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Abstract. We prove that McShane and Pettis integrability are equivalent

for functions taking values in a subspace of a Hilbert generated Banach space.

This generalizes simultaneously all previous results on such equivalence. On
the other hand, for any super-reflexive generated Banach space having density

character greater than or equal to the continuum, we show that Birkhoff inte-

grability lies strictly between Bochner and McShane integrability. Finally, we
give a ZFC example of a scalarly null Banach space-valued function (defined

on a Radon probability space) which is not McShane integrable.

1. Introduction

The comparison between different generalizations of the Lebesgue integral is a
milestone of the modern theory of integration of Banach space-valued functions. For
functions taking values in a separable Banach space the situation is well understood
thanks to Pettis’ measurability theorem, which reduces the problem to the analysis
of the convergence character of certain series. On the contrary, for non-separable
Banach spaces several difficulties appear enriching the field of vector integration.

The McShane integral of vector-valued functions (see Section 2 for precise defi-
nitions) was first studied by Gordon [19], Fremlin and Mendoza [18] in the case of
functions defined on [0, 1] (with the Lebesgue measure). Then Fremlin [16] devel-
oped a generalized McShane integral theory for functions defined in a wide class
of topological measure spaces (including Radon probability spaces). These authors
proved that, in general, McShane integrability lies strictly between Bochner and
Pettis integrability, while McShane and Pettis integrability are equivalent for func-
tions taking values in separable Banach spaces.

More recently, Di Piazza and Preiss [6] studied the equivalence of McShane and
Pettis integrability in certain classes of non-separable Banach spaces. They showed
that such equivalence holds true for functions taking values in c0(I) (for any set I)
or in arbitrary super-reflexive Banach spaces. From the technical point of view,
the methods of Di Piazza and Preiss gathered the particular geometrical properties
of these spaces together with some powerful tools of linear geometry and topol-
ogy of Banach spaces (projectional resolutions of the identity and weak measure-
compactness) which are actually available in more general classes of spaces, like
the weakly compactly generated (WCG for short) ones. In this way, they asked [6,
p. 1178] whether McShane and Pettis integrability are equivalent for functions tak-
ing values in arbitrary WCG Banach spaces. The second named author [27] gave
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another partial answer to this question by showing that this is always the case for
L1(ν) (where ν is any probability measure).

On the other hand, the Pettis integrable `∞-valued function which is not Mc-
Shane integrable constructed by Fremlin and Mendoza [18] gave no information re-
garding the following question attributed to Musial in [6, p. 1177]: Is every scalarly
null Banach space-valued function McShane integrable? Under the Continuum Hy-
pothesis, Di Piazza and Preiss [6] and the second named author [27] provided ex-
amples of scalarly null functions defined on [0, 1] which are not McShane integrable.

In this paper we discuss the equivalence of McShane and Pettis integrability in
certain classes of non-separable Banach spaces. Also, further comparison results
involving the Bochner and Birkhoff integrals are presented. We next summarize
the contents of our work.

Section 2 introduces the terminology and preliminaries that are needed through-
out the rest of the paper.

Section 3 deals with the McShane and Pettis integrals in subspaces of Hilbert
generated Banach spaces. This well known class of Banach spaces includes all sep-
arable spaces, c0(I) (for any set I), all super-reflexive spaces and L1(ν) (for any
probability measure ν). Our main result states that McShane and Pettis integra-
bility are equivalent for functions taking values in subspaces of Hilbert generated
Banach spaces (Theorem 3.7). This generalizes simultaneously all previous results
on such equivalence. Our approach relies heavily on the special properties of the
Markushevich bases of those Banach spaces.

Section 4 is devoted to show that, whenever X is a super-reflexive generated
Banach space with density character greater than or equal to the continuum, one
can find X-valued functions defined on [0, 1] witnessing that Birkhoff integrability
lies strictly between Bochner and McShane integrability (Theorem 4.8).

Section 5 presents a ZFC example of a scalarly null function defined on a Radon
probability space which is not McShane integrable (Theorem 5.8). This provides a
negative answer to the aforementioned question of Musial, without using additional
set-theoretic axioms. The existence of such a function comes as an application
of Fremlin’s work [15] on measure-additive coverings together with the fact that
every McShane integrable `1(I)-valued function (where I is any set) is strongly
measurable (Proposition 5.4).

2. Preliminaries

All unexplained terminology can be found in our standard references [9] and [21].
The cardinality of a set S is denoted by card(S). The continuum, card(R), is
denoted by c. The density character of a topological space T , denoted by dens(T ), is
the minimal cardinality of a dense subset of T . Our Banach spaces X are assumed
to be real. We sometimes write ‖ · ‖X to denote the norm of X if it is needed
explicitly. By a ‘subspace’ of X we mean a closed linear subspace. As usual, BX

stands for the closed unit ball of X and X∗ denotes the topological dual of X. The
symbol w∗ stands for the weak∗ topology on X∗. A set Γ ⊂ X∗ is said to be total
if it separates the points of X (i.e. for each x ∈ X \ {0} there is x∗ ∈ Γ such
that x∗(x) 6= 0). A Markushevich basis of X is a family (xi, x

∗
i )i∈I , where xi ∈ X

and x∗i ∈ X∗, such that x∗i (xj) = δi,j (the Kronecker symbol) for every i, j ∈ I,
span{xi : i ∈ I} = X and {x∗i : i ∈ I} is total. By an ‘operator’ between Banach
spaces we mean a linear continuous mapping.
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After Enflo’s theorem (cf. [4, Theorem 4.1, p. 149]), a Banach space X is super-
reflexive if and only if it admits an equivalent uniformly convex norm. The basic
example of super-reflexive space is Lp(ν) for 1 < p < ∞ (where ν is any measure). A
Banach space X is called Hilbert generated (resp. super-reflexive generated) if there
exist a Hilbert (resp. super-reflexive Banach) space Y and an operator T : Y → X
such that its range T (Y ) is dense in X. In particular, such an X is always WCG.
Every separable Banach space is Hilbert generated, cf. [4, Lemma 2.5, p. 47]. Other
examples of Hilbert generated spaces are c0(I) (for any set I) and L1(ν) (for any
probability measure ν): just consider the “identity” operators `2(I) → c0(I) and
L2(ν) → L1(ν), respectively.

For an arbitrary Banach space the following implications hold:
Hilbert generated =⇒ super-reflexive generated =⇒
=⇒ subspace of a Hilbert generated Banach space,

and no one of these arrows can be reversed in general, see [12], Theorem 1 and
Section 4. Subspaces of Hilbert generated Banach spaces can be nicely characterized
via Markushevich bases as follows, see [13, Theorem 6] (cf. [21, Theorem 6.30]).

Theorem 2.1. For a Banach space X the following statements are equivalent:
(1) X is a subspace of a Hilbert generated Banach space.
(2) There is a Markushevich basis (xi, x

∗
i )i∈I of X with xi ∈ BX for all i ∈ I

satisfying the following property: for each ε > 0 there is a decomposition
I =

⋃
n∈N Iε

n such that

for all x∗ ∈ BX∗ and all n ∈ N, card({i ∈ Iε
n : |x∗(xi)| > ε}) ≤ n.

Moreover, in this case, the property mentioned in (2) holds for any Markushevich
basis (xi, x

∗
i )i∈I of X such that xi ∈ BX for all i ∈ I.

Equivalently, a Banach space X is a subspace of a Hilbert generated one if and
only if (BX∗ , w

∗) is uniform Eberlein compact (i.e. it is homeomorphic to a weakly
compact subset of a Hilbert space) if and only if X admits an equivalent uniformly
Gâteaux smooth norm (cf. [21, Theorem 6.30]).

Given a Banach space X, a complete probability space (Ω,Σ, µ) and a function
f : Ω → X, recall that f is called:

• scalarly null if for each x∗ ∈ X∗ the composition x∗f vanishes µ-a.e. (the
exceptional set depending on x∗);

• scalarly measurable if x∗f is measurable for every x∗ ∈ X∗;
• scalarly bounded if there is M > 0 such that for each x∗ ∈ BX∗ we have
|x∗f | ≤ M µ-a.e. (the exceptional set depending on x∗);

• strongly measurable if it is scalarly measurable and there is E ∈ Σ with
µ(E) = 1 such that f(E) is separable; equivalently, f is the µ-a.e. limit of
a sequence of simple functions, cf. [9, Theorem 2, p. 42];

• Bochner integrable if it is strongly measurable and
∫
Ω
‖f(·)‖X dµ < ∞;

• Pettis integrable if x∗f is integrable for every x∗ ∈ X∗ and for each E ∈ Σ
there is a vector

∫
E

f dµ ∈ X (the Pettis integral of f over E) such that∫
E

x∗f dµ = x∗
(∫

E

f dµ
)

for all x∗ ∈ X∗.

Clearly, every scalarly null function is Pettis integrable. Recall also that a function
g : Ω → X is scalarly equivalent to f if f − g is scalarly null.
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In order to recall the definition of the McShane integral we need to introduce
some terminology. A quasi-Radon probability space [17, Chapter 41] is a quadruple
(Ω,T,Σ, µ), where (Ω,Σ, µ) is a complete probability space and T ⊂ Σ is a topology
on Ω such that µ is inner regular with respect to the collection of all closed sets,
and µ(

⋃
G) = sup{µ(G) : G ∈ G} for every upwards directed family G ⊂ T. For

instance, every Radon probability space is quasi-Radon, see [17, 416A]. A general-
ized McShane partition of Ω is a sequence (Ei, ti)i∈N where the Ei’s are pairwise
disjoint measurable sets such that µ(Ω \

⋃
i∈N Ei) = 0 and ti ∈ Ω for every i ∈ N.

A partial McShane partition of Ω is a countable (maybe finite) collection (Ei, ti)i∈I

where the Ei’s are pairwise disjoint measurable sets and ti ∈ Ω for every i ∈ I. A
gauge on Ω is a function δ : Ω → T such that t ∈ δ(t) for every t ∈ Ω; a partial
McShane partition (Ei, ti)i∈I of Ω is subordinate to δ if Ei ⊂ δ(ti) for every i ∈ I.
For every gauge on Ω there is a generalized McShane partition of Ω subordinate
to it, see [16, 1B(d)]. A function f defined on Ω and taking values in a Banach
space X is called McShane integrable, with McShane integral x ∈ X, see [16, 1A],
if for every ε > 0 there is a gauge δ on Ω such that

lim sup
n→∞

∥∥∥ n∑
i=1

µ(Ei)f(ti)− x
∥∥∥

X
≤ ε

for every generalized McShane partition (Ei, ti)i∈N of Ω subordinate to δ. In this
case f is also Pettis integrable (and the respective integrals coincide), see [16, 1Q].

We should point out that for functions defined on [0, 1] (with the Lebesgue
measure λ) the McShane integral can be defined in a simpler way by using ‘fi-
nite partitions into non-overlapping closed subintervals’. More precisely, a func-
tion f : [0, 1] → X is McShane integrable, with integral x ∈ X, if and only if
for every ε > 0 there is a positive function δ on [0, 1] such that the inequality
‖

∑p
i=1 λ(Ii)f(ti) − x‖X ≤ ε holds for every finite collection I1, . . . , Ip of non-

overlapping closed intervals with [0, 1] =
⋃p

i=1 Ii and every choice of points ti ∈ [0, 1]
with Ii ⊂ (ti − δ(ti), ti + δ(ti)) for all 1 ≤ i ≤ p; see [16, 1F-1G].

3. Equivalence of McShane and Pettis integrability in subspaces of
Hilbert generated Banach spaces

The following two lemmas will be frequently used throughout this section. The
first one is an immediate consequence of the Saks-Henstock lemma [16, 2B]. The
second one can be proved as [6, Lemma 2(2)] or can be deduced straightforwardly
from Fremlin’s convergence theorem for the McShane integral, see [16, 4A].

Lemma 3.1. Let X be a Banach space, (Ω,T,Σ, µ) a quasi-Radon probability space
and f : Ω → X a function. Then f is scalarly null and McShane integrable if and
only if for every ε > 0 there is a gauge δ on Ω such that∥∥∥ p∑

j=1

µ(Ej)f(tj)
∥∥∥

X
≤ ε

for every partial McShane partition (Ej , tj)1≤j≤p of Ω subordinate to δ.

Lemma 3.2. Let X be a Banach space, (Ω,T,Σ, µ) a quasi-Radon probability space
and fn : Ω → X a sequence of scalarly null McShane integrable functions converging
pointwise to a function f : Ω → X. Then f is scalarly null and McShane integrable.
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Given a subspace Y of a Banach space X, it is easy to check that a Y -valued
function is Pettis (resp. McShane) integrable if and only if it is Pettis (resp. Mc-
Shane) integrable when considered as an X-valued function. Thus, in order to
prove that Pettis and McShane integrability coincide in subspaces of Hilbert gen-
erated Banach spaces (Theorem 3.7 below) it would be sufficient to check the case
of Hilbert generated Banach spaces. However, our techniques apply directly to the
general case. The proof of Theorem 3.7 is divided into several lemmas.

Given two sets A ⊂ B, a Banach space X and a function f : B → X, we write
fχA to denote the X-valued function on B which agrees with f on A and vanishes
on B \A.

Lemma 3.3. Let X be a subspace of a Hilbert generated Banach space and consider
a Markushevich basis (xi, x

∗
i )i∈I of X. Let (Ω,T,Σ, µ) be a quasi-Radon probability

space and f : Ω → X a scalarly null function. If f(Ω) ⊂ {λxi : i ∈ I, λ ∈ R}, then
f is McShane integrable.

Proof. We assume without loss of generality (normalize!) that xi ∈ BX for all i ∈ I.
For each t ∈ Ω we can write f(t) = h(t)xi(t) for some h(t) ∈ R and i(t) ∈ I.

Claim. We can assume without loss of generality that h : Ω → R is bounded.
Indeed, for each n ∈ N, set An := {t ∈ Ω : |h(t)| ≤ n}. Then (An) is an increasing
sequence of subsets covering Ω, hence fχAn

→ f pointwise as n →∞. Clearly, each
fχAn

is scalarly null and admits a representation of the form fχAn
(t) = hn(t)xi(t),

where hn = hχAn is bounded. In view of Lemma 3.2, f is McShane integrable if
each fχAn is. This proves the claim.

So, we assume that M := supt∈Ω |h(t)| < ∞. Fix ε > 0. Since the Markushevich
basis (xi, x

∗
i )i∈I satisfies the property mentioned in Theorem 2.1(2), there is a

decomposition I =
⋃

n∈N Iε
n such that

(1) for all x∗ ∈ BX∗ and all n ∈ N, card({i ∈ Iε
n : |x∗(xi)| > ε}) ≤ n.

For each i ∈ I there is a unique n(i) ∈ N such that i ∈ Iε
n(i); since x∗i f vanishes

µ-a.e., we can find a gauge δi on Ω such that

(2)
∣∣∣ p∑
j=1

µ(Ej)x∗i f(tj)
∣∣∣ ≤ ε

2n(i) · n(i)

for every partial McShane partition (Ej , tj)1≤j≤p of Ω subordinate to δi (apply
Lemma 3.1 to the real-valued function x∗i f).

Define a gauge δ on Ω by δ(t) := δi(t)(t). Take any partial McShane partition
(Ej , tj)1≤j≤p of Ω subordinate to δ. Define

J(i) := {1 ≤ j ≤ p : i(tj) = i} for all i ∈ I.

Fix x∗ ∈ BX∗ and set

A := {i ∈ I : |x∗(xi)| ≤ ε} and Bn := {i ∈ Iε
n : |x∗(xi)| > ε} for all n ∈ N.

We can write

(3)
p∑

j=1

µ(Ej)f(tj) =
∑
i∈A

( ∑
j∈J(i)

µ(Ej)f(tj)
)

+
∑
n∈N

( ∑
i∈Bn

( ∑
j∈J(i)

µ(Ej)f(tj)
))

.
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On the one hand, since the J(i)’s are pairwise disjoint, we have

(4)
∣∣∣x∗(∑

i∈A

( ∑
j∈J(i)

µ(Ej)f(tj)
))∣∣∣ =

∣∣∣∑
i∈A

( ∑
j∈J(i)

µ(Ej)x∗f(tj)
)∣∣∣ ≤

≤
∑
i∈A

( ∑
j∈J(i)

µ(Ej)|x∗f(tj)|
)

=
∑
i∈A

( ∑
j∈J(i)

µ(Ej)|h(tj)|
)
· |x∗(xi)| ≤

≤ M ·
(∑

i∈A

( ∑
j∈J(i)

µ(Ej)
))

· ε = M · µ
(⋃

i∈A

⋃
j∈J(i)

Ej

)
· ε ≤ M · ε.

On the other hand, for each i ∈ I with J(i) 6= ∅, we have x∗f(tj) = x∗i f(tj)x∗(xi)
whenever j ∈ J(i), and therefore (2) yields

(5)
∣∣∣x∗( ∑

j∈J(i)

µ(Ej)f(tj)
)∣∣∣ =

∣∣∣ ∑
j∈J(i)

µ(Ej)x∗f(tj)
∣∣∣ =

=
∣∣∣ ∑
j∈J(i)

µ(Ej)x∗i f(tj)
∣∣∣ · |x∗(xi)| ≤

ε

2n(i) · n(i)
,

because xi ∈ BX and (Ej , tj)j∈J(i) is a partial McShane partition of Ω subordinate
to δi. Bearing in mind (3), (4), (5) and the fact that card(Bn) ≤ n for all n ∈ N
(by (1)), it follows that∣∣∣x∗( p∑

j=1

µ(Ej)f(tj)
)∣∣∣ ≤

≤
∣∣∣x∗(∑

i∈A

( ∑
j∈J(i)

µ(Ej)f(tj)
))∣∣∣ +

∑
n∈N

( ∑
i∈Bn

∣∣∣x∗( ∑
j∈J(i)

µ(Ej)f(tj)
)∣∣∣) ≤

≤ M · ε +
∑
n∈N

card(Bn) · ε

2n · n
≤ (M + 1) · ε.

As x∗ ∈ BX∗ is arbitrary, we have ‖
∑p

j=1 µ(Ej)f(tj)‖X ≤ (M + 1) · ε. As ε > 0 is
arbitrary, Lemma 3.1 tells us that f is McShane integrable. �

In the following lemma we use the fact that every subspace of a Hilbert generated
Banach space belongs to the class of weakly Lindelöf determined (WLD for short)
spaces (cf. [21, Theorem 6.13]). Recall that a Banach space X is WLD if (BX∗ , w

∗)
is a Corson compact, i.e. it is homeomorphic to a set S ⊂ [−1, 1]I (endowed with
the product topology) such that {i ∈ I : s(i) 6= 0} is countable for every s ∈ S.

Lemma 3.4. Let X be a subspace of a Hilbert generated Banach space and consider
a Markushevich basis (xi, x

∗
i )i∈I of X. Let (Ω,T,Σ, µ) be a quasi-Radon probability

space and f : Ω → X a scalarly null function. Let g : Ω → X be a function such
that

g(t) ∈ span{(x∗i f(t))xi : i ∈ I} for all t ∈ Ω.

Then g is scalarly null and McShane integrable.

Proof. For each t ∈ Ω, we can find n(t) ∈ N, real numbers a1(t), . . . , an(t)(t) and a
set {i1(t), . . . , in(t)(t)} ⊂ I such that

g(t) =
n(t)∑
n=1

an(t)xin(t)



INTEGRATION IN HILBERT GENERATED BANACH SPACES 7

with the additional property that an(t) = 0 whenever x∗in(t)f(t) = 0. For each
n ∈ N we define a function gn : Ω → X by the formula

gn(t) =

{
an(t)xin(t) if n(t) ≥ n,

0 otherwise.

Clearly, we have g =
∑∞

n=1 gn pointwise and, therefore, in order to finish the
proof we only have to check that each gn is scalarly null and McShane integrable
(by Lemma 3.2). To this end, fix n ∈ N. Since the range of gn is contained in
{λxi : i ∈ I, λ ∈ R}, in order to prove that gn is McShane integrable it suffices to
show that gn is scalarly null (by Lemma 3.3).

Fix x∗ ∈ X∗. Since X is WLD, the set {i ∈ I : x∗(xi) 6= 0} is countable, say
{i1, i2, . . . } (cf. [21, Lemma 5.35]). For each k ∈ N, set

Bk := {t ∈ Ω : n(t) ≥ n, in(t) = ik}

and observe that for each t ∈ Bk we have x∗gn(t) = an(t)x∗(xik
), with an(t) = 0

whenever x∗ik
f(t) = 0; since f is scalarly null, the function x∗ik

f vanishes µ-a.e.
and so the same holds for x∗gnχBk

. Writing B :=
⋃

k∈N Bk, it follows that x∗gnχB

vanishes µ-a.e. On the other hand, x∗gn(t) = 0 for all t ∈ Ω\B. Therefore x∗gn = 0
µ-a.e. As x∗ ∈ X∗ is arbitrary, gn is scalarly null and the proof is over. �

A Markushevich basis (xi, x
∗
i )i∈I of a Banach space X is called strong if ev-

ery x ∈ X belongs to span{x∗i (x)xi : i ∈ I}. A striking result of Terenzi [31]
(cf. [21, Theorem 1.36]) states that every separable Banach space admits a strong
Markushevich basis. This result can be extended to more general classes of Ba-
nach spaces by means of projectional resolutions of the identity and a standard
transfinite induction argument. For instance, every WLD Banach space admits a
strong Markushevich basis, see [21, Corollary 5.2]. In particular, every subspace of
a Hilbert generated Banach space admits a strong Markushevich basis.

Lemma 3.5. Let X be a Banach space admitting a strong Markushevich basis
(xi, x

∗
i )i∈I . Let Ω be a set and f : Ω → X a function. Then for every ε > 0 there

is a function g : Ω → X such that

g(t) ∈ span{(x∗i f(t))xi : i ∈ I} and ‖f(t)− g(t)‖X ≤ ε for all t ∈ Ω.

Proof. Straightforward. �

Lemma 3.6. Let X be a subspace of a Hilbert generated Banach space, (Ω,T,Σ, µ)
a quasi-Radon probability space and f : Ω → X a scalarly null function. Then f is
McShane integrable.

Proof. As we have already mentioned, X admits a strong Markushevich basis
(xi, x

∗
i )i∈I . In view of Lemmas 3.5 and 3.4, there is a sequence of scalarly null

McShane integrable X-valued functions defined on Ω converging uniformly to f .
An appeal to Lemma 3.2 ensures that f is McShane integrable. �

We are now ready to prove our main result in this section.

Theorem 3.7. Let X be a subspace of a Hilbert generated Banach space, (Ω,T,Σ, µ)
a quasi-Radon probability space and f : Ω → X a function. Then f is McShane
integrable if and only if it is Pettis integrable.
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Proof. It only remains to prove the if part. Since X is WLD, it is weakly Lindelöf
(cf. [21, Theorem 5.37]) and so weakly measure-compact. This fact and the scalar
measurability of f ensure the existence of a strongly measurable function g : Ω → X
which is scalarly equivalent to f (see [10, Proposition 5.4]). Since h := f − g is
scalarly null, Lemma 3.6 applies to infer that h is McShane integrable. On the other
hand, g = f − h is Pettis integrable and strongly measurable, hence it is McShane
integrable (see [16, 4C]). It follows that f = g + h is McShane integrable. �

All Banach spaces considered in the following corollary are subspaces of Hilbert
generated spaces. Observe that the separable case (i) has been used in the proof
of Theorem 3.7. Cases (ii) and (iii) are due to Di Piazza and Preiss [6]. Case (iv)
was recently proved by the second named author [27].

Corollary 3.8. Let X be a Banach space satisfying any of the following conditions:
(i) X is separable.
(ii) X = c0(I) (for any set I).
(iii) X is super-reflexive.
(iv) X = L1(ν) (for any probability measure ν).

Let (Ω,T,Σ, µ) be a quasi-Radon probability space and f : Ω → X a function. Then
f is McShane integrable if and only if it is Pettis integrable.

A Markushevich basis (xi, x
∗
i )i∈I of a Banach space X is called an unconditional

Schauder basis of X if, for each x ∈ X, the family (x∗i (x)xi)i∈I is summable in X
and x =

∑
i∈I x∗i (x)xi; in this case, the basis is called symmetric if, for each

bijection π : I → I and each ai ∈ R, i ∈ I, the family (aixi)i∈I is summable if and
only if (aixπ(i))i∈I is summable. A result of Troyanski [32] (cf. [21, Theorem 7.54])
states that, if a non-separable Banach space X has a symmetric unconditional
Schauder basis and does not admit an equivalent uniformly Gâteaux smooth norm,
then X is isomorphic to `1(I) for some set I. As we mentioned in Section 2, the
property of admitting an equivalent uniformly Gâteaux smooth norm characterizes
the subspaces of Hilbert generated Banach spaces. Bearing in mind Theorem 3.7
and the fact that every Pettis integrable `1(c)-valued function is strongly measurable
(see Remark 5.3 in Section 5 below), we arrive at the following:

Corollary 3.9. Let X be a Banach space with dens(X) ≤ c having a symmetric
unconditional Schauder basis. Let (Ω,T,Σ, µ) be a quasi-Radon probability space
and f : Ω → X a function. Then f is McShane integrable if and only if it is Pettis
integrable.

In the statement of the previous corollary, the restriction on the density character
cannot be removed in general, see Theorem 5.8 in Section 5.

4. Comparing the Bochner, Birkhoff and McShane integrals in
super-reflexive generated Banach spaces

Given a complete probability space (Ω,Σ, µ) and a Banach space X, a function
f : Ω → X is called Birkhoff integrable, with Birkhoff integral x ∈ X, if for every
ε > 0 there is a countable partition (An) of Ω in Σ such that, for any choice of
points tn ∈ An, the series

∑
n µ(An)f(tn) converges unconditionally in X and∥∥∥∑
n

µ(An)f(tn)− x
∥∥∥

X
≤ ε.
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This notion of integrability plays an interesting role in vector integration, see for
instance [3, 14, 23, 25, 26, 29, 28]. For a function f : Ω → X we always have

Bochner integrable =⇒ Birkhoff integrable =⇒ Pettis integrable
and the respective integrals coincide. No one of these implications can be reversed
in general, but Birkhoff and Pettis integrability are still equivalent for functions
taking values in a separable Banach space (cf. [3, 23]).

It is known that, in general, every Birkhoff integrable function defined on a quasi-
Radon probability space is McShane integrable, see [14, Proposition 4] (cf. [25]).
The converse holds for functions taking values in subspaces of `∞, see [14, Theo-
rem 10]. Examples of McShane integrable functions which are not Birkhoff inte-
grable can be found in [14] and [23].

The main purpose of this section is to prove that, for any super-reflexive gener-
ated Banach space X with dens(X) ≥ c, we can always construct X-valued func-
tions defined on [0, 1] witnessing that

Bochner integrable ⇐=6 Birkhoff integrable ⇐=6 McShane integrable,
see Theorem 4.8 below. The particular case of super-reflexive spaces was considered
by the second named author in [23, 29]. We need some previous work.

Lemma 4.1. Let T : Y → X be a one-to-one operator between Banach spaces,
where Y is WLD. Then dens(Y ) ≤ dens(X∗, w∗).

Proof. Let Γ ⊂ X∗ be a total set with card(Γ) = dens(X∗, w∗). The fact that T
is one-to-one implies that the set of compositions {x∗ ◦ T : x∗ ∈ Γ} ⊂ Y ∗ is total
and, therefore, we have dens(Y ∗, w∗) ≤ card(Γ) = dens(X∗, w∗). The conclusion
now follows from the equality dens(Y ∗, w∗) = dens(Y ), which holds because Y is
WLD (cf. [21, Proposition 5.40]). �

Lemma 4.2. Let (Ω,Σ, µ) be a complete probability space, X a Banach space and
f : Ω → X a Pettis integrable function. Suppose there is a total set Γ ⊂ X∗ such
that, for each x∗ ∈ Γ, we have x∗f = 0 µ-a.e. Then f is scalarly null.

Proof. Given any A ∈ Σ, we have x∗(
∫

A
f dµ) =

∫
A

x∗f dµ = 0 for all x∗ ∈ Γ, hence∫
A

f dµ = 0. As A ∈ Σ is arbitrary, f is scalarly null. �

Strong and scalar measurability, as well as scalar nullity, are preserved when
composing with operators. In Proposition 4.3 we discuss the inverse problem for
one-to-one operators. Recall that the class of Banach spaces X for which (X∗, w∗)
is angelic (i.e. for any bounded set K ⊂ X∗, every point in its w∗-closure is the
w∗-limit of a sequence in K) contains all WLD spaces, cf. [21, Proposition 5.27].

Proposition 4.3. Let T : Y → X be a one-to-one operator between Banach spaces.
Let (Ω,Σ, µ) be a complete probability space and f : Ω → Y a function.

(i) If (Y ∗, w∗) is angelic, then f is scalarly measurable if and only if T ◦ f is.
(ii) If Y is WLD, then f is strongly measurable if and only if T ◦ f is.
(iii) If (Y ∗, w∗) is angelic, then f is scalarly null if and only if T ◦ f is.

Proof. It only remains to prove the if parts.
(i) Suppose that (Y ∗, w∗) is angelic and that T ◦ f is scalarly measurable. Since

T is one-to-one, the set Λ := {x∗ ◦T : x∗ ∈ X∗} ⊂ Y ∗ is total. Observe that f is Σ-
σ(Λ)-measurable, where σ(Λ) is the σ-algebra on Y generated by Λ. Since (Y ∗, w∗)



10 ROBERT DEVILLE AND JOSÉ RODRÍGUEZ

is angelic, a result of Gulisashvili [20] says that σ(Λ) = σ(Y ∗) (the σ-algebra on Y
generated by Y ∗). Hence f is Σ-σ(Y ∗)-measurable, i.e. scalarly measurable.

(ii) Suppose that Y is WLD and that T ◦ f is strongly measurable. Then there
is E ∈ Σ with µ(E) = 1 such that T (f(E)) is separable. Set Y0 := span(f(E)) ⊂ Y
and X0 := span(T (f(E))) ⊂ X, and observe that T (Y0) ⊂ X0. Since every subspace
of a WLD Banach space is also WLD (cf. [21, Corollary 5.43]), the space Y0 is WLD.
Lemma 4.1 applied to the restriction T |Y0 : Y0 → X0 ensures that Y0 is separable,
hence the same holds for f(E). On the other hand, (Y ∗, w∗) is angelic and T ◦ f is
scalarly measurable, hence f is scalarly measurable as well (by (i)). It follows that
f is strongly measurable.

(iii) Suppose that (Y ∗, w∗) is angelic and that T ◦ f is scalarly null. Then
f is scalarly measurable (by (i)) and so we can find a sequence (En) in Σ with
Ω =

⋃
n∈N En such that, for each n ∈ N, the function fχEn is scalarly bounded,

cf. [22, Proposition 3.1]. Fix n ∈ N. Since every Banach space with w∗-angelic
dual has the Pettis Integral Property [11], fχEn is Pettis integrable. Moreover, for
every y∗ ∈ Λ the composition y∗fχEn

vanishes µ-a.e. (since T ◦ f is scalarly null).
Hence Lemma 4.2 can be applied to conclude that fχEn

is scalarly null. As n ∈ N
is arbitrary, f is scalarly null and the proof is over. �

A similar result for “integrable” functions does not hold in general:

Remark 4.4. Let T : Y → X be an operator between Banach spaces such that
T (Y ) is not closed and let (Ω,Σ, µ) be an atomless probability space. Then there
is a non Pettis integrable function f : Ω → Y such that T ◦f is Bochner integrable.

Proof. Since T (Y ) is not closed, we can find a non convergent sequence (yn) in Y
such that ‖T (yn+1)−T (yn)‖X ≤ 2−n for all n ∈ N. Let (An) be a disjoint sequence
in Σ with µ(An) > 0 for all n ∈ N. Define f : Ω → Y by f(t) := (yn+1− yn)/µ(An)
if t ∈ An for some n ∈ N, and f(t) := 0 if t 6∈

⋃
n∈N An. Then the function T ◦ f

is Bochner integrable, since
∑∞

n=1 ‖T (yn+1− yn)‖X < ∞. However, f is not Pettis
integrable because the series

∑∞
n=1(yn+1 − yn) does not converge in Y . �

The following examples show that in Proposition 4.3 the additional assumption
on Y cannot be dropped in general.

Example 4.5. Let T : `1([0, 1]) → `2([0, 1]) be the “identity” operator and let us
consider the function f : [0, 1] → `1([0, 1]) given by f(t) := et (where et(s) = δt,s).
Then T ◦ f is scalarly null but f is not scalarly measurable.

Example 4.6. Let D be the Banach space of all real-valued functions on [0, 1]
which are right continuous and have left limits, equipped with the supremum norm.
Then D∗ is w∗-angelic but D is not WLD (observe that D is isomorphic to a non-
separable subspace of `∞). Let us consider any one-to-one operator T : D → c0

and let f : [0, 1] → D be any scalarly measurable function which is not strongly
measurable (e.g. the one given by f(t) := χ[0,t), cf. [10, Section 6]). Since c0 is
separable and T ◦ f is scalarly measurable, T ◦ f is strongly measurable.

In the proof of the next lemma we use the fact that a Banach space is super-
reflexive if and only if its dual is super-reflexive, cf. [4, Corollary 4.6, p. 152].

Lemma 4.7. Let X be a super-reflexive generated Banach space. Then there exist a
super-reflexive Banach space Y with dens(Y ) = dens(X) and a one-to-one operator
T : Y → X with dense range.
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Proof. There exist a super-reflexive Banach space Z and an operator S : Z → X
with dense range. Since (Z/ ker S)∗ is isomorphic to a subspace of the super-
reflexive space Z∗, the space (Z/ ker S)∗ is super-reflexive too and so the same holds
for Y := Z/ ker S. Let T : Y → X be the one-to-one operator such that S = T ◦ π,
where π : Z → Y is the canonical quotient operator. Clearly, T has dense range and
so dens(X) ≤ dens(Y ). On the other hand, we also have dens(X) = dens(X∗, w∗)
(because X is WLD, cf. [21, Proposition 5.40]). Lemma 4.1 finishes the proof. �

We can now prove the chief result of this section.

Theorem 4.8. Let X be a super-reflexive generated Banach space with density
character dens(X) ≥ c. Then there exist:

(i) a bounded Birkhoff integrable function h : [0, 1] → X which is not strongly
measurable (hence not Bochner integrable);

(ii) a bounded scalarly null McShane integrable function g : [0, 1] → X which is
not Birkhoff integrable.

Proof. (i) By Lemma 4.7, there exist a super-reflexive Banach space Y such that
dens(Y ) = dens(X) and a one-to-one operator T : Y → X. In [29] (proofs of
Lemma 3.2 and Theorem 1.2) it is shown that, since Y is super-reflexive and
dens(Y ) ≥ c, there is a bounded Birkhoff integrable function f : [0, 1] → Y which is
not strongly measurable. Define h : [0, 1] → X by h := T ◦ f . Clearly, h is bounded
and Birkhoff integrable. By Proposition 4.3(ii), h is not strongly measurable.

(ii) Since X is WLD and dens(X) ≥ c, there is a bounded scalarly null function
g : [0, 1] → X which is not Birkhoff integrable, see [23, Theorem 2.3]. On the
other hand, X is a subspace of a Hilbert generated Banach space and therefore
Lemma 3.6 can be applied to conclude that g is McShane integrable. �

Remark 4.9. The function f in the proof of Theorem 4.8(i) can be chosen Riemann
integrable, see [29]. Of course, in this case h is Riemann integrable too. Moreover,
for Hilbert generated Banach spaces, Theorem 4.8(i) can be proved in a simpler
way with the help of the function f : [0, 1] → `2([0, 1]) given by f(t) := et.

5. A scalarly null function which is not McShane integrable

An operator between Banach spaces is called absolutely summing if it takes un-
conditionally convergent series to absolutely convergent ones. Of course, absolutely
summing operators also improve the integrability properties of Banach space-valued
functions, see e.g. [2, 7, 24]. In several situations the composition of a Pettis in-
tegrable function with an absolutely summing operator is Bochner integrable, but
this is not always the case, see [24] for detailed information.

The main purpose of this section is to ensure the existence of a scalarly null
Banach space-valued function (defined on a Radon probability space) which is not
McShane integrable, see Theorem 5.8 below. To this end we will take into account
the fact that the composition of a McShane integrable function with an absolutely
summing operator is always Bochner integrable [24]; this result relies on the studies
on the so-called variational McShane integral due to Di Piazza and Musial [5].

Lemma 5.1. Let Y be a Banach space for which there is an absolutely summing
one-to-one operator T from Y into another Banach space X. Let (Ω,T,Σ, µ) be a
quasi-Radon probability space and f : Ω → Y a scalarly null function. Then f is
McShane integrable if and only if f = 0 µ-a.e.
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Proof. Since every Bochner integrable function is McShane integrable, it only re-
mains to prove the only if part. So assume that f is McShane integrable. Then
g := T ◦ f : Ω → X is Bochner integrable, see [24, Theorem 3.13]. Clearly, g is
scalarly null. Since g is strongly measurable, we conclude that g = 0 µ-a.e. The
injectivity of T now implies that f = 0 µ-a.e. �

Corollary 5.2. Let Y be a Banach space satisfying any of the following conditions:
(i) Y = `1(I) (for any set I).
(ii) Y = C(K), where K is a compact Hausdorff topological space supporting a

strictly positive Radon measure.
Let (Ω,T,Σ, µ) be a quasi-Radon probability space and f : Ω → Y a scalarly null
function. Then f is McShane integrable if and only if f = 0 µ-a.e.

Proof. The result follows from Lemma 5.1 taking into account that, in both cases,
there is an absolutely summing one-to-one operator from Y into another Banach
space. Indeed:

(i) The “identity” operator `1(I) → `2(I) is absolutely summing according to
Grothendieck’s theorem, cf. [8, Theorem 3.4].

(ii) Let ν be a Radon probability measure on K such that ν(G) > 0 for every non-
empty open set G ⊂ K. The operator T : C(K) → L1(ν) which sends each function
to its equivalence class is one-to-one and absolutely summing (cf. [8, 2.9]). �

The following folk remark allows us to generalize Corollary 5.2(i) by saying that
every McShane integrable `1(I)-valued function is strongly measurable, for any set I
(see Proposition 5.4 below).

Remark 5.3. Let (Ω,Σ, µ) be a complete probability space and f : Ω → `1(I) a
Pettis integrable function (where I is any set). Since `1(I) has the Radon-Nikodým
property (cf. [9, Corollary 8, p. 83]) and the `1(I)-valued measure A  

∫
A

f dµ is
µ-continuous and has σ-finite variation (cf. [22, Theorem 4.1]), it follows that f
is scalarly equivalent to a strongly measurable function. Moreover, if card(I) ≤ c
then `1(I)∗ is w∗-separable and so f is strongly measurable.

Proposition 5.4. Let (Ω,T,Σ, µ) be a quasi-Radon probability space and consider
a McShane integrable function f : Ω → `1(I) (where I is any set). Then f is
strongly measurable.

Proof. We already know that f is scalarly equivalent to a strongly measurable
function g : Ω → `1(I) (Remark 5.3). Hence h := f − g is scalarly null and g
is Pettis integrable. Since g is strongly measurable, it follows that g is McShane
integrable (see [16, 4C]). Therefore, h is McShane integrable as well. An appeal
to Corollary 5.2(i) ensures that h vanishes µ-a.e., hence f = g µ-a.e. and so f is
strongly measurable. �

In order to find a scalarly null `1(I)-valued function which is not McShane inte-
grable other measure theoretic ingredients are needed. Given a complete probabil-
ity space (Ω,Σ, µ), a family (fi)i∈I of real-valued functions defined on Ω is called
measure-additive (see [15, 11A]) if

∑
i∈I |fi(t)| < ∞ for every t ∈ Ω and, for each

set J ⊂ I, the function
∑

i∈J fi is measurable. The connection between the the-
ory of measure-additive families of real-valued functions and vector integration is
explained in the following simple lemma.
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Lemma 5.5. Let (Ω,Σ, µ) be a complete probability space and (fi)i∈I a family of
real-valued functions defined on Ω such that

∑
i∈I |fi(t)| < ∞ for every t ∈ Ω.

Define f : Ω → `1(I) by f(t) := (fi(t))i∈I . Then:
(i) f = 0 µ-a.e. if and only if

∑
i∈I |fi| vanishes µ-a.e.

(ii) f is scalarly measurable if and only if (fi)i∈I is measure-additive.
(iii) f is scalarly null if and only if, for each set J ⊂ I, the function

∑
i∈J fi

vanishes µ-a.e.

Proof. (i) Observe that ‖f(t)‖`1(I) =
∑

i∈I |fi(t)| for all t ∈ Ω.
(ii) The only if part follows at once from the fact that, for each J ⊂ I, the com-

position of f with the functional χJ ∈ `∞(I) = `1(I)∗ coincides with
∑

i∈J fi. Con-
versely, assume that (fi)i∈I is measure-additive and fix ϕ ∈ `∞(I). For each m ∈ N
we can find a finite partition {Jm

1 , . . . , Jm
nm
} of I and real numbers am

1 , . . . , am
nm

such that ‖ϕ−ϕm‖`∞(I) ≤ 1/m, where ϕm :=
∑nm

k=1 am
k χJm

k
. Notice that the com-

position ϕmf =
∑nm

k=1 am
k (

∑
i∈Jm

k
fi) is measurable. Since ϕmf → ϕf pointwise as

m →∞, we conclude that ϕf is measurable. The proof of (iii) is analogous. �

One of the striking applications of Fremlin’s work [15] on measure-additive cov-
erings reads as follows (see [15, 11D]): if (fi)i∈I is a measure-additive family of
real-valued functions defined on a Radon probability space such that each fi van-
ishes a.e., then their sum

∑
i∈I fi also vanishes a.e. In view of Lemma 5.5(iii), this

result can be restated in the following way:

Theorem 5.6 (Fremlin). Let (Ω,T,Σ, µ) be a Radon probability space and (fi)i∈I a
measure-additive family of real-valued functions defined on Ω. Define f : Ω → `1(I)
by f(t) := (fi(t))i∈I . Then f is scalarly null if and only if each fi vanishes µ-a.e.

Aniszczyk and Frankiewicz [1] (cf. [15, 11C]) proved that if (fα)α<c is a measure-
additive family of real-valued functions defined on a Radon probability space, then∑

α<c |fα| vanishes a.e. whenever each fα does. Moreover, they showed that the
restriction on the cardinality cannot be dropped in general (cf. [15, 12H]). As usual,
c+ denotes the smallest cardinal greater than c.

Example 5.7 (Aniszczyk - Frankiewicz). There exist a Radon probability space
(Ω,T,Σ, µ) and a measure-additive family (fα)α<c+ of real-valued functions defined
on Ω such that each fα vanishes µ-a.e. but

∑
α<c+ |fα| does not vanish µ-a.e.

As an application of Theorem 5.6 and Example 5.7 (via Corollary 5.2(i) and
Lemma 5.5(i)) we get the desired result:

Theorem 5.8. There exist a Radon probability space (Ω,T,Σ, µ) and a scalarly
null function f : Ω → `1(c+) which is not McShane integrable.

To the best of our knowledge, it remains unknown whether there are ZFC exam-
ples of scalarly null Banach space-valued functions defined on [0, 1] which are not
McShane integrable.

Remark 5.9. Lemma 5.1, Corollary 5.2 and Proposition 5.4 still remain valid if
McShane integrability is replaced by Talagrand integrability [30] or Birkhoff integra-
bility on an arbitrary complete probability space. This is because the composition
of any Talagrand (resp. Birkhoff) integrable function with an absolutely summing
operator is always Bochner integrable [24]. In particular, the function given in
Theorem 5.8 is neither Talagrand integrable.
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Perhaps it is worth mentioning here another nice application of Theorem 5.6,
also due to Fremlin: every `1(I)-valued scalarly measurable function defined on a
Radon probability space is scalarly equivalent to a strongly measurable function, for
any set I, see [15, 11E].

Acknowledgement. We thank the referee for useful remarks that improved the
presentation of the paper.
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