if K is a compact Hausdorff topological
space and X is a separable Banach space, then a bounded function
from K to X∗ is universally scalarly measurable if and only if it is
universally Birkhoff integrable, see [18, Corollary 2]. This result relies
on the work by Bourgain, Fremlin and Talagrand [2]. Without the
separability assumption such equivalence fails in general (just bear in
mind Phillips’ example), but one might ask whether universal Pettis
integrability is equivalent to universal McShane integrability.

In general, this question has negative answer. Indeed, under the
Continuum Hypothesis, the author has constructed in [20, Example 4.1]
a bounded function h : [0, 1] → Y (where Y is a Banach space) which
is not McShane integrable with respect to λ and such that, for each
y∗ ∈ Y ∗, the composition 〈h, y∗〉 vanishes up to a countable set. It is
easy to check that such an h is universally Pettis integrable. Clearly,
when h is considered as a Y ∗∗-valued function, h is universally Pettis
integrable but not universally McShane integrable.

Question 2.2. Is there a ZFC example of a universally Pettis inte-
grable function which is not universally McShane integrable?

Any Pettis integrable function (defined on a compact Radon prob-
ability space) which is not McShane integrable would be a natural
candidate to test the previous question. The example of Fremlin and
Mendoza [10, 3C] does not give information about this matter, as their
function takes values in `∞ ∼= (`1)∗. Recently, Deville and the author [4]
have given another ZFC example of a Pettis integrable function which
is not McShane integrable, now taking values in `1(c+) (as usual c+

denotes the smallest cardinal greater than the continuum).

3. Hagler’s example

Hagler’s example [6, p. 43] exhibits a ‘nontrivial’ scalarly measur-
able `∞-valued function which we will denote by g (see Example 3.1
below). A suitable modification of the range space allowed Edgar to
construct a scalarly bounded function which is not scalarly equivalent
to a bounded function, see [24, 3-3-5]. Recently, the author [21] bene-
fited from Edgar’s ideas to provide, for instance, a negative answer to
[13, Problem 4] by showing that the real-valued function ‖g(·)‖ is not
measurable for some equivalent norm ‖ · ‖ on `∞.

We next present Hagler’s function and point out that it is not only
Pettis integrable (as shown in [24, 4-2-4]) but also universally Birkhoff
integrable. We first give an elementary proof of its integrability with
respect to the usual product probability on {0, 1}N (denoted by µc).
We write T :=

⋃
n∈N{0, 1}n and, given u = (ui)i∈N ∈ {0, 1}N, we write
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Bu := {u|n : n ∈ N} ⊂ T , where u|n := (ui)
n
i=1 ∈ {0, 1}n. For each

m ∈ N and each τ ∈ {0, 1}m, set

Vτ := {u ∈ {0, 1}N : u|m = τ}.

Example 3.1. The function g : {0, 1}N → `∞(T ) defined by

g(u) := χBu

is Birkhoff integrable with respect to µc.

Proof. Fix ε > 0. We can choose n ∈ N large enough such that 2−n ≤ ε.
Observe that {Vσ : σ ∈ {0, 1}n} is a partition of {0, 1}N into finitely
many clopen (so Borel) sets. Take arbitrary points tσ, t

′
σ ∈ Vσ for every

σ ∈ {0, 1}n. We claim that

(2)
∥∥∥ ∑
σ∈{0,1}n

µc(Vσ)g(tσ)−
∑

σ∈{0,1}n
µc(Vσ)g(t′σ)

∥∥∥
`∞(T )

≤ ε.

Indeed, fix τ ∈ T and let πτ ∈ B`∞(T )∗ be the associated ‘evaluation
functional’. Observe that

〈g, πτ 〉(u) = χBu(τ) = χVτ (u) for every u ∈ {0, 1}N,

hence∣∣∣πτ( ∑
σ∈{0,1}n

µc(Vσ)(g(tσ)− g(t′σ))
)∣∣∣ ≤ 1

2n

∑
σ∈{0,1}n

|χVτ (tσ)− χVτ (t′σ)|.

Take any σ ∈ {0, 1}n. Then |χVτ (tσ)− χVτ (t′σ)| is either 0 or 1. In the
second case we would have tσ ∈ Vτ and t′σ 6∈ Vτ or vice versa, so that
Vσ ∩Vτ 6= ∅ and Vσ \Vτ 6= ∅, hence Vτ ⊂ Vσ. Since Vτ can be contained
at most in one of the Vσ’s, it follows that∣∣∣πτ( ∑

σ∈{0,1}n
µc(Vσ)(g(tσ)− g(t′σ))

)∣∣∣ ≤ 1

2n
≤ ε.

As τ ∈ T is arbitrary, (2) holds. Therefore, g is Birkhoff integrable
with respect to µc (see [3, Proposition 2.6]). �

To prove that g is universally Birkhoff integrable (Proposition 3.3
below) we need the result isolated in Lemma 3.2, whose proof was
kindly suggested by A. Avilés. Recall that a bounded sequence (xn) in
a Banach space X is called an `1-sequence if there is a constant C > 0
such that

N∑
n=1

|an| ≤ C
∥∥∥ N∑
n=1

anxn

∥∥∥
X

for every sequence (an) in R and every N ∈ N.
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Lemma 3.2. The set {χVτ : τ ∈ T} ⊂ C({0, 1}N) does not contain
`1-sequences.

Proof. For τ = (ui)
n
i=1 and τ ′ = (vi)

m
i=1 in T , we write τ ≺ τ ′ if n < m

and ui = vi for all 1 ≤ i ≤ n. Given any set A, the symbol [A]2 stands
for the set of all subsets of A with cardinality 2.

Fix an infinite set S ⊂ T . Define a function F : [S]2 → {0, 1} as
follows. Given {τ, τ ′} ∈ [S]2, set

F ({τ, τ ′}) :=

{
0 if τ ≺ τ ′ or τ ′ ≺ τ ,

1 otherwise.

Ramsey’s theorem (cf. [11, Theorem 9.1]) ensures the existence of an
infinite set M ⊂ S such that F is constant on [M ]2. There are two
cases to be considered:

(a) For any τ, τ ′ ∈M with τ 6= τ ′, we have either τ ≺ τ ′ or τ ′ ≺ τ .
This implies that M can be written as M = {τn : n ∈ N} with
τn ≺ τn+1 for all n ∈ N. Hence Vτn+1 ⊂ Vτn for all n ∈ N and,
therefore, we have∥∥∥ n∑

k=1

(−1)kχVτk

∥∥∥
∞

= 1 for all n ∈ N

(as usual, ‖ · ‖∞ denotes the supremum norm on C({0, 1}N)).
It follows that {χVτ : τ ∈ S} is not an `1-sequence.

(b) The relationship τ ≺ τ ′ fails whenever τ, τ ′ ∈ M . This means
that {Vτ : τ ∈M} are pairwise disjoint and so∥∥∥∑

τ∈P

χVτ

∥∥∥
∞

= 1 for every finite set P ⊂M.

Hence {χVτ : τ ∈ S} is not an `1-sequence.

The proof of the lemma is over. �

Following [16], we say that a familyH of real-valued functions defined
on a probability space (Ω,Σ, µ) has the Bourgain property if for every
ε > 0 and every A ∈ Σ with µ(A) > 0 there are A1, . . . , An ∈ Σ, Ai ⊂ A
with µ(Ai) > 0, such that: for each h ∈ H there is at least one Ai on
which the oscillation of h is smaller than ε. Recently, this property
has been used by Cascales and the author [3, 19] to characterize the
Birkhoff integrability of vector-valued functions.

Proposition 3.3. The function g (defined in Example 3.1) is univer-
sally Birkhoff integrable.
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Proof. Since the family {χVτ : τ ∈ T} ⊂ C({0, 1}N) is bounded and
contains no `1-sequence (Lemma 3.2), it has the Bourgain property
with respect to any Radon probability µ on {0, 1}N, see [13, Proposi-
tion 12.2]. Now, since 〈g, πτ 〉 = χVτ for all τ ∈ T (as we observed in
the proof of Example 3.1) and {πτ : τ ∈ T} ⊂ B`∞(T )∗ is norming,
an appeal to [3, Corollary 2.5] establishes that g is Birkhoff integrable
with respect to µ. �

Remark 3.4. According to the comments following Example 2.1, an-
other approach to Proposition 3.3 is to check directly that g is uni-
versally scalarly measurable (and we notice that this fact is proved
implicitly in Hagler’s arguments). However, this alternative approach
is less elementary since it appeals to the deep work of [2].

Observe that g takes its values in the Johnson-Lindenstrauss space

JL0 := span(c0(T ) ∪ {χBu : u ∈ {0, 1}N}) ⊂ `∞(T ),

see [12, Example 2] and [25] for its basic properties. Since JL0 is a
subspace of `∞, we know that every McShane integrable JL0-valued
function defined on a compact Radon probability space is Birkhoff in-
tegrable, see [9, Theorem 10]. A question arises:

Question 3.5. Let X be a subspace of `∞ satisfying Corson’s prop-
erty (C) (like JL0). Are Pettis and Birkhoff integrability equivalent for
X-valued functions?

Recall that a Banach space satisfies Corson’s property (C) if ev-
ery family of convex closed subsets with empty intersection contains a
countable subfamily with empty intersection. Every weakly Lindelöf
Banach space fulfills this property. By a well known result of Edgar [7]
(cf. [24, 3-4-5]), every scalarly measurable function taking values in
a weakly Lindelöf Banach space is scalarly equivalent to a strongly
measurable function. Therefore, the previous question has affirmative
answer when X is a weakly Lindelöf subspace of `∞.

4. Talagrand’s example

It is well known that conditional expectations always exist within the
Bochner integral theory (see e.g. [6, Chapter 3]). However, in general
this is not the case for the Pettis integral, as Talagrand made clear
in [24, Section 6-4]. This pathology might appear even for bounded
functions defined on ‘reasonable’ probability spaces, like the one in
Example 4.1 below, which is taken from [24, 6-4-2].

It is natural to ask whether conditional expectations exist within
the Birkhoff integral theory. This question was kindly brought to our
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attention by J. Diestel. We next provide a negative answer by showing
that, in fact, Talagrand’s function in Example 4.1 is Birkhoff integrable.

We first need to introduce some terminology. Let (An) be the se-
quence of all clopen subsets of {0, 1}N such that µc(An) = 1/2. Let
θ : {0, 1}N → `∞ be the w∗-continuous function given by the formula
θ(u) := (χAn(u))n∈N. Then L := θ({0, 1}N) ⊂ B`∞ is w∗-compact. We
consider the associated image probability ν := µcθ

−1 on Borel(L). For
each n ∈ N, we denote by ρn ∈ B(`∞)∗ the n-th coordinate projection.

Example 4.1. The function ϕ : {0, 1}N × L→ `∞(T ) defined by

ϕ(u, v)(τ) :=

{
ρn(v) if τ = u|n for some n ∈ N
0 if τ 6∈ Bu

is Birkhoff integrable with respect to the product probability µc ⊗ ν.

Proof. It suffices to check that the family {〈ϕ, πτ 〉 : τ ∈ T} has the
Bourgain property with respect to µc ⊗ ν, because ϕ is bounded and
{πτ : τ ∈ T} ⊂ B`∞(T )∗ is norming, see [3, Corollary 2.5].

Observe first that for each m ∈ N and each τ ∈ {0, 1}m, we have

(3) 0 ≤ 〈ϕ, πτ 〉(u, v) = ρm(v)χVτ (u) ≤ χVτ (u)

for all (u, v) ∈ {0, 1}N × L. Notice also that 〈ϕ, πτ 〉 is measurable.
Fix ε > 0 and A ∈ Borel({0, 1}N) ⊗ Borel(L) with (µc ⊗ ν)(A) > 0.

Then there exist n ∈ N and τ1, τ2 ∈ {0, 1}n with τ1 6= τ2 such that

(µc ⊗ ν)(A ∩ (Vτi × L)) > 0 for i = 1, 2.

Take m ≥ n and τ ∈ {0, 1}m. Then Vτ ∩Vτi = ∅ for some i ∈ {1, 2}, so
that χVτ vanishes on Vτi . From (3) it follows that 〈ϕ, πτ 〉 vanishes on
A∩ (Vτi×L). On the other hand, since any finite family of measurable
functions has the Bourgain property, we can find sets A1, . . . , Ap ⊂ A,
Aj ∈ Borel({0, 1}N) ⊗ Borel(L) with (µc ⊗ ν)(Aj) > 0, such that: for
each m < n and each τ ∈ {0, 1}m, there is at least one Aj for which
the oscillation of 〈ϕ, πτ 〉 on Aj is smaller than ε.

This shows that {〈ϕ, πτ 〉 : τ ∈ T} has the Bourgain property with
respect to µc ⊗ ν and the proof is over. �

Let A be the σ-algebra on {0, 1}N×L made up of all sets U×L with
U ∈ Borel({0, 1}N). It was shown in [24, 6-4-2] that the range of ϕ is
contained in a subspace E of `∞(T ) such that ϕ does not admit a Pettis
integrable E-valued conditional expectation with respect to A. That
is, there is no Pettis integrable function ψ from ({0, 1}N×L,A, µc⊗ ν)
to E such that

∫
A
ψ d(µc⊗ν) =

∫
A
ϕd(µc⊗ν) for all A ∈ A. Of course,

the same can be said if ‘Pettis’ is replaced by ‘Birkhoff’. This fact and
Example 4.1 open a door for future research:



SOME EXAMPLES IN VECTOR INTEGRATION 9

Question 4.2. When do Birkhoff integrable functions admit Birkhoff
integrable conditional expectations?

Acknowledgement. The author wishes to thank Antonio Avilés for
his valuable help during the preparation of this paper.
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[4] R. Deville and J. Rodŕıguez, Integration in Hilbert generated Banach spaces,
Israel J. Math. (to appear).

[5] L. Di Piazza and D. Preiss, When do McShane and Pettis integrals coincide?,
Illinois J. Math. 47 (2003), no. 4, 1177–1187. MR 2036997 (2005a:28023)

[6] J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society,
Providence, R.I., 1977, With a foreword by B. J. Pettis, Mathematical Surveys,
No. 15. MR 0453964 (56 #12216)

[7] G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26
(1977), no. 4, 663–677. MR 0487448 (58 #7081)

[8] D. H. Fremlin, The generalized McShane integral, Illinois J. Math. 39 (1995),
no. 1, 39–67. MR 1299648 (95j:28008)

[9] D. H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions,
University of Essex Mathematics Department Research Report 92-10.

[10] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions,
Illinois J. Math. 38 (1994), no. 1, 127–147. MR 1245838 (94k:46083)

[11] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
MR 1940513 (2004g:03071)

[12] W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly gen-
erated Banach spaces, Israel J. Math. 17 (1974), 219–230. MR 0417760 (54
#5808)

[13] K. Musia l, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ.
Trieste 23 (1991), no. 1, 177–262 (1993), School on Measure Theory and Real
Analysis (Grado, 1991). MR 1248654 (94k:46084)

[14] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44
(1938), no. 2, 277–304. MR 1501970

[15] R. S. Phillips, Integration in a convex linear topological space, Trans. Amer.
Math. Soc. 47 (1940), 114–145. MR 0002707 (2,103c)

[16] L. H. Riddle and E. Saab, On functions that are universally Pettis integrable,
Illinois J. Math. 29 (1985), no. 3, 509–531. MR 786735 (86i:28012)
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