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ABSTRACT. We study the existence of w∗-scalarly measurable selectors and almost selec-
tors for w∗-scalarly measurable multi-functions with values in dual Banach spaces. These
selection results are used to study Gelfand and Dunford integrals for multi-functions: our
non separable setting extends previous studies that have been done for separable Banach
spaces. Pettis integral for multi-functions, already studied by different authors, naturally
appears as a particular case of Dunford integral. We also study when the Gelfand integral
of a multi-function is not only w∗-compact but w-compact.

1. INTRODUCTION

Gelfand integral was first studied by Gelfand in 1936, [15]. Gelfand integral for single
and multi-valued functions has been extensively studied and applied over the years, see
amongst others [2, 16, 17, 18, 21, 23, 24, 25]; a common motivation for some of these
papers comes from game theory and mathematical economy, where the need of studying
infinite dimensional Banach spaces is motivated, for instance, by the need of dealing with
infinite dimensional commodity spaces. Another common thing in the papers above is that
their studies are restricted to duals of separable Banach spaces in the range. As far as
we see it, this limitation has only been made because one has to ensure the existence of
scalarly measurable selectors for given measurable multi-valued functions: the (measur-
able) selection results at hand always relied on arguments that require separability. In this
paper we overcome this technical difficulty and get rid of the separability hypothesis. To
do so we prove a general w∗-almost selection result and then we study Gelfand integral for
multi-valued functions in full generality and some of its consequences.

Throughout this paper (Ω,Σ, µ) is a complete probability space, X is a Banach space
and X∗ its dual space; the weak (resp. weak∗) topology on X (resp. X∗) is denoted by w
(resp. w∗). By cw∗k(X∗) we denote the family of all non-empty convex w∗-compact
subsets of X∗.

Recall that a function f : Ω→ X∗ is said to be w∗-scalarly measurable (resp. Gelfand
integrable) if, for each x ∈ X , the function 〈f, x〉 : Ω → R given by t 7→ 〈f(t), x〉 is
measurable (resp. integrable). If f is Gelfand integrable, then for each A ∈ Σ there exists
a vector

∫
A
f dµ ∈ X∗ (called the Gelfand integral of f over A) satisfying 〈

∫
A
f dµ, x〉 =∫

A
〈f, x〉 dµ for all x ∈ X . For basic information on the Gelfand integral, see [2, 11.9] and

[13, p. 53].
A multi-function from Ω to X is a multi-valued map sending each t ∈ Ω to a subset

F (t) ∈ 2X . Here one should note that in the literature multi-functions are also referred to
as correspondences, set valued functions, set valued maps, and random sets.
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This paper is organized as follows. In Section 2 we study what we call w∗-almost
selector for w∗-scalarly measurable multi-functions F : Ω → 2X

∗
. F is said to be w∗-

scalarly measurable, see Definition 2.1, if for every x ∈ X the function

δ∗(x, F ) : Ω→ R ∪ {+∞}, δ∗(x, F )(t) := sup{〈x∗, x〉 : x∗ ∈ F (t)}

is measurable. Our main result in this section, Theorem 2.7, establishes that for every
w∗-scalarly measurable multi-function with bounded values F : Ω → 2X

∗
there is a w∗-

scalarly measurable single-valued function f : Ω→ X∗ such that, for each x ∈ X ,

〈f, x〉 ≤ δ∗(x, F ) µ-a.e. (the exceptional µ-null set depending on x).

f is what we called a w∗-scalarly measurable w∗-almost selector.
Section 3 is devoted to study the existence of w∗-scalarly measurable selectors for cer-

tain w∗-scalarly measurable multi-functions. We start by noting that when X is sepa-
rable and F (Ω) ⊂ cw∗k(X∗), the w∗-scalarly measurable w∗-almost selector f , found
above, can be readily modified into a w∗-scalarly measurable selector for F , see Corol-
lary 3.1. In Theorem 3.8 we establish that if K is a compact and metrizable space and
G : K → cw∗k(X∗) is a multi-function such that t 7→ δ∗(x,G)(t) is continuous for
all x ∈ X , then G admits a w∗-scalarly measurable selector. In Theorem 3.10 we prove
that if F : Ω → 2X

∗
is a w∗-scalarly measurable multi-function with w∗-compact values

such that cow
∗
(F (t)) has the Radon-Nikodým Property (RNP for short) for all t ∈ Ω,

then F admits a w∗-scalarly measurable selector. In particular we obtain that if X∗ has
the RNP then every w∗-scalarly measurable multi-function with w∗-compact values has a
w∗-scalarly measurable selector, Corollary 3.11.

In Section 4 we define Gelfand integral for multi-functions F : Ω → cw∗k(X∗) (no
restriction on X). Our approach nicely extends the single-valued case and also the previ-
ously studied multi-valued case when X is separable. Our main result here is Theorem 4.5
where the Gelfand integral of a multi-function is characterized as the set of the integrals
of its Gelfand integrable w∗-almost selectors. Section 5 contains the natural definitions
and links with Dunford and Pettis integrals for multi-functions; here one should note that
Dunford integral appears as a particular case of Gelfand integral and that when defining
naturally Pettis integral as it is usually done with single-valued functions, we recover the
usual notions studied in [4, 5, 7, 9, 10, 11, 29] and [30].

Section 6 deals with the following question: given a Gelfand integrable multi-function
F : Ω→ cw∗k(X∗) with norm compact values, can we expect the integrals

∫
A
F dµ to be

norm or w-compact? We give examples proving that
∫
A
F dµ need not be norm compact,

Examples 6.1 and 6.2, and we prove that
∫
A
F dµ is always w-compact whenever F is

bounded, see Theorem 6.8.
Some open problems are included in the last Section of the paper.

Terminology. Our unexplained terminology can be found in our standard references for
multi-functions [8, 19], Banach spaces [14] and vector integration [13, 26].

All vector spaces here are assumed to be real. Given a subset S of a vector space, we
write co(S) and span(S) to denote, respectively, the convex and linear hull of S. By letters
X and Y we always denote Banach spaces. BX and SX are the closed unit ball and the
unit sphere of X , respectively. X∗ stands for the topological dual of X . Given x∗ ∈ X∗
and x ∈ X , we write either 〈x∗, x〉 or x∗(x) to denote the evaluation of x∗ at x. Given
a non-empty set Γ (resp. a compact topological space K), we write `∞(Γ) (resp. C(K))
to denote the Banach space of all bounded (resp. continuous) real-valued functions on Γ
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(resp. K), equipped with the supremum norm. Given a Banach space X , we denote by 2X

the set of all non-empty subsets of X . We will consider the following families of sets:

• w∗k(X∗) = all w∗-compact non-empty subsets of X∗,
• wk(X) = all w-compact non-empty subsets of X ,
• k(X) = all norm compact non-empty subsets of X .

By cw∗k(X∗), cwk(X) and ck(X) we denote, respectively, the subfamilies of w∗k(X∗),
wk(X) and k(X) made up of convex sets. Given a set C ⊂ X and x∗ ∈ X∗, we write

δ∗(x∗, C) := sup{〈x∗, x〉 : x ∈ C} ∈ R ∪ {+∞}.

A multi-function F : Ω→ 2X is called bounded if
⋃
t∈Ω F (t) is a bounded subset of X .

We write Σ+ to denote the subfamily of Σ made up of sets of positive measure. Given
A ∈ Σ, the subfamily of Σ+ made up of subsets of A is denoted by Σ+

A. As usual, Lp(µ)

and Lp(µ) will denote, respectively, the Lebesgue spaces of functions and equivalence
classes of functions. For a function h : Ω → R we denote by h+ the function defined by
h+(t) := max{h(t), 0} and h− := (−h)+. The symbol 1A stands for the characteristic
function of A.

2. w∗-SCALARLY MEASURABLE MULTI-FUNCTIONS AND w∗-ALMOST SELECTORS

A multi-function F : Ω → cwk(X) is said to be scalarly measurable [8] if the real-
valued map

t 7→ δ∗(x∗, F (t)) := sup{〈x∗, x〉 : x ∈ F (t)}
is measurable for all x∗ ∈ X∗. Hence, the natural definition for w∗-scalarly measurable
multi-function is:

Definition 2.1. A multi-function F : Ω→ 2X
∗

is said to be w∗-scalarly measurable if for
every x ∈ X the function

δ∗(x, F ) : Ω→ R ∪ {+∞}, δ∗(x, F )(t) := sup{〈x∗, x〉 : x∗ ∈ F (t)}

is measurable.

Note that if F is w∗-scalarly measurable then the function δ∗(x, F ) : Ω→ R ∪ {−∞}
defined by δ∗(x, F )(t) := inf{〈x∗, x〉 : x∗ ∈ F (t)}, t ∈ Ω, is also measurable for every
x ∈ X . The functions δ∗(x, F ) and δ∗(x, F ) are real-valued for any x ∈ X whenever
F : Ω→ 2X

∗
takes bounded values.

A multi-function F : Ω → cwk(X) is scalarly measurable if, and only if, F is w∗-
scalarly measurable when naturally considered with values F : Ω→ cw∗k(X∗∗).

Definition 2.2. A single valued function f : Ω → X∗ is a w∗-almost selector of a multi-
function F : Ω → 2X

∗
if for every x ∈ X we have 〈f, x〉 ≤ δ∗(x, F ) µ-a.e. (the

exceptional µ-null set depending on x).

If F : Ω → cwk(X) is a multi-function and f : Ω → X is a w∗-almost selector
of F when naturally considered with values F : Ω→ cw∗k(X∗∗), we will say that f is a
w-almost selector of F .

Next proposition collects a first nice quality of w∗-almost selectors. In the proof we use
the Mackey topology µ(X∗, X) of the dual pair 〈X∗, X〉, that is, the topology in X∗ of
uniform convergence on absolutely convex weakly compact subsets of X , [20, §21.4.(1)].
We note that according to [20, §21.4.(2)], µ(X∗, X) is the finest locally convex topology
for which the dual (X∗, µ(X∗, X))′ = X = (X∗, w∗)′.
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Proposition 2.3. Suppose X is separable. The following properties hold:

(i) If F : Ω → cw∗k(X∗) is a multi-function and f : Ω → X∗ is a w∗-almost
selector of F , then f(t) ∈ F (t) for µ-a.e. t ∈ Ω.

(ii) If F : Ω → cwk(X) is a multi-function and f : Ω → X is a w-almost selector
of F , then f(t) ∈ F (t) for µ-a.e. t ∈ Ω.

Proof. We prove (i) first. Let (xn) be a dense sequence in X . For each n ∈ N, let En ∈ Σ

with µ(En) = 1 such that 〈f(t), xn〉 ≤ δ∗(xn, F )(t) for every t ∈ En. Then the set
E :=

⋂
n∈NEn ∈ Σ satisfies µ(E) = 1 and

(1) 〈f(t), xn〉 ≤ δ∗(xn, F )(t) for every t ∈ E and every n ∈ N.

Since F takes bounded values and (xn) is dense in X , inequality (1) implies that

〈f(t), x〉 ≤ δ∗(x, F )(t) for every t ∈ E and every x ∈ X.

Since F takes convex w∗-compact values, from the separation Hahn-Banach theorem it
follows now that f(t) ∈ F (t) for every t ∈ E and (i) is proved.

To prove (ii) we use ideas similar to those in the proof of (i) but slightly modified.
Since X is separable, (X∗, w∗) is also separable. So we can take D ⊂ X∗ countable and
w∗-dense in X∗. We have

X∗ = D
w∗

= spanRD
w∗ (a)

= spanRD
µ(X∗,X)

= spanQD
µ(X∗,X)

,

where equality (a) follows from [20, §20.8.(6)]. Let {x∗n : n ∈ N} be an enumeration of
spanQD. Then, proceeding as we did in the proof of (i) above, we find a set E ∈ Σ with
µ(E) = 1 such that

(2) 〈f(t), x∗n〉 ≤ δ∗(x∗n, F )(t) for every t ∈ E and every n ∈ N.

Given t ∈ E and any x∗ ∈ X∗, since F (t) is convex and weakly compact the equality

X∗ = spanQD
µ(X∗,X)

implies that x∗ can be approximated as much as we want by
some x∗n uniformly on F (t) ∪ {f(t)}. Therefore, from inequality (2) we deduce that
〈x∗, f(t)〉 ≤ δ∗(x∗, F )(t) for every t ∈ E and every x∗ ∈ X∗. The separation Hahn-
Banach theorem implies that f(t) ∈ F (t) for every t ∈ E and (ii) is proved. �

Remark 2.4. The statements in the previous Proposition fail in general for non-separable
spaces. For instance, the function f : [0, 1]→ `2([0, 1]) given by f(t) := et is a w-almost
selector of the multi-function F : [0, 1]→ 2`

2([0,1]) given by F (t) := {0}. Here {et}t∈[0,1]

denotes the usual orthonormal basis of `2([0, 1]).

Remark 2.5. We also note that the conclusion in statement (ii) in the previous Proposition
does not hold if we only assume that f : Ω → X∗∗ is a w∗-almost selector when we look
at F : Ω→ cw∗k(X∗∗). Indeed, consider Ω = [0, 1] with the standard Lebesgue measure
and X = C[0, 1]. Then X∗∗ contains in the natural way the space of all bounded Borel
measurable functions on [0, 1]. Take the trivial multi-function F : Ω → cwk(X) given
by F (t) := {0}, and take as f(t) the characteristic function of the singleton {t}. Then
f : Ω→ X∗∗ is a w∗-almost selector of F , but there is no point in which f(t) ∈ F (t).

Theorem 2.7 below ensures the existence of w∗-scalarly measurable w∗-almost selec-
tors for w∗-scalarly measurable multi-functions. We first need a lemma which will be used
several times throughout the paper.
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Lemma 2.6. Let F : Ω→ 2X
∗

be a w∗-scalarly measurable multi-function with bounded
values. Then there exist a countable partition (En) of Ω in Σ and a sequence (Cn) of
positive real numbers such that, for each x ∈ X and each n ∈ N, we have

|δ∗(x, F )| ≤ Cn‖x‖ µ-a.e. on En.

Proof. Observe that {δ∗(x, F ) : x ∈ BX} ⊂ RΩ is a pointwise bounded family of mea-
surable functions. Then there exists a measurable function h : Ω → [0,∞) such that, for
each x ∈ BX , one has |δ∗(x, F )| ≤ h µ-a.e. (see e.g. [22, Proposition 3.1]). Now it is
enough to take Cn := n and En := {t ∈ Ω : n− 1 ≤ h(t) < n} for every n ∈ N. �

Theorem 2.7. Every w∗-scalarly measurable multi-function F : Ω → 2X
∗

with bounded
values admits a w∗-scalarly measurable w∗-almost selector.

Proof. In view of Lemma 2.6, without loss of generality we may assume that there is
C > 0 such that for every x ∈ X we have |δ∗(x, F )| ≤ C‖x‖ µ-a.e.

Fix an arbitrary selector g : Ω → X∗ of F . Denote by E the quotient Banach space of
`∞(Ω) over the closed subspace of all bounded functions vanishing µ-a.e. We consider the
operator (i.e. linear continuous mapping) T : X → E that satisfies T (x) = 〈g, x〉 µ-a.e.
for every x ∈ X . Clearly, for every x ∈ X we have

(3) T (x) ≤ δ∗(x, F ) µ-a.e.

Since L∞(µ) is isometrically isomorphic to a subspace of E, we can find a norm-one
projection P : E → L∞(µ) (see e.g. [1, Proposition 4.3.8]). We claim that P preserves
inequalities. For if u ∈ E and u ≥ 0, then∥∥∥∥u− ‖u‖E2

1Ω

∥∥∥∥
E

≤ ‖u‖E
2

.

Since P is a norm-one projection, we have∥∥∥∥P (u)− ‖u‖E
2

1Ω

∥∥∥∥
L∞(µ)

≤ ‖u‖E
2

and consequently P (u) ≥ 0, as claimed.
¿From inequality (3) it follows that for any x ∈ X we have (P ◦ T )(x) ≤ δ∗(x, F )

µ-a.e. Let ρ : L∞(µ) → L∞(Ω) be a norm-one linear lifting preserving inequalities (see
e.g. [28, Theorem G.1]). Then for every x ∈ X we have

(4) (ρ ◦ P ◦ T )(x) ≤ δ∗(x, F ) µ-a.e.

For each t ∈ Ω, denote by δt ∈ `∞(Ω)∗ the evaluation functional at t. Define f : Ω→ X∗

as

f(t) := δt ◦ ρ ◦ P ◦ T.

Clearly, 〈f, x〉 = (ρ ◦P ◦ T )(x) is measurable for every x ∈ X and inequality (4) ensures
that f is a w∗-almost selector of F . The proof is finished. �

Remark 2.8. In the previous proof, we can assume further that ρ(1Ω) = 1Ω. Since for
each x ∈ BX one has |(P ◦ T )(x)| ≤ C µ-a.e., the assumption ρ(1Ω) = 1Ω yields
|〈f(t), x〉| ≤ C for every t ∈ Ω. Therefore, ‖f(t)‖ ≤ C for every t ∈ Ω. In particular, this
argument shows that every bounded w∗-scalarly measurable multi-function F : Ω→ 2X

∗

admits a bounded w∗-scalarly measurable w∗-almost selector.
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3. EXISTENCE OF w∗-SCALARLY MEASURABLE SELECTORS

This section is devoted to prove the existence, in some cases, of w∗-scalarly measur-
able selectors for w∗-scalarly measurable multi-functions. The first positive result that
we can prove appears as the natural outcome of our work in the previous section, cf. [2,
Theorem 18.33] and [27, Proposition 7].

Corollary 3.1. Suppose X is separable. Every w∗-scalarly measurable multi-function
F : Ω→ cw∗k(X∗) admits a w∗-scalarly measurable selector.

Proof. Combining Theorem 2.7 and (i) in Proposition 2.3 we obtain a w∗-scalarly measur-
able function f : Ω→ X∗ such that f(t) ∈ F (t) for µ-a.e. t ∈ Ω. Modifying f in a set of
µ-measure zero if needed we will end up with the stated w∗-scalarly measurable selector
for F . �

Throughout this section K is a compact Hausdorff topological space, µ is a Radon
probability on K, Σ is the σ-algebra on K of all µ-measurable sets and X := `∞(K). For
each t ∈ K we write δt to denote the functional on C(K) given by δt(h) = h(t) and we
denote by Et the family of all open neighborhoods of t. We study now the existence of
w∗-scalarly measurable selectors for the multi-function F : K → 2X

∗
given by

(5) F (t) := {x∗ ∈ BX∗ : x∗|C(K) = δt}, t ∈ K.

The lemmata that follow provide us with the technicalities needed to prove the w∗-
scalar measurability of F , the existence of w∗-scalarly measurable selectors and their con-
sequences.

Lemma 3.2. Let Γ be a set. If ϕ ∈ B`∞(Γ)∗ satisfies ϕ(1Γ) = 1, then ϕ is positive.

Proof. Take x ∈ `∞(Γ) with x ≥ 0 and set a := ‖x‖∞. Then ‖x − a
21Γ‖∞ ≤ a/2. So

|ϕ(x)− a/2| = |ϕ(x− a
21Γ)| ≤ ‖x− a

21Γ‖∞ ≤ a/2, hence ϕ(x) ≥ 0. �

Lemma 3.3. Let t ∈ K and x ∈ X . Then

(6) inf
U∈Et

sup
τ∈U

x(τ) = inf
g∈C(K)

(
‖x+ g‖∞ − g(t)

)
.

Proof. Let α be the left hand side of (6) and β the right hand side. We prove first that
α ≤ β. Take g ∈ C(K) and fix ε > 0. There is U ∈ Et such that |g(t)− g(τ)| ≤ ε for all
τ ∈ U , hence for each τ ∈ U we have

x(τ) ≤
(
x(τ) + g(τ)

)
− g(τ) ≤ ‖x+ g‖∞ − g(τ) ≤ ‖x+ g‖∞ − g(t) + ε.

It follows that α ≤ supτ∈U x(τ) ≤ ‖x + g‖∞ − g(t) + ε. Since ε > 0 is arbitrary, we
obtain α ≤ ‖x+ g‖∞ − g(t). Being g ∈ C(K) arbitrary we obtain α ≤ β.

The inequality α ≥ β is proved as follows. Fix ε > 0. There is a neighborhood U ∈ Et
such that supτ∈U x(τ) ≤ α+ ε. Let V ∈ Et such that V ⊂ U . By Urysohn’s lemma, there
is g ∈ C(K) with 0 ≤ g ≤ 2‖x‖∞ such that g vanishes on K \ U and g(τ) = 2‖x‖∞ for
all τ ∈ V . If τ ′ ∈ U , then:

(i) g(τ ′) ≤ 2‖x‖∞ = g(t) and so x(τ ′) + g(τ ′) ≤ supτ∈U x(τ) + g(t);
(ii) −(x(τ ′) + supτ∈U x(τ)) ≤ 2‖x‖∞ ≤ g(τ ′) + g(t), hence

−(x(τ ′) + g(τ ′)) ≤ sup
τ∈U

x(τ) + g(t).
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It follows that |x(τ ′) + g(τ ′)| ≤ supτ∈U x(τ) + g(t) ≤ α + ε + g(t) for all τ ′ ∈ U . On
the other hand, for each τ ∈ K \ U we have

|x(τ) + g(τ)| = |x(τ)| ≤ −‖x‖∞ + g(t) ≤ x(t) + g(t) ≤ α+ ε+ g(t).

We conclude that ‖x+ g‖∞ ≤ α+ ε+ g(t). This shows that

α+ ε ≥ ‖x+ g‖∞ − g(t) ≥ β.

Since ε > 0 is arbitrary, we get the desired inequality and the proof is over. �

Lemma 3.4. If F : K → 2X
∗

is the multi-function defined by (5), then:

(i) F (t) ∈ cw∗k(X∗) for every t ∈ K;
(ii) F (t) is made up of positive functionals for every t ∈ K;

(iii) for each x ∈ X we have δ∗(x, F (t)) = infU∈Et supτ∈U x(τ) for every t ∈ K.

Proof. (i) F (t) is non-empty by the Hahn-Banach theorem. Clearly, F (t) is convex. More-
over, F (t) is w∗-closed in BX∗ and so it is w∗-compact.

(ii) This follows from Lemma 3.2.
(iii) Fix x ∈ X and t ∈ K and set α := infU∈Et supτ∈U x(τ). To prove (iii) we

distinguish two cases:

CASE 1. x ∈ C(K).
We clearly have α = x(t) and x∗(x) = x(t) for all x∗ ∈ F (t), hence δ∗(x, F (t)) = α.

CASE 2. x ∈ X \ C(K).
Observe first that

‖x+ g‖∞ ≥ x∗(x+ g) = x∗(x) + g(t) whenever x∗ ∈ F (t) and g ∈ C(K),

which together with Lemma 3.3 yields α ≥ δ∗(x, F (t)). We prove now the other inequal-
ity.

Define S := span(C(K) ∪ {x}) and define a linear mapping φ : S → R by declaring
φ|C(K) = δt and φ(x) = α. We claim that |φ(y)| ≤ ‖y‖∞ for all y ∈ S. Indeed, let
y ∈ S and write y = λx + h, where h ∈ C(K) and λ ∈ R. Assume that λ > 0. Set
g := h/λ ∈ C(K). By Lemma 3.3 we have that α ≤ ‖x + g‖∞ − g(t), and therefore
λ(α + g(t)) ≤ ‖λ(x + g)‖∞ = ‖y‖∞. But φ(y) = λα + h(t) = λ(α + g(t)), hence
φ(y) ≤ ‖y‖∞. On the other hand, since α ≥ x(t), we also have

‖y‖∞ ≥ −(λx(t) + h(t)) ≥ −(λα+ h(t)) = −φ(y).

Therefore |φ(y)| ≤ ‖y‖∞, in the case λ > 0. If λ < 0, the previous argument applied to
−y = −λx− h ∈ S yields |φ(y)| = |φ(−y)| ≤ ‖ − y‖∞ = ‖y‖∞.

Hence, |φ(y)| ≤ ‖y‖∞ for every y ∈ S and the Hahn-Banach theorem implies that
there is x∗ ∈ BX∗ such that x∗|S = φ. In other words x∗ ∈ F (t) and x∗(x) = α. Hence
α ≤ δ∗(x, F (t)) and the proof is finished. �

Corollary 3.5. The multi-function F : K → cw∗k(X∗) defined by (5) is w∗-scalarly
measurable.

Proof. Fix x ∈ X . Given any a ∈ R, by Lemma 3.4(iii) we can write

{t ∈ K : δ∗(x, F (t)) < a} =
{
t ∈ K : there is U ∈ Et such that sup

τ∈U
x(τ) < a

}
,

which is open. So the function δ∗(x, F ) is Borel(K)-measurable. �

Proposition 3.6. If K is metrizable, then the multi-function F : K → cw∗k(X∗) defined
by (5) admits a w∗-scalarly measurable selector.
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Proof. Let J : C(K) → L∞(µ) be the canonical operator (that sends each function to its
equivalence class). J can be extended to a norm-one operator W : X → L∞(µ) because
L∞(µ) is isometrically injective (cf. [1, Proposition 4.3.8]).

Since K is a compact metric space, we can find a sequence (Πn) of partitions of K into
finitely many Borel sets such that each Πn+1 is finer than Πn and

(7) lim
n→∞

max
A∈Πn

diam(A) = 0.

For each n ∈ N, define the operator En : L∞(µ)→ X by

En(h) :=
∑
A∈Πn

( 1

µ(A)

∫
A

h dµ
)
1A

(with the convention 0/0 = 0); that is, En(h) is just the conditional expectation of h with
respect to the sub-σ-algebra Σn generated by Πn.

Claim: for each h ∈ C(K) and each t ∈ K we have limn→∞En(J(h))(t) = h(t).
Indeed, for each n ∈ N there is An ∈ Πn such that t ∈ An. Fix ε > 0. By the continuity
of h at t and (7), there is nε ∈ N such that |h(τ)−h(t)| ≤ εwhenever τ ∈ An and n ≥ nε.
Therefore

|En(J(h))(t)− h(t)| =
∣∣∣ 1

µ(An)

∫
An

h dµ− h(t)
∣∣∣ =

∣∣∣ 1

µ(An)

∫
An

(h− h(t)) dµ
∣∣∣ ≤ ε

for all n ≥ nε. This proves the claim.
Fix a free ultrafilter U on N. Given x ∈ X and t ∈ K, we have

|En(W (x))(t)| ≤ ‖W (x)‖L∞(µ) ≤ ‖x‖∞ for all n ∈ N

and so we can define a function f : K → BX∗ by the formula

〈f(t), x〉 := lim
U
En(W (x))(t).

The previous Claim ensures that, for each t ∈ K and h ∈ C(K), we have

〈f(t), h〉 = lim
U
En(W (h))(t) = lim

U
En(J(h))(t) = h(t).

Hence f is a selector of F . In order to prove that f is w∗-scalarly measurable, fix x ∈ X .
Clearly (En(W (x)),Σn) is a martingale in L1(µ) and we can conclude that

lim
n→∞

En(W (x)) = W (x) µ-a.e.,

see [13, V.2, Corollary 2 and Theorem 8]. It follows that 〈f, x〉 = W (x) µ-a.e. and so
〈f, x〉 is measurable. �

Next lemma shows that the existence of w∗-scalarly measurable selectors for the multi-
function F defined by (5) would ensure that certain multi-functions G : K → cw∗k(Y ∗)

also have such selectors.

Lemma 3.7. Let Y be a Banach space and G : K → cw∗k(Y ∗) a bounded multi-function
such that δ∗(y,G) is continuous for all y ∈ Y . If the multi-function F : K → cw∗k(X∗)

defined by (5) admits a w∗-scalarly measurable selector, then G admits a w∗-scalarly
measurable selector.

Proof. Since G is bounded, we can choose C > 0 such that δ∗(y,G(t)) ≤ C for all
y ∈ BY and t ∈ K. Let h : K → Y ∗ be an arbitrary selector of G and let f : K → X∗ be
a w∗-scalarly measurable selector of F . For every t ∈ K and every y ∈ Y we have

|〈h(t), y〉| ≤ max{δ∗(y,G(t)), δ∗(−y,G(t))} ≤ C‖y‖.
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Therefore we can define an operator T : Y → X by the formula

T (y)(t) := 〈h(t), y〉, y ∈ Y, t ∈ K.

Let U : X → X be the operator defined by

U(x)(t) := 〈f(t), x〉, x ∈ X, t ∈ K.

Clearly, U(x) = x whenever x ∈ C(K). Since T (y) ≤ δ∗(y,G) pointwise for all y ∈ Y
and U is positive (by Lemma 3.4(ii)), we infer that

(8) U(T (y))(t) ≤ δ∗(y,G(t)) for all y ∈ Y and t ∈ K.

Define g : K → Y ∗ by g(t) := ηt ◦ U ◦ T , where ηt ∈ X∗ is given by ηt(x) = x(t). For
each y ∈ Y we have

〈g(t), y〉 = U(T (y))(t) = 〈f(t), T (y)〉 for all t ∈ K

and so the function 〈g, y〉 is measurable (because f is w∗-scalarly measurable). Therefore
g is w∗-scalarly measurable. Moreover, g is a selector of G. Indeed, fix t ∈ K and
observe that inequality (8) says that 〈g(t), y〉 ≤ δ∗(y,G(t)) for all y ∈ Y . The separation
Hahn-Banach theorem and the fact that G(t) is convex and w∗-closed in Y ∗ ensure that
g(t) ∈ G(t). �

Theorem 3.8. If K is metrizable, Y is a Banach space and G : K → cw∗k(Y ∗) is a
multi-function such that δ∗(y,G) is continuous for all y ∈ Y , then G admits a w∗-scalarly
measurable selector.

Proof. By a standard exhaustion argument, it suffices to prove that for each A ∈ Σ+ there
is B ∈ Σ+

A such that the restriction G|B admits a w∗-scalarly measurable selector.
By Lemma 2.6 there exist B ∈ Σ+

A and C > 0 such that, for each y ∈ BY , we have
|δ∗(y,G)| ≤ C µ-a.e. on B. Since µ is a Radon measure, we can assume further that B is
closed and that µ(O ∩B) > 0 whenever O ⊂ K is an open set such that O ∩B 6= ∅.

Take any y ∈ BY and consider the open set Oy := {t ∈ K : |δ∗(y,G(t))| > C}.
Then µ(Oy ∩ B) = 0 and so Oy ∩ B = ∅. Since y ∈ BY is arbitrary, G|B is bounded.
Lemma 3.7 and Proposition 3.6 applied to the compact metric space B ensure that G|B
admits a w∗-scalarly measurable selector. The proof is over. �

Remark 3.9. A similar argument allows us to obtain the following result: Let K1 be a
compact Hausdorff topological space equipped with a Radon probability. Suppose that for
each closed setK ⊂ K1 the multi-function defined by (5) admits aw∗-scalarly measurable
selector. Let Y be a Banach space and G : K1 → cw∗k(Y ∗) a multi-function such that
δ∗(y,G) is continuous for all y ∈ Y . Then G admits a w∗-scalarly measurable selector.

In [6, Theorem 3.8] we proved that every cwk(X)-valued scalarly measurable multi-
function admits a scalarly measurable selector. Our proof relied strongly on the Radon-
Nikodým property (RNP for short) of weakly compact convex sets in Banach spaces. The
arguments used there can be straightforwardly adapted to obtain the following result. For
complete information on sets with the RNP, we refer the reader to [3].

Theorem 3.10. Let F : Ω → w∗k(X∗) be a w∗-scalarly measurable multi-function such
that cow

∗
(F (t)) has the RNP for all t ∈ Ω. Then F admits a w∗-scalarly measurable

selector.

As immediate consequences we have:
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Corollary 3.11. Suppose X∗ has the RNP. Then every w∗-scalarly measurable multi-
function F : Ω→ w∗k(X∗) admits a w∗-scalarly measurable selector.

Corollary 3.12. Let F : Ω→ wk(X∗) be a w∗-scalary measurable multi-function. Then
F admits a w∗-scalary measurable selector.

We stress that for k(X∗)-valued multi-functions, the assertion of Corollary 3.12 can be
obtained more easily by adapting the proof of [6, Theorem 3.6].

4. THE SET-VALUED GELFAND INTEGRAL

We start this section with the notion of Gelfand integrable multi-function.

Definition 4.1. A multi-function F : Ω → cw∗k(X∗) is said to be Gelfand integrable if
for every x ∈ X the function δ∗(x, F ) is integrable. In this case, the Gelfand integral of F
over A ∈ Σ is defined as∫

A

F dµ :=
⋂
x∈X

{
x∗ ∈ X∗ :

∫
A

δ∗(x, F ) dµ ≤ 〈x∗, x〉 ≤
∫
A

δ∗(x, F ) dµ
}
.

For a Gelfand integrable multi-function F the set
∫
A
F dµ is convex and w∗-closed;

moreover, an appeal to the uniform boundedness principle ensures that
∫
A
F dµ is bounded,

hence w∗-compact. It satisfies

(9) δ∗
(
x,

∫
A

F dµ
)
≤
∫
A

δ∗(x, F ) dµ

for every x ∈ X .
Our goal now is to prove that

∫
A
F dµ is not empty and that it behaves nicely, meaning,

it can be described via the Gelfand integral of the w∗-almost selectors of F and that indeed
δ∗(x,

∫
A
F dµ) =

∫
A
δ∗(x, F ) dµ for every x ∈ X .

Lemma 4.2. Let f : Ω → X∗ be a w∗-scalarly measurable w∗-almost selector of a
Gelfand integrable multi-function F : Ω → cw∗k(X∗). Then f is Gelfand integrable and∫
A
f dµ ∈

∫
A
F dµ for all A ∈ Σ.

Proof. For each x ∈ X , we have δ∗(x, F ) ≤ 〈f, x〉 ≤ δ∗(x, F ) µ-a.e., hence 〈f, x〉 is
integrable and

∫
A
δ∗(x, F ) dµ ≤

∫
A
〈f, x〉 dµ ≤

∫
A
δ∗(x, F ) dµ for all A ∈ Σ. �

We need to quote the following result (particular case of [27, Lemme 3]).

Lemma 4.3 (Valadier). Let F : Ω → cw∗k(X∗) be a w∗-scalarly measurable multi-
function. Then for each x ∈ X the multi-function

F |x : Ω→ cw∗k(X∗), F |x(t) := {x∗ ∈ F (t) : 〈x∗, x〉 = δ∗(x, F )(t)}

is w∗-scalarly measurable.

Remark 4.4. The previous result also holds true for w∗k(X∗)-valued multi-functions, by
an argument similar to that of [6, Lemma 3.3] (now dealing with the w∗-topology in X∗).

Theorem 4.5. Let F : Ω→ cw∗k(X∗) be a w∗-scalarly measurable multi-function. Then
F is Gelfand integrable if and only if every w∗-scalarly measurable w∗-almost selector
of F is Gelfand integrable. In this case, for each A ∈ Σ, the set

∫
A
F dµ is non-empty,

convex, w∗-compact and:

(i)
∫
A
F dµ =

{∫
A
f dµ : f is a Gelfand integrable w∗-almost selector of F

}
.

(ii) δ∗(x,
∫
A
F dµ) =

∫
A
δ∗(x, F ) dµ for every x ∈ X .
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Proof. The only if part has been proved in Lemma 4.2. In order to prove the if part, fix
x ∈ X . By Lemma 4.3, the multi-function F |x is w∗-scalarly measurable and so we
can apply Theorem 2.7 to find a w∗-scalarly measurable w∗-almost selector f of F |x.
Of course, f is a w∗-almost selector of F and so it is Gelfand integrable. In particular,
〈f, x〉 is integrable. Observe that δ∗(x, F |x) = δ∗(x, F |x) = δ∗(x, F ) and therefore
〈f, x〉 = δ∗(x, F ) µ-a.e. It follows that δ∗(x, F ) is integrable. As x ∈ X is arbitrary, F is
Gelfand integrable.

Now, we prove (i) and (ii). Let us define

S :=
{∫

A

f dµ : f is a Gelfand integrable w∗-almost selector of F
}
.

¿From Lemma 4.3 it follows that
∫
A
F dµ ⊃ S. It will be clear at the end of the proof

that the converse inclusion
∫
A
F dµ ⊂ S can be established when proving that S is w∗-

compact. Once this is done both the inclusion
∫
A
F dµ ⊂ S and the proof for (ii) are

provided in a single shot below.
¿From now on we assume without loss of generality thatA = Ω. LetQ be the collection

of all Gelfand integrable w∗-almost selectors of F and consider

Q̃ :=
{(
〈f, x〉

)
x∈X ∈ L

1(µ)X : f ∈ Q
}

equipped with the product topology T induced by the weak topology on L1(µ), where for
notational convenience we denote in the same way the composition 〈f, x〉 and its equiva-
lence class in L1(µ). Let T : Q̃→ X∗ be the mapping defined by

T
((
〈f, x〉

)
x∈X

)
:=

∫
Ω

f dµ.

We claim that:

(α) Q̃ is T-compact;
(β) T is T-to-w∗-continuous;
(γ) T (Q̃) = S, hence S is w∗-compact.

Being (β) and (γ) obvious we simply prove (α). To this end, we will establish first that
Q̃ is T-closed in L1(µ)X . Let {fα} be a net in Q such that (〈fα, x〉)x∈X → (fx)x∈X ∈
L1(µ)X in the topology T, that is, for each x ∈ X the net {〈fα, x〉} converges to fx in the
weak topology of L1(µ). Fix A ∈ Σ. For every x ∈ X the net of integrals {

∫
A
〈fα, x〉 dµ}

is convergent; observe also that
∫
A
〈fα, x〉 dµ = 〈

∫
A
fα dµ, x〉. Since {

∫
A
fα dµ} is a net

contained in the w∗-compact set
∫
A
F dµ ⊂ X∗, it follows at once that there exists the

w∗-limit of {
∫
A
fα dµ} in X∗, say ν(A) ∈

∫
A
F dµ. Clearly, the set function ν : Σ→ X∗

is finitely additive, vanishes on all µ-null sets and satisfies

〈ν(A), x〉 = lim

〈∫
A

fα dµ, x

〉
= lim

∫
A

〈fα, x〉 dµ =

∫
A

fx dµ

for every x ∈ X .
Bearing in mind Lemma 2.6 and the fact that 〈ν(A), x〉 ≤

∫
A
δ∗(x, F ) dµ for every

A ∈ Σ and every x ∈ X , we can find a countable partition (En) of Ω in Σ and positive
constants (Cn) such that, for each n ∈ N, we have ‖ν(A)‖ ≤ Cnµ(A) for all A ⊂ En,
A ∈ Σ. An appeal to [28, Proposition 6.2] ensures the existence of a Gelfand integrable
function gn : En → X∗ such that ν(A) =

∫
A
gn dµ for all A ⊂ En, A ∈ Σ. Define

g : Ω → X∗ by g(t) := gn(t) if t ∈ En, n ∈ N. Observe that for each x ∈ X and n ∈ N
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we have ∫
A

〈g, x〉 dµ = 〈ν(A), x〉 ≤
∫
A

δ∗(x, F ) dµ for all A ⊂ En, A ∈ Σ.

It follows that 〈g, x〉 ≤ δ∗(x, F ) µ-a.e. and so g is a w∗-almost selector of F . Since F
is Gelfand integrable, we infer that g is Gelfand integrable after Lemma 4.2. Take any
x ∈ X . Then for each A ⊂ En, A ∈ Σ, we have∫

A

〈g, x〉 dµ = 〈ν(A), x〉 = lim

∫
A

〈fα, x〉 dµ =

∫
A

fx dµ,

and therefore 〈g, x〉 = fx in L1(µ). Hence (〈g, x〉)x∈X = (fx)x∈X in L1(µ)X . This
shows that Q̃ is T-closed in L1(µ)X . Moreover, for each x ∈ X the set

Kx := {h ∈ L1(µ) : δ∗(x, F ) ≤ h ≤ δ∗(x, F )}

is weakly compact in L1(µ) because it is bounded, uniformly integrable, convex and norm
closed. Hence

∏
x∈X Kx is compact in (L1(µ)X ,T). Since Q̃ ⊂

∏
x∈X Kx, it follows

that Q̃ is T-compact, as claimed.
We already know that S ⊂

∫
Ω
F dµ. Since both sets are convex and w∗-compact, in

order to finish the proof of (i) we only have to check (by the separation Hahn-Banach
theorem) that for every x ∈ X we have δ∗(x,

∫
Ω
F dµ) ≤ δ∗(x, S). To this end, like

at the beginning of the proof, let f : Ω → X∗ be a w∗-scalarly measurable w∗-almost
selector of F |x, so that f is Gelfand integrable and 〈f, x〉 = δ∗(x, F ) µ-a.e. The vector∫

Ω
f dµ ∈ S ⊂

∫
Ω
F dµ satisfies

δ∗
(
x,

∫
Ω

F dµ
)
≥
〈∫

Ω

f dµ, x
〉

=

∫
Ω

〈f, x〉 dµ =

∫
Ω

δ∗(x, F ) dµ
(9)
≥ δ∗

(
x,

∫
Ω

F dµ
)
.

This completes the proof of (i) and (ii). �

For separable spaces, the previous Theorem allows us to deduce (via Proposition 2.3(i))
the following result which improves [2, Corollary 18.37].

Corollary 4.6. Suppose X is separable. Let F : Ω → cw∗k(X∗) be a w∗-scalarly
measurable multi-function. Then F is Gelfand integrable if and only if every w∗-scalarly
measurable selector of F is Gelfand integrable. In this case, for each A ∈ Σ, we have∫

A

F dµ =
{∫

A

f dµ : f is a Gelfand integrable selector of F
}
.

5. THE SET-VALUED DUNFORD AND PETTIS INTEGRALS

Next definition extends the notion of Dunford integrable vector-valued function to the
case of multi-functions.

Definition 5.1. A multi-function F : Ω → cwk(X) is said to be Dunford integrable if
δ∗(x∗, F ) is integrable for every x ∈ X .

We note that the multi-function F : Ω → cwk(X) is Dunford integrable if, and only
if, it is Gelfand integrable when naturally considered with values F : Ω → cw∗k(X∗∗).
Therefore, for each A ∈ Σ there is a set

∫
A
F dµ ∈ cw∗k(X∗∗) (called the Dunford

integral of F over A) such that

δ∗
(
x∗,

∫
A

F dµ
)

=

∫
A

δ∗(x∗, F ) dµ

for every x∗ ∈ X∗.
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Proceeding with multi-functions as it is usually done when defining Pettis integrability
via Dunford integrability for vector-valued functions, we arrive at the following definition.

Definition 5.2. A multi-function F : Ω → cwk(X) is said to be Pettis integrable if it is
Dunford integrable and

∫
A
F dµ ⊂ X for all A ∈ Σ.

Corollary 5.3. If the multi-function F : Ω → cwk(X) is Pettis integrable, then
∫
A
F dµ

is weakly compact in X for all A ∈ Σ.

Proof. When we look at F as a Gelfand integrable function F : Ω → cw∗k(X∗∗) the
integral

∫
A
F dµ ⊂ X∗∗ is w∗-compact. If we require now F to be Pettis integrable we

have
∫
A
F dµ ⊂ X , and therefore

∫
A
F dµ is weakly compact in X . �

As a consequence of the above we conclude that the notion of Pettis integrability in-
troduced here does coincide with the notion of Pettis integrability introduced in the mono-
graph by Castaing and Valadier [8] and that has been studied more recently by different
authors, see for instance [4, 5, 7, 9, 10, 11, 29] and [30].

Proposition 5.4. Let F : Ω → cwk(X) be a scalarly measurable multi-function. Then
F is Dunford integrable if and only if every scalarly measurable selector of F is Dunford
integrable. In this case, for each A ∈ Σ, we have

(10)
∫
A

F dµ =
{∫

A

f dµ : f is a Dunford integrable selector of F
}w∗

.

Proof. We proceed as we did in the proof of Theorem 4.5 but bearing in mind that every
cwk(X)-valued scalarly measurable multi-function has always scalarly measurable selec-
tors, [6, Theorem 3.8]. We note that to prove (10) we can avoid the fuss of dealing with Q̃
as we have to do in Theorem 4.5. Indeed, if we call

S :=
{∫

A

f dµ : f is a Dunford integrable selector of F
}w∗

,

we easily obtain the inclusion S ⊂
∫
A
F dµ. Since S is obviously w∗-compact and convex

the converse inclusion
∫
A
F dµ ⊂ S can be proved by showing

δ∗
(
x∗,

∫
A

F dµ
)
≤ δ∗(x∗, S) for every x∗ ∈ X∗.

This inequality is easily established as we did at the end of Theorem 4.5, bearing in mind
again that every cwk(X)-valued scalarly measurable multi-function has always scalarly
measurable selectors. �

Corollary 5.5. A scalarly measurable multi-function F : Ω→ cwk(X) is Pettis integrable
if and only if every scalarly measurable selector of F is Pettis integrable. In this case, for
each A ∈ Σ, we have

(11)
∫
A

F dµ =
{∫

A

f dµ : f is a Pettis integrable selector of F
}
.

Proof. For the first part, see [5, Theorem 4.2]. The second part is a consequence of Propo-
sition 5.4; see also [5, Theorem 2.6]. �

Corollary 5.6. SupposeX is separable and contains no isomorphic copy of c0. Then every
Dunford integrable multi-function F : Ω→ cwk(X) is Pettis integrable.

Proof. Every scalarly measurable selector of F is Dunford integrable (Proposition 5.4) and
so Pettis integrable by the Dimitrov-Diestel theorem, see e.g. [13, Theorem 7, p. 54]. �
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Replacing selectors by w-almost selectors we can get rid of the closure in equality (11)
above. The proof of the following result imitates that of Theorem 4.5 and so we omit it.

Proposition 5.7. If X has the weak Radon-Nikodým property and F : Ω → cwk(X) is a
Pettis integrable multi-function, then for each A ∈ Σ we have∫

A

F dµ =
{∫

A

f dµ : f is a Pettis integrable w-almost selector of F
}
.

6. COMPACTNESS OF THE GELFAND INTEGRAL

Next example provides a Gelfand integrable multi-function F : Ω → cw∗k(`∞) with
norm compact values whose integral

∫
Ω
F dµ is not weakly compact.

Example 6.1. Let Ω := N, Σ = P(N) and µ the probability measure on (Ω,Σ) defined
by µ(A) :=

∑
n∈A 2−n. Let {en}n∈N denote the canonical basis of c0 and define

F : Ω→ ck(c0), F (n) := co{−2nen, 2
nen}.

Then F is Dunford integrable and
∫

Ω
F dµ = B`∞ .

Proof. Take x∗ = (an) ∈ c∗0 = `1. Then δ∗(x∗, F )(n) = |〈x∗, 2nen〉| = 2n|an| for all
n ∈ N. So, for any given A ⊂ N we have

∫
A
|δ∗(x∗, F )| dµ =

∑
n∈A |an| < ∞. It

follows that F is Dunford integrable. Observe that∫
A

F dµ =
⋂
x∗∈`1

{
x∗∗ ∈ `∞ :

∫
A

δ∗(x
∗, F ) dµ ≤ 〈x∗∗, x∗〉 ≤

∫
A

δ∗(x∗, F ) dµ
}

=

=
⋂

(an)∈`1

{
(bn) ∈ `∞ : −

∑
n∈A
|an| ≤

∑
n∈N

anbn ≤
∑
n∈A
|an|

}
=

=
{

(bn) ∈ `∞ : bn = 0 for all n 6∈ A and |bn| ≤ 1 for all n ∈ A
}
.

Therefore for any infinite A ⊂ N we have: (i) the integral
∫
A
F dµ does not remain in c0,

hence F is not Pettis integrable; (ii)
∫
A
F dµ is not weakly compact in `∞. �

The goal of this section is to prove that if F : Ω → cw∗k(X∗) is a bounded Gelfand
integrable multi-function having norm compact values, then

∫
A
F dµ is weakly compact

for all A ∈ Σ, see Theorem 6.8. Our previous Example 6.1 shows that the hypothesis of
boundedness of F is really needed in Theorem 6.8.

We start by proving that even for a bounded F the norm compactness of its values does
not ensure that

∫
Ω
F dµ is norm compact as well.

Example 6.2. Let X := C[0, 1] and let µ be the Lebesgue measure on [0, 1]. The multi-
function F : [0, 1]→ cw∗k(X∗) defined by F (t) := {λδt : 0 ≤ λ ≤ 1} satisfies:

(i) F is bounded and takes norm compact values;
(ii) F is Gelfand integrable;

(iii)
∫
A
F dµ is not norm compact for every Borel set A ⊂ [0, 1] with µ(A) > 0.

Proof. (i) is immediate.
(ii) It suffices to check that F is w∗-scalarly measurable. Fix x ∈ X = C[0, 1]. For

each t ∈ [0, 1] we have

δ∗(x, F (t)) = sup{〈λδt, x〉 : 0 ≤ λ ≤ 1} = sup{λx(t) : 0 ≤ λ ≤ 1} = x+(t)

and similarly δ∗(x, F (t)) = −x−(t). Since x is measurable, so is x+ = δ∗(x, F ).
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(iii) Fix a Borel set A ⊂ [0, 1]. We shall prove that

(12)
∫
A

F dµ =
{
f ∈ L1[0, 1] : 0 ≤ f ≤ 1A

}
,

where L1[0, 1] is identified with the closed subspace of X∗ made up of all Borel measures
which are absolutely µ-continuous.

To prove “⊂” in (12), take any ν ∈
∫
A
F dµ. For each x ∈ X , x ≥ 0, the value

〈ν, x〉 =
∫

[0,1]
x dν lies between:

0 =

∫
A

−x− dµ =

∫
A

δ∗(x, F ) dµ ≤ 〈ν, x〉 ≤
∫
A

δ∗(x, F ) dµ =

∫
A

x+ dµ =

∫
A

x dµ.

It follows from the above that ν ≥ 0, ν([0, 1]\A) = 0 and ν(B) ≤ µ(B) for every Borel set
B ⊂ A. Therefore ν is absolutely µ-continuous and its Radon-Nikodým derivative f = dν

dµ

satisfies 0 ≤ f ≤ 1A.
To prove “⊃” in (12), take any f ∈ L1[0, 1] with 0 ≤ f ≤ 1A and consider the

associated measure ν ∈ X∗ defined by ν(B) :=
∫
B
f dµ for every Borel set B ⊂ [0, 1].

Fix x ∈ X . Since −x−1A ≤ xf ≤ x+1A µ-a.e. and 〈ν, x〉 =
∫

[0,1]
xf dµ, we have∫

A

δ∗(x, F ) dµ ≤ 〈ν, x〉 ≤
∫
A

δ∗(x, F ) dµ.

As x ∈ X is arbitrary, we get ν ∈
∫
A
F dµ. This finishes the proof of equality (12) .

Since {f ∈ L1[0, 1] : 0 ≤ f ≤ 1A} is not norm compact whenever µ(A) > 0,
statement (iii) follows from equality (12). �

Next definition and lemmata are intended to split into several parts and simplify the
proof of Theorem 6.8.

Definition 6.3. Let F,G : Ω → 2X
∗

be two multi-functions and ε > 0. We say that G is
an almost ε-net for F if:

(i) G(t) ⊂ F (t) for every t ∈ Ω;
(ii) for each x ∈ SX we have δ∗(x, F ) ≤ δ∗(x,G) + ε µ-a.e.

Lemma 6.4. Let F : Ω → k(X∗) be a w∗-scalarly measurable multi-function and let
ε > 0. Then there exist A ∈ Σ+ and finitely many w∗-scalarly measurable selectors
g1, . . . , gn of F |A such that the multi-function G : A→ k(X∗) given by

G(t) := {g1(t), . . . , gn(t)}, t ∈ Ω,

is an almost ε-net for F |A.

Proof. Our proof is by contradiction. Assume there is ε > 0 such that:

(♥) For every A ∈ Σ+ and every finite collection g1, . . . , gn of w∗-scalarly measur-
able selectors of F |A, the multi-function t 7→ {g1(t), . . . , gn(t)} is not an almost
ε-net for F |A.

CLAIM.- There is a sequence fn : Ω→ X∗ of w∗-scalarly measurable selectors of F such
that ‖fi(t)− fj(t)‖ > ε for µ-a.e. t ∈ Ω whenever i 6= j.

To show this we proceed by induction. Assume that f1, . . . , fn have been already con-
structed. Define the multi-function Fn : Ω → k(X∗) by Fn(t) := {f1(t), . . . , fn(t)}.
According to condition (♥), for each A ∈ Σ+ there exist x ∈ SX and B ∈ Σ+

A such
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that δ∗(x, F (t)) > δ∗(x, Fn(t)) + ε for all t ∈ B. A standard exhaustion argument en-
sures the existence of countably many pairwise disjoint measurable sets B1, B2, . . . with
µ(Ω \

⋃
k Bk) = 0 and vectors xk ∈ SX such that

δ∗(xk, F (t)) > δ∗(xk, Fn(t)) + ε for every t ∈ Bk and k ∈ N.

Define F̃ : Ω→ k(X∗) by

F̃ (t) :=
{
x∗ ∈ F (t) : x∗(xk) = δ∗(xk, F (t))

}
for t ∈ Bk, k ∈ N,

and F̃ (t) := {0} for t ∈ Ω \
⋃
k Bk. Then F̃ is w∗-scalarly measurable (see Remark 4.4).

We use now Corollary 3.12 to find a w∗-scalarly measurable selector fn+1 of F̃ . Fix
t ∈ Bk, k ∈ N. Then, for each i = 1, . . . , n, we have

〈fn+1(t), xk〉 = δ∗(xk, F (t)) > δ∗(xk, Fn(t)) + ε ≥ 〈fi(t), xk〉+ ε,

and so ‖fn+1(t)− fi(t)‖ > ε. The proof of the CLAIM is over.
Finally, observe that the CLAIM ensures the existence of B ∈ Σ with µ(Ω \ B) = 0

such that, for each t ∈ B, we have ‖fi(t) − fj(t)‖ > ε whenever i 6= j. This contradicts
the norm compactness of F (t), because fn(t) ∈ F (t) for all n ∈ N. �

Lemma 6.5. Let F,G : Ω → cw∗k(X∗) be Gelfand integrable multi-functions. Then
F +G is Gelfand integrable and

∫
A

(F +G) dµ =
∫
A
F dµ+

∫
A
Gdµ for every A ∈ Σ.

Proof. Clearly F +G takes values in cw∗k(X∗) and for each x ∈ X we have

δ∗(x, F +G) = δ∗(x, F ) + δ∗(x,G),

hence δ∗(x, F + G) is integrable. Fix A ∈ Σ. Then the set L :=
∫
A
F dµ +

∫
A
Gdµ

belongs to cw∗k(X∗) and Theorem 4.5 (ii) ensures that∫
A

δ∗(x, F +G) dµ =

∫
A

δ∗(x, F ) dµ+

∫
A

δ∗(x,G) dµ =

= δ∗
(
x,

∫
A

F dµ
)

+ δ∗
(
x,

∫
A

Gdµ
)

= δ∗(x, L).

An appeal to the separation Hahn-Banach theorem and again to Theorem 4.5 (ii) allows us
to obtain

∫
A

(F +G) dµ = L, as claimed. �

Lemma 6.6. Let g1, . . . , gn : Ω → X∗ be bounded Gelfand integrable functions. Then
the multi-function G : Ω→ cw∗k(X∗) given by

G(t) := co{g1(t), . . . , gn(t)}, t ∈ Ω

is Gelfand integrable and
∫
A
Gdµ is weakly compact for every A ∈ Σ.

Proof. For each x ∈ X we have δ∗(x,G) = max{〈gi, x〉 : i = 1, . . . , n} pointwise, and
so δ∗(x,G) is integrable. Thus G is Gelfand integrable.

We prove that
∫
A
Gdµ is weakly compact for A = Ω: same ideas work for an arbitrary

A ∈ Σ. Fix i ∈ {1, . . . , n}. Since gi is bounded, its indefinite Gelfand integral given by
C 7→

∫
C
gi dµ is a finitely additive X∗-valued measure satisfying∥∥∥∫

C

gi dµ
∥∥∥ ≤ µ(C) · sup

t∈Ω
‖gi(t)‖ for all C ∈ Σ,

hence it is countably additive. Consequently the set Ki := {
∫
C
gi dµ : C ∈ Σ} is weakly

relatively compact inX∗, cf. [13, Corollary 7, p. 14]. The Krein-Smulyan theorem (cf. [13,
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Theorem 11, p. 51]) ensures us that co(Ki) is weakly compact in X∗. The multi-function
Hi : Ω→ cw∗k(X∗) given by

Hi(t) := {λgi(t) : 0 ≤ λ ≤ 1},

is Gelfand integrable, since δ∗(x,Hi) = 〈gi, x〉+ for every x ∈ X . Moreover, we have∫
Ω
Hi dµ ⊂ co(Ki). Indeed, to prove this it suffices to apply the separation Hahn-Banach

theorem, taking into account that co(Ki) is convex w∗-closed (it is weakly compact) and
that, for each x ∈ X , we have

δ∗
(
x,

∫
Ω

Hi dµ
)

=

∫
Ω

δ∗(x,Hi) dµ =

〈∫
Ωx

gi dµ, x

〉
≤ δ∗(x, co(Ki)),

where Ωx := {t ∈ Ω : 〈gi, x〉 ≥ 0} ∈ Σ.
Let H : Ω → cw∗k(X∗) be the multi-function defined by H(t) :=

∑n
i=1Hi(t). By

Lemma 6.5, H is Gelfand integrable and∫
Ω

H dµ =

n∑
i=1

∫
Ω

Hi dµ ⊂
n∑
i=1

co(Ki).

Observe that K :=
∑n
i=1 co(Ki) is weakly compact. Since G(t) ⊂ H(t) for every t ∈ Ω,

it follows that
∫

Ω
Gdµ ⊂

∫
Ω
H dµ ⊂ K and so

∫
Ω
Gdµ is weakly compact. �

Lemma 6.7. Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-function.
Then the set function

νF : Σ→ `∞(BX), νF (A)(x) := δ∗
(
x,

∫
A

F dµ
)
,

is a countably additive vector measure.

Proof. We have νF (A)(x) =
∫
A
δ∗(x, F ) dµ for every A ∈ Σ and x ∈ BX by Theo-

rem 4.5 (ii), hence νF is finitely additive. Fix C > 0 large enough such that ‖x∗‖ ≤ C

for every x∗ ∈
⋃
t∈Ω F (t). Then |δ∗(x, F )| ≤ C pointwise for every x ∈ BX and so

‖νF (A)‖`∞(BX) ≤ Cµ(A) for every A ∈ Σ. Thus νF is countably additive. �

We arrive at the main result of this section:

Theorem 6.8. Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-function
having norm compact values. Then

∫
C
F dµ is weakly compact for all C ∈ Σ.

Proof. We prove that
∫
C
Gdµ is weakly compact for C = Ω: same ideas work for

an arbitrary C ∈ Σ. Fix ε > 0. By Lemma 6.4 there exist A ∈ Σ+ and finitely
many w∗-scalarly measurable selectors g1, . . . , gn of F |A such that the multi-function
t 7→ {g1(t), . . . , gn(t)} is an almost ε-net for F |A. Clearly, the multi-function

G : A→ cw∗k(X∗), G(t) := co{g1(t), . . . , gn(t)},

is also an almost ε-net for F |A. By Lemma 6.6, G is Gelfand integrable and its integral∫
A
Gdµ is weakly compact. Since G is an almost ε-net for F |A, for each x ∈ SX we have

δ∗(x, F ) ≤ δ∗(x,G) + ε µ-a.e. in A and Theorem 4.5 (ii) ensures us that

δ∗
(
x,

∫
A

F dµ
)

=

∫
A

δ∗(x, F ) dµ ≤
∫
A

δ∗(x,G) dµ+ εµ(A) =

= δ∗
(
x,

∫
A

Gdµ
)

+ εµ(A) = δ∗
(
x,

∫
A

Gdµ+ εµ(A)BX∗
)
.

It follows that
∫
A
F dµ ⊂

∫
A
Gdµ+ εµ(A)BX∗ .
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A standard exhaustion argument guarantees the existence of countably many pairwise
disjoint measurable sets A1, A2, . . . with µ(Ω \

⋃
k Ak) = 0 and countably many Gelfand

integrable multi-functionsGk : Ak → cw∗k(X∗), with
∫
Ak
Gk dµ being weakly compact,

such that

(13)
∫
Ak

F dµ ⊂
∫
Ak

Gk dµ+ εµ(Ak)BX∗ for all k ∈ N.

By Lemma 6.7, there is K ∈ N such that ‖νF (
⋃
k>K Ak)‖`∞(BX) ≤ ε, that is,

δ∗
(
x,

∫
⋃

k>K Ak

F dµ
)
≤ ε for all x ∈ BX .

Bearing in mind Theorem 4.5 (ii), it follows that

δ∗
(
x,

∫
Ω

F dµ
)

=

∫
Ω

δ∗(x, F ) dµ =

K∑
k=1

∫
Ak

δ∗(x, F ) dµ+

∫
⋃

k>K Ak

δ∗(x, F ) dµ =

=

K∑
k=1

δ∗
(
x,

∫
Ak

F dµ
)

+ δ∗
(
x,

∫
⋃

k>K Ak

F dµ
)

=

= δ∗
(
x,

K∑
k=1

∫
Ak

F dµ
)

+ δ∗
(
x,

∫
⋃

k>K Ak

F dµ
)
≤

≤ δ∗
(
x,

K∑
k=1

∫
Ak

F dµ
)

+ ε = δ∗
(
x,

K∑
k=1

∫
Ak

F dµ+ εBX∗
)
,

for all x ∈ SX , hence∫
Ω

F dµ ⊂
K∑
k=1

∫
Ak

F dµ+ εBX∗
(13)
⊂

K∑
k=1

∫
Ak

Gk dµ+ 2εBX∗ ,

and the set
∑K
k=1

∫
Ak
Gk dµ is weakly compact. As ε > 0 is arbitrary, Grothendieck’s test

(cf. [12, Lemma 2, p. 227]) guarantees that
∫

Ω
F dµ is weakly compact. �

Remark 6.9. The previous Theorem also works when F is integrably bounded, that is,
there is h ∈ L1(µ) such that sup{‖x∗‖ : x∗ ∈ F (t)} ≤ h(t) for µ-a.e. t ∈ Ω. This can be
deduced easily from the proofs of Lemmas 6.6 and 6.7.

7. SOME OPEN PROBLEMS

(A) Let F : Ω → w∗k(X∗) be a w∗-scalarly measurable multi-function. Does F
admit a w∗-scalarly measurable selector? What about cw∗k(X∗)-valued F ?

(B) Let K be a compact space equipped with a Radon probability and X := `∞(K).
Let F : K → cw∗k(X∗) be the multi-function given by

F (t) := {x∗ ∈ BX∗ : x∗|C(K) = δt}, t ∈ K.

Does F admit a w∗-scalarly measurable selector?
(C) Let F : Ω → cwk(X) be a Dunford (resp. Pettis) integrable multi-function.

Does∫
Ω

F dµ =
{∫

Ω

f dµ : f is a Dunford (resp. Pettis) integrable selector of F
}

?

(D) Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-function having
weakly compact values. Is

∫
Ω
F dµ weakly compact?
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[8] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Springer-Verlag, Berlin, 1977,
Lecture Notes in Mathematics, Vol. 580. MR 0467310 (57 #7169)

[9] L. Di Piazza and K. Musiał, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005),
no. 2, 167–179. MR 2148134 (2006a:28013)

[10] L. Di Piazza and K. Musiał, A decomposition theorem for compact-valued Henstock integral, Monatsh.
Math. 148 (2006), no. 2, 119–126. MR 2235359 (2007i:28015)

[11] L. Di Piazza and K. Musiał, A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions, Vec-
tor Measures, Integration and Related Topics. Operator Theory: Advances and Applications. Vol. 201,
Birkhauser Basel, 2010, pp. 171–182.

[12] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag,
New York, 1984. MR 737004 (85i:46020)

[13] J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977, With
a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 0453964 (56 #12216)
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