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STRICTLY CONVEX RENORMINGS

A. MOLTÓ, J. ORIHUELA, S. TROYANSKI and V. ZIZLER

Abstract

A normed space X is said to be strictly convex if x = y whenever ‖(x + y)/2‖ = ‖x‖ = ‖y‖, in other words, when
the unit sphere of X does not contain non-trivial segments. Our aim in this paper is the study of those normed
spaces which admit an equivalent strictly convex norm. We present a characterization in linear topological terms
of the normed spaces which are strictly convex renormable. We consider the class of all solid Banach lattices
made up of bounded real functions on some set Γ. This class contains the Mercourakis space c1(Σ′ × Γ) and all
duals of Banach spaces with unconditional uncountable bases. We characterize the elements of this class which
admit a pointwise strictly convex renorming.

Introduction

A normed space X is said to be strictly convex if x = y whenever ‖(x + y)/2‖ = ‖x‖ = ‖y‖, in
other words, when the unit sphere of X does not contain non-trivial segments. There are few
results devoted to strictly convex renormings, most of them are based on the following simple
observation. Let Y be a strictly convex normed space and T : X → Y a linear one-to-one
bounded operator; then ‖|x|‖ = ‖x‖ + ‖Tx‖, x ∈ X, is an equivalent strictly convex norm. Day
(see, for example, [4, pp. 94–100]) constructed in c0(Γ) an equivalent strictly convex norm
introducing in c0(Γ) a norm of Lorentz sequence space type. Another strictly convex norm in
c0(Γ) can be found in [3, p. 282]. Using the fact that c0(Γ) admits a strictly convex norm and
the norm ‖| · |‖ defined above, it was obtained that every weakly compact generated space and
its dual (in particular every separable space and its dual) admits a strictly convex renorming.
Dashiell and Lindenstrauss [2] defined a class of subspaces X of �∞([0, 1]), which are strictly
convex renormable and do not admit a one-to-one linear bounded operator into c0(Γ) for
any Γ. Mercourakis (see, for example, [3, pp. 248, 286]) introduced the space c1(Σ′ × Γ), which
is strictly convex renormable but does not admit a one-to-one linear bounded operator to c0(Γ)
for any Γ. However, the strictly convex norm in the class defined in [2, p. 337] and in c1(Σ′ × Γ)
is based on Day’s strictly convex norm in c0(Γ). In [1], a quite wide class of dual strictly
convex renormable Banach spaces, which are conjugate of Banach spaces, with unconditional
basis is introduced. A characterization of strictly convex renormable spaces C(K), when K is
a tree or totally ordered, is obtained in [5] and [7], respectively. Quite recently, Smith [10] has
characterized those trees K for which C∗(K) admits a dual strictly convex norm.

Day (see, for example, [4, p. 123]) proved that the space �∞
c (Γ) of all bounded functions

with countable support does not admit a strictly convex renorming if Γ is uncountable. Other
examples of subspaces of �∞

c (Γ), which are not strictly convex renormable can be found in
[2, 1]. Haydon [6], using Baire category arguments, found some classes of spaces K for which
C(K) does not admit strictly convex renormings.
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BFM2002–01719 (Spain) and Fundación Séneca 00690/PI/04 CARM (Spain). The fourth author is supported
by the AS CR Institutional Research Plan No. AV0Z10190503 and by the research grant A 100190502 (Czech
Republic).
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Our aim in this paper is the study of those normed spaces which admit an equivalent strictly
convex norm.

In Section 1 we present a characterization in linear topological terms of the normed spaces
that are strictly convex renormable.

In Section 2 we consider the class of all solid Banach lattices made up of bounded real
functions on some set Γ. This class contains the Mercourakis space c1(Σ′ × Γ) and all dual
Banach spaces with unconditional uncountable bases. We characterize the elements of this
class which admit a pointwise strictly convex renorming.

Acknowledgements. The authors wish to thank the referee for his helpful comments and
for pointing out a gap in the previous version of this paper.

1. A characterization of strictly convex renormable spaces

For a set A, we denote the diagonal of A2 by Δ2(A), that is, Δ2(A) = {(x, x) : x ∈ A}.
Throughout the paper, given a linear space X, we denote by D : X2 → X the map defined by
the formula

D(x, y) =
x + y

2
. (1.1)

Definition 1.1. Let X be a linear topological space. A subset M of X2 is said to be
quasi-diagonal if it is symmetric (that is, if (x, y) ∈ M then (y, x) ∈ M) and if x = y whenever
(x, y) ∈ M and x, y ∈ conv(DM). We say that M is sigma quasi-diagonal if M is a countable
union of quasi-diagonal sets.

Theorem 1.2. Let X be a normed space and F a subspace of X∗ which is 1-norming for
X. The following are equivalent:

(i) S2
X is a sigma quasi-diagonal set with respect to (X, σ(X, F ));

(ii) X2 is a sigma quasi-diagonal set with respect to (X, σ(X, F ));
(iii) X admits an equivalent σ(X, F ) lower semicontinuous strictly convex norm.

In particular, X admits an equivalent σ(X, F ) lower semicontinuous strictly convex norm if,
and only if, X2 is sigma quasi-diagonal with respect to (X, σ(X, F )).

Before proving Theorem 1.2 we need some assertions.

Lemma 1.3. Let X be a normed space and F a subspace of X∗ which is 1-norming for X.
For q > 0 and n ∈ N the set

Ln,q =
{

(x, y) ∈ X2 : ‖x‖, ‖y‖ ∈ [q, q(1 + n−1)],
∥∥∥∥x + y

2

∥∥∥∥ � (1 − n−1)
‖x‖ + ‖y‖

2

}
is a quasi-diagonal set with respect to (X, σ(X, F )).

Proof. Given (x, y) ∈ Ln,q we find f ∈ F , ‖f‖ = 1, such that

f(x) � ‖x‖ − q

2n2.

Since ‖x‖ � q we get

f(x) � q

(
1 − 1

2n2

)
. (1.2)
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On the other hand, for (u, v) ∈ Ln,q we have

f

(
u + v

2

)
�
∥∥∥∥u + v

2

∥∥∥∥ � (1 − n−1)
‖u‖ + ‖v‖

2
� (1 − n−1)q(1 + n−1) = (1 − n−2)q.

Then using (1.2) we get

sup
DLn,q

f � (1 − n−2)q � f(x) − q

2n2 ,

where D is the map defined in (1.1). So x /∈ conv (DLn,q)
σ(X,F )

.

Lemma 1.4. Let X be a normed space and F a subspace of X∗, which is 1-norming for X.
Let 0 < q < r and M , N ⊂ X such that

N ⊂ qBX , M ⊂ (2r − q)BX , M ∩ rBX = ∅.

Then the set L = (M × N) ∪ (N × M) is quasi-diagonal with respect to (X, σ(X, F )).

Proof. Pick (x, y) ∈ L. Assume that x ∈ M , y ∈ N . Since ‖x‖ > r there exists f ∈ F ,
‖f‖ = 1, such that f(x) > r. For (u, v) ∈ L we have

f

(
u + v

2

)
� ‖u‖ + ‖v‖

2
� 1

2
(q + 2r − q) = r.

So supDL f � r < f(x), where D is the map defined by (1.1). Hence x /∈ conv (DL)
σ(X,F )

.

Corollary 1.5. Let X be a normed space and F a subspace of X∗, which is 1-norming
for X. Then the set P = {(x, y) ∈ X2 : ‖x‖ 	= ‖y‖} is σ(X, F ) quasi-diagonal.

Proof. For q, r ∈ Q, 0 < q < r, we set

Pr,q = (qBX × ((2r − q)BX \ rBX)) ∪ (((2r − q)BX \ rBX) × qBX).

From Lemma 1.4, we get that Pr,q are quasi-diagonal sets. We show that

P =
⋃
q,r

Pq,r.

Pick (x, y) ∈ P . We can find q, r ∈ Q such that

min(‖x‖, ‖y‖) < q < r < max(‖x‖, ‖y‖) < 2r − q.

Then we have (x, y) ∈ Pq,r.

We say that a set M ⊂ X is positively homogeneous if λx ∈ M whenever λ > 0 and x ∈ M .

Proposition 1.6. Let L ⊂ X2 be a positively homogeneous σ(X, F ) quasi-diagonal
set, where F is a norming subspace for X. Then X admits an equivalent σ(X, F )-lower
semicontinuous norm ‖ · ‖L such that x = y whenever (x, y) ∈ L, ‖x‖L = ‖y‖L = ‖(x + y)/2‖L.

Proof. Let Ln, n = 1, 2, . . . , be quasi-diagonal sets covering L. Without loss of
generality we may assume that {Ln}∞

n=1 are bounded. Otherwise we can replace {Ln}∞
n=1

by {Ln ∩ pBX2}∞
n,p=1. Pick zn ∈ Ln and denote by ‖ · ‖m,n the Minkowski functional of

−zn + Mm,n
σ(X2,F 2)

, where

Mm,n = conv (Ln) + m−1BX2 .
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We choose am,n > 0 in such a way that the function ϕ : X2 → R defined by the formula

ϕ(z) =
∞∑

m,n=1

am,n‖z − zn‖2
m,n, z ∈ X2,

is bounded on BX2 . Clearly ϕ is a convex, uniformly norm continuous function on bounded
sets. Set for w ∈ X2

‖|w|‖ = inf
{

λ > 0 : ϕ
(w

λ

)
+ ϕ

(
−w

λ

)
� 2c

}
where c = supBX2

ϕ. It is easy to see that ‖| · |‖ is an equivalent norm on X2. Clearly ‖ · ‖m,n

are σ(X2, F 2)-lower semicontinuous. Hence ϕ and ‖| · |‖ are σ(X2, F 2)-lower semicontinuous
too. For x ∈ X we set ‖x‖L = |‖(x, x)‖|. Pick x, y ∈ X such that (x, y) ∈ L and ‖x‖L = ‖y‖L =
‖(x + y)/2‖L. Since L is positively homogeneous, without loss of generality we can assume that
‖x‖L = 1. Set u = (x, x) and v = (y, y). We have

ϕ(u) + ϕ(−u) = ϕ(v) + ϕ(−v) = ϕ

(
u + v

2

)
+ ϕ

(
−u + v

2

)
= 2c.

By convexity of ϕ we get
ϕ(u) + ϕ(v)

2
− ϕ

(
u + v

2

)
= 0.

So
∞∑

m,n=1

am,n

(
‖u − zn‖2

m,n + ‖v − zn‖2
m,n

2
−
∥∥∥∥u + v

2
− zn

∥∥∥∥2
m,n

)
= 0.

Again by convex arguments [3, p. 45] we get for m, n = 1, 2, . . .

‖u − zn‖m,n = ‖v − zn‖m,n =
∥∥∥∥u + v

2
− zn

∥∥∥∥
m,n

. (1.3)

Pick n ∈ N such that (x, y) ∈ Ln. Since Ln is symmetric we obtain that (y, x) ∈ Ln too.
So (u + v)/2 = ((x, y) + (y, x))/2 ∈ conv (Ln). Hence ‖((u + v)/2) − zn‖m,n � 1 for all m =
1, 2, . . .. From (1.3) we obtain that ‖u − zn‖m,n = ‖v − zn‖m,n � 1 for all m = 1, 2, . . . . So

u − zn, v − zn ∈
∞⋂

m=1

(
−zn + Mm,n

σ(X2,F 2)
)

,

that is,

u, v ∈
∞⋂

m=1

Mm,n
σ(X2,F 2)

. (1.4)

We show that

u, v ∈ conv (Ln)
σ(X2,F 2)

. (1.5)

Assume now that u /∈ conv (Ln)
σ(X2,F 2)

. According to the Hahn–Banach theorem there exists
f ∈ F 2 and b ∈ R such that

f(u) > b > sup
Ln

f. (1.6)

Set H = {w ∈ X2 : f(w) � b}. We can find m ∈ N such that Mm,n ⊂ H. Since H is σ(X2, F 2)-

closed we obtain that Mm,n
σ(X2,F 2) ⊂ H. From (1.6) we obtain that u /∈ H. Hence u /∈

Mm,n
σ(X2,F 2)

, which contradicts (1.4). So (1.5) is proved. From (1.5) we obtain that x,
y ∈ conv (DLn)

σ(X,F )
, where D is the map defined in (1.1). Since Ln is quasi-diagonal we

get x = y.
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Proof of Theorem 1.2. (i)⇒(ii): We have S2
X =

⋃∞
n=1 Ln, where each Ln is quasi-diagonal

with respect to (X, σ(X, F )). Given n ∈ N and q, r ∈ Q+, let Ln,q,r be the set of all (x, y) ∈ X2

such that x 	= y, (x, y) ∈ ‖x‖Ln, ‖x‖ = ‖y‖ ∈]q, r[ and, either (x, x) ∈ X2 \ [q, r]conv Ln, or
(y, y) ∈ X2 \ [q, r]conv Ln. Clearly each Ln,q,r is symmetric and it is easy to prove that

{(x, y) ∈ X2 : x 	= y, ‖x‖ = ‖y‖} =
⋃

{Ln,q,r : n ∈ N, q, r ∈ Q+}.

Moreover, since conv Ln,q,r ⊂ [q, r]conv Ln the sets Ln,q,r are quasi-diagonal, so X2 is sigma
quasi-diagonal.

(ii)⇒(iii): This follows from Proposition 1.6.
(iii)⇒(ii): This is a consequence of Lemma 1.3 and Corollary 1.5.
(ii)⇒(i): This is obvious.

As a consequence of Theorem 1.2 we get the following.

Proposition 1.7 (Talagrand [3, p. 313]). There is no equivalent strictly convex dual norm
in C([0, ω1])∗.

Proof. Indeed, otherwise, according to Theorem 1.2 we have C([0, ω1])∗ × C([0, ω1])∗ =⋃∞
n=1 Mn, where every Mn is quasi-diagonal. For n ∈ N, let Sn be the set of all

(s, t) ∈ [0, ω1[×[0, ω1[ such that (δs, δt) ∈ Mn. Then [0, ω1[×[0, ω1[=
⋃∞

n=1 Sn. Moreover, since
(s, s) ∈ Sn implies δs ∈ {D(x, y) : (x, y) ∈ Mn} we conclude that the set Sn has the following
property:

(s, t) ∈ Sn, (s, s), (t, t) ∈ Sn =⇒ s = t for all s, t ∈ [0, ω1[. (1.7)

Set πi : [0, ω1[×[0, ω1[→ [0, ω1[, πi(α1, α2) = αi, i = 1, 2. Let A be the (possibly empty) set
made up by all n ∈ N for which there exists αn ∈ [0, ω1[ such that Sn ⊂ ([0, αn] × [0, ω1[) ∪
([0, ω1[×[0, αn]). If A 	= ∅ and α := supA αn we have α < ω1 and

Sn ∩ ([α, ω1[×[α, ω1[) = ∅ for all n ∈ A. (1.8)

Therefore N \ A 	= ∅, so it makes sense to take ϕ : N → N \ A which is onto and

ϕ−1({n}) is infinite for all n ∈ N \ A. (1.9)

Now according to the choice of A we can define by induction two maps λ, μ : N → [0, ω1[ such
that

(λ(n), μ(n)) ∈ Sϕ(n), n ∈ N; (1.10)

max{λ(n), μ(n)} < min{λ(n + 1), μ(n + 1)}, n ∈ N; (1.11)

α < min{λ(1), μ(1)}. (1.12)

From (1.11) it follows that
lim
n

λ(n) = lim
n

μ(n). (1.13)

Let β = limn λ(n) = limn μ(n). From (1.12) we get β > α. Moreover, from (1.9), (1.10)
and (1.13)

(β, β) ∈
⋂

{Sn : n ∈ N \ A}. (1.14)

Once more we can define by induction two maps η, ρ : N → [0, ω1[ for which (1.10)–(1.12) hold
when we replace λ, μ and α by η, ρ and β. Then let γ = limn η(n) = limn ρ(n), we have

γ > β > α and (γ, γ) ∈
⋂

{Sn : n ∈ N \ A}. (1.15)

From (1.8) and (1.15) it follows that (β, γ) /∈ Sn for any n ∈ A. So, let n0 ∈ N \ A such that
(β, γ) ∈ Sn0 . This, (1.14) and (1.15) contradict (1.7).
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2. Strict convexity in a lattice

In this section (X, ‖ · ‖X) will be a solid Banach lattice of real functions on some set Γ such
that ‖y‖∞ � ‖y‖X � ‖x‖X whenever |y(γ)| � |x(γ)| for all γ ∈ Γ for some x ∈ X. Let ‖ · ‖ be
an equivalent pointwise lower semicontinuous norm

‖x‖∞ � ‖x‖ � ‖x‖X � K‖x‖.

From now until Lemma 2.5 the symbol ‖ · ‖ will denote this norm.

Lemma 2.1. If suppx = {γ ∈ Γ : x(γ) 	= 0} is uncountable for some x ∈ X, then X contains
a lattice isomorphic copy of �∞(Λ) for some uncountable set Λ.

Proof. Set Λn = {γ ∈ Γ : |x(γ)| � n−1}. We have

suppx =
∞⋃

n=1

Λn.

So for some n the set Λn is uncountable. If y ∈ �∞(Λn) we have for every γ ∈ Λn

|y(γ)|
n‖y‖∞

� |x(γ)|.

So for all γ ∈ Γ we have |zy(γ)| � n‖y‖∞|x(γ)| for all γ ∈ Γ, where zy(γ) = y(γ) if γ ∈ Λn and
zy(γ) = 0 if γ /∈ Λn. From our assumption it follows that zy ∈ X and

‖y‖∞ = ‖zy‖∞ � ‖zy‖X � n‖x‖X‖y‖∞.

Hence �∞(Λn) is isomorphic to a subspace of X.

In X we introduce a new norm. Let G = {−1, 1}Γ, and let μ be the Haar translation invariant
measure on the Abelian group G. For s = {sγ}γ∈Γ ∈ G and x ∈ X we set

xs(γ) = sγx(γ).

Clearly for a fixed x ∈ X the function of s, xs is continuous on G when we consider in X the
pointwise convergence topology. As we have already mentioned we shall assume that the norm
‖ · ‖ is pointwise lower semicontinuous. So in this case the function on s ‖xs‖ is pointwise lower
semicontinuous on G for a fixed x ∈ X. We set

‖|x|‖ =
(∫

G

‖xs‖2 dμ(s)
)1/2

. (2.1)

Clearly ‖| · |‖ is an equivalent norm on X. Since μ is translation invariant we obtain for every
x ∈ X and every s ∈ G

‖|xs|‖ = ‖|x|‖. (2.2)

From convex arguments we obtain that

‖|x|‖2 + ‖|y|‖2

2
−
∥∥∥∥∣∣∣∣x + y

2

∣∣∣∣∥∥∥∥2 > 0 (2.3)

if and only if

μ

({
s ∈ G :

‖xs‖2 + ‖ys‖2

2
−
∥∥∥∥xs + ys

2

∥∥∥∥2 > 0

})
> 0.

For Λ ⊂ Γ and x ∈ X we set

PΛx(γ) =
{

x(γ) if γ ∈ Λ;
0 otherwise.
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For a β ∈ Γ we shall write Pβ instead of P{β}.

Lemma 2.2. For every non-empty Λ ⊂ Γ we have ‖|PΛ|‖ = 1.

Proof. Using (2.2) we get for every x ∈ X

‖|PΛx|‖ = 1
2 (‖|(PΛx + PΓ\Λx) + (PΛx − PΓ\Λx)|‖)

� 1
2 (‖|PΛx + PΓ\Λx|‖ + ‖|PΛx − PΓ\Λx|‖) = ‖|x|‖.

Lemma 2.3. The norm ‖| · |‖ is pointwise lower semicontinuous whenever ‖ · ‖ is pointwise
lower semicontinuous and provided X does not contain isomorphic copies of �∞(Λ) for an
uncountable set Λ.

Proof. Pick xα ∈ X such that limα xα = x for some x ∈ X in the topology of pointwise
convergence. Set Λ = supp x. From lemma 2.1 we obtain that #Λ � ℵ0. So there exists a
sequence {αk}∞

k=1 such that
lim

k
‖|xαk

|‖ = lim inf
α

‖|xα|‖ (2.4)

and
lim

k
PΛxαk

(γ) = x(γ) for all γ ∈ Γ.

Since ‖ · ‖ is pointwise lower semicontinuous we obtain

lim inf
k

‖PΛxs
αk

‖ � ‖xs‖ for all s ∈ G. (2.5)

Taking into account Fatou’s Lemma we get∫
G

lim inf
k

‖PΛxs
αk

‖2 dμ(s) � lim inf
k

∫
G

‖PΛxs
αk

‖2 dμ(s).

This inequality, (2.5), (2.4) and Lemma 2.2 imply

‖|x|‖ =
(∫

G

‖xs‖2 dμ(s)
)1/2

� lim inf
k

‖|PΛxαk
|‖ � lim

k
‖|xαk

|‖ = lim inf
α

‖|xα|‖.

Lemma 2.4. The norm ‖| · |‖ is a lattice norm provided #suppx � ℵ0 for every x ∈ X.

Proof. Let A be the family of all finite subsets A of Γ partially ordered by inclusion. Then
for every z ∈ X we have limA PAz = z in the topology of pointwise convergence. Since ‖| · |‖ is
pointwise lower semicontinuous we get

lim inf
A

‖|PAz‖| � ‖|z|‖.

On the other hand, Lemma 2.2 gives us ‖|PAz|‖ � ‖|z|‖ so

lim
A

‖|PAz|‖ = ‖|z|‖. (2.6)

Pick now x, y ∈ X with |x| � |y|. For every finite set A ⊂ Γ we can find λσ � 0,
σ ∈ {−1, 1}A × {1}Γ\A, such that

∑
σ λσ = 1 and PAx =

∑
σ λσPAyσ. From (2.2) we have

‖|PAyσ|‖ = ‖|PAy|‖ for all σ. Hence ‖|PAx|‖ � ‖|PAy|‖. Having in mind (2.6) we get ‖|x|‖ � ‖|y|‖.

Lemma 2.5. For every p ∈ (1, 2] there exists a positive number cp such that for every x,
y ∈ �p we have

(‖x‖p + ‖y‖p)(2/p)−1
(

‖x‖p + ‖y‖p

2
−
∥∥∥∥x + y

2

∥∥∥∥p)
� cp‖x − y‖2.
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This inequality is a homogeneous version of the uniform convexity inequality for �p,
1 < p � 2. For the proof see, for example, [8] or [9].

By con{δγ : γ ∈ Γ}, we denote the positive cone generated by the Dirac measures δγ , γ ∈ Γ.

Theorem 2.6. Let X be a solid Banach lattice of real functions on some set Γ such that
‖ · ‖∞ � ‖ · ‖X . The following assertions are equivalent:

(i) X admits a pointwise lower semicontinuous strictly convex norm;
(ii) X admits a lattice pointwise lower semicontinuous strictly convex norm;
(iii) X admits a pointwise lower semicontinuous strictly lattice norm (that is, ‖x‖ < ‖y‖

whenever |x| < |y|);
(iv) the set Z of all pairs z = (x, y) ∈ X2, 0 < x < y, can be written Z =

⋃
n∈N

Zn in such
a way that for every z = (x, y) ∈ Zn there exists f ∈ con {δγ : γ ∈ Γ} with

f(y) > sup
{

f

(
u + v

2

)
: (u, v) ∈ Zn

}
.

Proof. We use the diagram

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

(i) ⇒ (ii): Assume that ‖ · ‖ is a pointwise lower semicontinuous strictly convex norm. Let
‖| · |‖ be the norm obtained from ‖ · ‖ by (2.1). Since ‖ · ‖ is a strictly convex norm, X does not
contain isomorphic copies of �∞(Λ) for an uncountable set Λ (see, for example, [4, p. 123]). Then
from Lemma 2.3 and Lemma 2.4 we obtain that ‖| · |‖ is a lattice pointwise lower semicontinuous
norm. From (2.3), it follows that ‖| · |‖ is strictly convex.

(ii) ⇒ (iii): Pick x, y ∈ X, 0 < x < y. Let ‖ · ‖ be a lattice strictly convex norm. Then
‖x‖ � ‖y‖. Assume that ‖x‖ = ‖y‖. Since x < (x + y)/2 < y we get ‖x‖ � ‖(x + y)/2‖ � ‖y‖.
Hence ‖(x + y)/2‖ = ‖x‖ = ‖y‖. Since ‖ · ‖ is strictly convex we have x = y.

(iii) ⇒ (iv): This follows directly from the proof of Corollary 1.5.
(iv) ⇒ (iii): Denote by Z̃ (respectively, Z̃n) the set of all z = (x, y) ∈ X2 such that either

(|x|, |y|) or (|y|, |x|) belongs to Z (respectively, Zn). Let us see that Z̃n is quasi-diagonal with
respect to (X, pointwise). Indeed let (|x|, |y|) ∈ Zn, f =

∑
aγδγ , aγ > 0 and

f(|y|) > sup
{

f

(
u + v

2

)
: (u, v) ∈ Zn

}
.

Set g =
∑

aγ sign y(γ)δγ . Then g(y) = f(|y|) and g(u + v) � f(|u| + |v|) for any (u, v) ∈ X2.
Hence Z̃n is pointwise quasi-diagonal and Z̃ is sigma pointwise quasi-diagonal. According to
Proposition 1.6 there exists on X a pointwise lower semicontinuous equivalent norm ‖ · ‖ such
that x = y whenever (x, y) ∈ Z̃ and ‖x‖ = ‖y‖ = ‖(x + y)/2‖. Let us show that #suppu � ℵ0
for every u ∈ X. Indeed, otherwise, from Lemma 2.1 it follows that there exists Λ ⊂ Γ, #Λ > ℵ0,
such that every bounded function v on Λ with supp v ⊂ Λ belongs to X. Then, from a slight
adaptation of Day’s proof that �∞(Λ) does not admit a strictly convex norm, it follows that
there exist x, y ∈ X, 0 < x < y, with ‖x‖ = ‖y‖ = ‖(x + y)/2‖ (see, for example, [4, p. 123]).
For the sake of completeness we include a proof of this assertion.

Let �∞
c (Γ) be the subspace of �∞(Γ) made up by all x ∈ �∞(Γ) with countable support.

Let S be the unit sphere of �∞
c (Γ) (for the supremum norm). For each x ∈ S, x > 0,

let Fx := {y ∈ S : y �supp x= x�supp x, y > 0}, mx := inf{‖y‖ : y ∈ Fx} and Mx := sup{‖y‖ : y ∈
Fx}. The assertion will be proved as soon as we find x ∈ S with x > 0 such that

Mx = mx. (2.7)

This will follow from two observations. First, for any x ∈ S with x > 0 we have

‖x‖ � Mx + mx

2
. (2.8)
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Indeed, given ε > 0, take y ∈ Fx such that ‖y‖ − ε < mx. Then for any y′ ∈ Fx we have
2x � y + y′, therefore, 2‖x‖ � ‖y‖ + ‖y′‖ � mx + Mx + ε and (2.8) follows.

On the other hand, let us observe that for any sequence {xn}∞
n=1, xn ∈ S, xn > 0, such

that xn+1 ∈ Fxn
for n ∈ N, the bounded sequences {Mxn

}∞
n=1 and {mxn

}∞
n=1 are monotone,

therefore convergent. Then (2.7) will be proved if we show that they converge to the same
limit. For this purpose we take {xn}∞

n=1 in such a way that Mxn − ‖xn+1‖ < 2−n−1; then from
(2.8) we obtain that

Mxn+1 − mxn+1

2
= Mxn+1 −

Mxn+1 + mxn+1

2
� Mxn − ‖xn+1‖ < 2−n−1.

Thus

Mxn+1 − mxn+1 < 2−n,

which implies that limn→∞ mxn = limn→∞ Mxn and (2.7) is proved.
Now we introduce ‖| · |‖ by (2.1). According to Lemma 2.4 ‖| · |‖ is a lattice norm. We show

that ‖| · |‖ is a strictly lattice norm. Indeed let |x| < |y|. Then (xs, ys) ∈ Z̃ for all s ∈ G, therefore

‖xs‖2 + ‖ys‖2

2
−
∥∥∥∥xs + ys

2

∥∥∥∥ > 0.

From (2.3) we obtain that ‖|x|‖ < ‖|y|‖.
(iii) ⇒ (ii): We set δγ(x) = x(γ) for x ∈ X and γ ∈ Γ. Since the norm ‖ · ‖ is pointwise lower

semicontinuous, span {δγ}γ∈Γ ⊂ X∗ must be 1-norming for X. For p � 1 set

‖x‖p = sup

⎧⎪⎨⎪⎩
⎛⎝∑

γ∈Γ

|aγx(γ)|p
⎞⎠1/p

:

∥∥∥∥∥∥
∑
γ∈Γ

aγδγ

∥∥∥∥∥∥ � 1

⎫⎪⎬⎪⎭.

Having in mind that span {δγ}γ∈Γ is 1-norming for X we get

‖x‖ = ‖x‖1 � ‖x‖p. (2.9)

From the choice of ‖ · ‖p it follows that it is pointwise lower semicontinuous for every p > 1. It
is easy to see that

lim
p→1

‖x‖p = ‖x‖. (2.10)

Claim. For every z ∈ X and every ε > 0 there exists pz,ε > 1 such that

|aβz(β)|p > ε (2.11)

whenever

1 � p � pz,ε, ‖z‖ − ‖z − Pβz‖ � 3ε, (2.12)∥∥∥∥∥∥
∑
γ∈Γ

aγδγ

∥∥∥∥∥∥ � 1,
∑
γ∈Γ

|aγz(γ)|p > ‖z‖p
p − ε.

Proof. For τ � 0 and p � 0 we set μp(τ) = max{τp, τ}. It is easy to see that for σ ∈ [0, τ ]
and p � 1 the inequality

μp(τ) � τ − σ + σp (2.13)

holds. Pick z ∈ X and ε > 0. From (2.9) and (2.10) it follows that there exists pz,ε > 1 such
that for all p ∈ [1, pz,ε]

‖z‖p
p � μp(‖z‖) − ε. (2.14)
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We have ‖z‖ − ‖y‖ � 3ε, where y = z − Pβz. Since ‖y‖ � ‖z‖ we can apply (2.13) for τ = ‖z‖
and σ = ‖y‖. Taking into account that ‖y‖p � ‖y‖ from (2.14) we obtain that for all p ∈ [1, pz,ε]

‖z‖p
p − ‖y‖p

p � μp(‖z‖) − ε − ‖y‖p � ‖z‖ − ‖y‖ − ε � 2ε. (2.15)

Pick
∑

γ∈Γ aγδγ and p satisfying (2.12). Then we have

‖y‖p
p �

∑
γ∈Γ

|aγz(γ)|p − |aβz(β)|p > ‖z‖p
p − ε − |aβz(β)|p .

This together with (2.15) implies (2.11).

Pick pn > 1, n = 1, 2, . . . such that pn −→ 1 and set

Φ(x) =
∞∑

n=0

2−n‖x‖pn
pn

,

where p0 = 1. Let ‖| · |‖ be the Minkowski functional of Φ. Let us prove that ‖| · |‖ is strictly
convex. Indeed, suppose that ‖|x|‖ = ‖|y|‖ = ‖|(x + y)/2|‖. By convexity arguments we have

‖x‖pn
pn

+ ‖y‖pn
pn

2
−
∥∥∥∥x + y

2

∥∥∥∥pn

pn

= 0, n = 0, 1, 2, . . . . (2.16)

Assume that x(β) 	= y(β) for some β ∈ Γ. We consider two cases. First let x(β)y(β) < 0. Then
since |x(β) + y(β)| < |x(β)| + |y(β)| and ‖ · ‖ is a strictly lattice norm we get

‖x + y‖1 = ‖x + y‖ < ‖ |x| + |y| ‖ � ‖x‖ + ‖y‖ = ‖x‖1 + ‖y‖1

which contradicts (2.16) for p0 = 1.
Assume now that x(β)y(β) � 0. Since x(β) 	= y(β) we get |x(β) + y(β)| > 0. Set

z = (x + y)/2, 3ε = ‖z‖ − ‖z − Pβz‖. Since ‖ · ‖ is a strictly lattice norm we have ε > 0.
According to the claim, we can find pz,ε > 1 such that (2.12) implies (2.11). Fix n ∈ N such
that 1 < pn < min{2, pz,ε}. Set

η := 4cpnε2/pn

(
x(β) − y(β)
x(β) + y(β)

)2
/(

‖x‖pn
pn

+ ‖y‖pn
pn

)(2/pn)−1
, (2.17)

where cpn is from Lemma 2.5. We can find f =
∑

γ aγδγ , ‖f‖ � 1 and∑
γ

|aγz(γ)|pn > ‖z‖pn
pn

− min{ε, η}. (2.18)

From (2.16) it follows that

1
2

∑
γ

(|aγx(γ)|pn + |aγy(γ)|pn) −
∑

γ

|aγz(γ)|pn �
(
‖x‖pn

pn
+ ‖y‖pn

pn

)
/2 − ‖z‖pn

pn
+ η = η.

From Lemma 2.5 we get

cpn

(∑
γ

|aγ(x(γ) − y(γ))|pn

)2/pn

� η

(∑
γ

|aγx(γ)|pn +
∑

γ

|aγy(γ)|pn

)(2/pn)−1

� η
(
‖x‖pn

pn
+ ‖y‖pn

pn

)(2/pn)−1
.

Hence

(aβ |x(β) − y(β)|)2 <
η
(
‖x‖pn

pn
+ ‖y‖pn

pn

)(2/pn)−1

cpn

.
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From (2.18) and the claim we deduce∣∣∣∣aβ(x(β) + y(β))
2

∣∣∣∣pn

> ε.

Then (
2ε(1/pn)|x(β) − y(β)|

|x(β) + y(β)|

)2

<
η
(
‖x‖pn

pn
+ ‖y‖pn

pn

)(2/pn)−1

cpn

,

which contradicts (2.17).
The implication (ii) =⇒ (i) is trivial.

If X has an unconditional basis {eγ}γ∈Γ, then X∗ can be identified with a lattice, which
fulfils the lattice conditions at the beginning of this section. In [11], a Gâteaux smooth norm
‖| · |‖ is obtained on �1 with unconditional constant 1, the dual norm of which is not strictly
lattice.

From Theorem 2.6 it follows that in a Banach space X with unconditional basis, the existence
of a dual strictly convex norm in X∗ implies the existence of a dual strictly lattice norm.

Corollary 2.7. Let X and Γ be the Banach lattice and the set considered at the beginning
of this section. Let {Γn}∞

1 be a sequence of subsets of Γ such that for every x ∈ X and
α ∈ suppx there exists a ∈ (0, |x(α)|) and m ∈ N with α ∈ Γm, #{γ ∈ Γm : |x(γ)| > a} < ∞.
Then X admits a pointwise lower semicontinuous strictly convex norm.

Proof. For m, n ∈ N set

‖x‖m,n = sup

⎧⎨⎩∑
γ∈A

|x(γ)| : A ⊂ Γm, #A � n

⎫⎬⎭,

and

‖|x|‖ = ‖x‖ +
∞∑

m,n=1

2−m−n‖x‖m,n.

Pick x, y ∈ X, such that |x| > |y|. We have |x(γ)| � |y(γ)| for all γ ∈ Γ and |x(α)| > |y(α)|
for some α ∈ Γ. We can find a ∈ (0, |x(α)|) and m ∈ N such that α ∈ Γm and #{γ ∈ Γm :
|x(γ)| > a} < ∞. Set A = {γ ∈ Γm : |x(γ)| > a} and n = #A. Clearly, sup{|y(γ)| : γ ∈ Γm \
A} � sup{|x(γ)| : γ ∈ Γm \ A} < |x(α)|. This implies ‖x‖m,n > ‖y‖m,n, so ‖|x|‖ > ‖|y|‖.

The Mercourakis space c1(Σ′ × Γ) satisfies the conditions of the above corollary; see
[3, Remark 6.3, p. 249].
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Universidad de Murcia
Campus de Espinardo
30100 Espinardo
Murcia
Spain

joseori@um.es

S. Troyanski
Departamento de Matemáticas
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