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Abstract. We study the Birkhoff integrability of pointwise limits of sequences

of Birkhoff integrable Banach space-valued functions, as well as the conver-
gence of the corresponding integrals. Both norm and weak convergence are

considered. We discuss the role that equi-Birkhoff integrability and the Bour-

gain property play in these problems. Incidentally, a convergence theorem for
the Pettis integral with respect to the norm topology is presented.

1. Introduction

The Birkhoff integral [3] for functions taking values in Banach spaces plays an
important role within the modern theory of vector integration, as it has been noticed
recently in [1], [4], [5], [7], [16], [17], [18], [19], [20], [21] and [22] among others.
An intriguing point concerns the validity of the classical convergence theorems
of Lebesgue’s integration theory for the case of Birkhoff integrable functions. We
pointed out in [17] that the analogue of Lebesgue’s dominated convergence theorem
for the Birkhoff integral fails in general. Indeed, we gave an example of a uniformly
bounded sequence of Birkhoff integrable functions fn : [0, 1] → c0(c) converging
pointwise to a non Birkhoff integrable function (here c stands for the cardinality of
the continuum). In [16] a similar example is constructed, where the Banach space
in the range is now any super-reflexive space with density character greater than
or equal to c. As regards “positive” results, we have shown in [16] that Vitali’s
convergence theorem holds whenever the Banach space in the range is isomorphic
to a subspace of `∞. On the other hand, M. Balcerzak and M. Potyra la [1] have
provided conditions ensuring the interchange of the operations of limit and Birkhoff
integral which involve the notions of equi-Birkhoff integrability and almost uniform
convergence.

In this paper we try to go a bit further when studying the Birkhoff integrability
of the pointwise limit of a sequence of Birkhoff integrable functions, and the con-
vergence of the corresponding integrals. We address the problem for the norm and
weak topologies. Throughout this paper (Ω, Σ, µ) is a complete finite measure space
and X is a Banach space. Given a sequence of functions fn : Ω → X converging
pointwise in norm to f : Ω → X, we consider the function

F : Ω → Xc, F (t) := (fn(t)),

where Xc = (X ⊕X ⊕ . . . )c is the Banach space of all norm convergent sequences
in X, equipped with the supremum norm. We analyze the relationship between
certain properties of the sequence (fn) and the function F . This new approach
allows us to show that, when X is isomorphic to a subspace of `∞, the collection
{fn : n ∈ N} is equi-Birkhoff integrable if and only if each fn is Birkhoff integrable
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and the family of compositions

(1) {x∗ ◦ fn : x∗ ∈ BX∗ , n ∈ N} ⊂ RΩ

is uniformly integrable (Theorem 2.3). This result relies on the fact that, under such
assumptions, the family appearing in (1) has the so-called Bourgain property (see
Lemma 2.2). The Bourgain property [15] of a family of real-valued functions has
been applied successfully by B. Cascales and the author [5, 20] to characterize the
Birkhoff integrability of vector-valued functions (see Theorems 1.1 and 1.2 below).
In general, the conclusion of Theorem 2.3 is not valid if the additional hypothesis
on X is dropped, as we make clear in Example 2.10. Incidentally, our views also
give new information on the Pettis integral theory: we prove that if each fn is Pettis
integrable and the family in (1) is uniformly integrable, then f is Pettis integrable
and

∫
A

fn dµ →
∫

A
f dµ in norm for all A ∈ Σ (Theorem 2.8). This result can be

seen as a “Vitali-type” convergence theorem for the Pettis integral with respect to
the norm topology.

In the last part of the paper we deal with sequences of functions fn : Ω → X
converging pointwise in the weak topology of X to a function f : Ω → X. In this
case we study the associated function

F : Ω → X`∞ , F (t) := (fn(t)),

where X`∞ = (X ⊕X ⊕ . . . )`∞ is the Banach space of all bounded sequences in X,
equipped with the supremum norm. It turns out that if the collection {fn : n ∈ N}
is equi-Birkhoff integrable, then f is Birkhoff integrable and

∫
A

fn dµ →
∫

A
f dµ

weakly for all A ∈ Σ (Theorem 2.12). Finally, we also show that the analogue of
Theorem 2.3 for the weak topology fails in general (see Theorem 2.14).

Terminology and preliminaries. All unexplained terminology can be found in
our standard references [6], [9] and [23]. Our Banach spaces X are assumed to be
real. We write ‖·‖ to denote the norm of X if it is needed explicitly. By a ‘subspace’
of X we mean a closed linear subspace. As usual, BX stands for the closed unit
ball of X and X∗ denotes the topological dual of X. A set B ⊂ BX∗ is norming if
‖x‖ = sup{|x∗(x)| : x∗ ∈ B} for all x ∈ X.

A function f : Ω → X is Birkhoff integrable, with integral
∫
Ω

f dµ ∈ X, if for
every ε > 0 there is a countable partition (Am) of Ω in Σ such that, for any choice
of points tm ∈ Am, the series

∑
m µ(Am)f(tm) converges unconditionally in X and

‖
∑

m µ(Am)f(tm)−
∫
Ω

f dµ‖ ≤ ε. In this case, f is also Pettis integrable and the
respective integrals coincide.

Given a function h : Ω → R and A ∈ Σ, we write

osc(h|A) = sup{|h(t)− h(t′)| : t, t′ ∈ A}.

A family H ⊂ RΩ has the Bourgain property if for every ε > 0 and every A ∈ Σ with
µ(A) > 0 there are A1, . . . , An ∈ Σ, Ai ⊂ A with µ(Ai) > 0, having the following
property: for each h ∈ H there is at least one 1 ≤ i ≤ n such that osc(h|Ai

) ≤ ε.
Every family with the Bourgain property is made up of measurable functions, cf.
[15, Theorem 11].

The characteristic function of a set A ⊂ Ω is denoted by χA.
A family G of real-valued integrable functions on Ω is called uniformly integrable

if it is ‖ · ‖1-bounded and for every ε > 0 there is δ > 0 such that
∫

A
|g| dµ ≤ ε for

all g ∈ G whenever A ∈ Σ satisfies µ(A) ≤ δ.

The following results connect the Bourgain property and the Birkhoff integral.
For a function f : Ω → X and a norming set B ⊂ BX∗ , we write

Zf := {x∗ ◦ f : x∗ ∈ BX∗} ⊂ RΩ and Zf,B := {x∗ ◦ f : x∗ ∈ B} ⊂ RΩ.
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Recall that Zf is always uniformly integrable whenever f : Ω → X is Pettis inte-
grable, cf. [23, Theorem 4-2-2].

Theorem 1.1 ([5]). Let f : Ω → X be a function.
(i) f is Birkhoff integrable if and only if Zf is uniformly integrable and has the

Bourgain property.
(ii) If f is bounded, then f is Birkhoff integrable if and only if there is a norming

set B ⊂ BX∗ such that Zf,B has the Bourgain property.

Theorem 1.2 ([20]). Suppose X is isomorphic to a subspace of `∞. Let f : Ω → X
be a function. Then f is Birkhoff integrable if and only if there is a norming set
B ⊂ BX∗ such that Zf,B is uniformly integrable and has the Bourgain property.

2. The results

Following [1], we say that a collection {fn : n ∈ N} of Birkhoff integrable func-
tions from Ω to X is equi-Birkhoff integrable if for every ε > 0 there is a countable
partition (Am) of Ω in Σ such that, for any choice of points tm ∈ Am, we have:

• For each δ > 0 there is k ∈ N such that ‖
∑

m∈M µ(Am)fn(tm)‖ ≤ δ for
every finite set M ⊂ N disjoint from {1, . . . , k} and for all n ∈ N. (In
particular, each series

∑
m µ(Am)fn(tm) converges unconditionally in X.)

• ‖
∑

m µ(Am)fn(tm)−
∫
Ω

fn dµ‖ ≤ ε for all n ∈ N.

Proposition 2.1. Let fn : Ω → X be a sequence of functions converging pointwise
in norm to a function f : Ω → X. Then {fn : n ∈ N} is equi-Birkhoff integrable if
and only if the function

F : Ω → Xc, F (t) := (fn(t)),

is Birkhoff integrable. In this case:
(i) the family ⋃

n∈N
Zfn

= {x∗ ◦ fn : x∗ ∈ BX∗ , n ∈ N}

is uniformly integrable and has the Bourgain property;
(ii) f is Birkhoff integrable and, for each A ∈ Σ, we have∫

A

fn dµ →
∫

A

f dµ in norm.

Proof. Observe that Xc is a subspace of X`∞ and so we can also look at F as an
X`∞ -valued function. For each n ∈ N, let πn : X`∞ → X be the nth-coordinate
projection, which is linear and continuous, with πn ◦ F = fn.

Suppose first that {fn : n ∈ N} is equi-Birkhoff integrable. Given ε > 0, let
(Am) be a countable partition of Ω in Σ fulfilling the requirements in the definition
of equi-Birkhoff integrability for this ε, and take any choice tm ∈ Am. Then for
every δ > 0 there is k ∈ N such that ‖

∑
m∈M µ(Am)F (tm)‖Xc

≤ δ for every finite
set M ⊂ N disjoint from {1, . . . , k}, that is, the series

∑
m µ(Am)F (tm) converges

unconditionally in Xc. Its sum satisfies∥∥∥πn

(∑
m

µ(Am)F (tm)
)
−

∫
Ω

fn dµ
∥∥∥ =

∥∥∥∑
m

µ(Am)fn(tm)−
∫

Ω

fn dµ
∥∥∥ ≤ ε

for all n ∈ N, and so the sequence ϕ := (
∫
Ω

fn dµ) belongs to X`∞ and satisfies∥∥∥∑
m

µ(Am)F (tm)− ϕ
∥∥∥

X`∞

≤ ε.
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As ε > 0 is arbitrary, F is Birkhoff integrable as X`∞ -valued function, with inte-
gral ϕ. Since F takes its values in Xc, it follows at once that ϕ ∈ Xc and that F is
Birkhoff integrable as Xc-valued function.

Conversely, assume that F is Birkhoff integrable. For each n ∈ N, the composi-
tion πn ◦ F = fn is Birkhoff integrable and πn(

∫
Ω

F dµ) =
∫
Ω

fn dµ (bear in mind
that πn is linear and continuous). The equi-Birkhoff integrability of {fn : n ∈ N}
follows straightforwardly from the Birkhoff integrability of F .

In order to prove the last part of the proposition, notice that the set

(2) B := {x∗ ◦ πn|Xc : x∗ ∈ BX∗ , n ∈ N} ⊂ BX∗
c

is norming and satisfies
⋃

n∈N Zfn = ZF,B . Assume that F is Birkhoff integrable.
Clearly, statement (i) follows from Theorem 1.1 (i). Let us turn to the proof of (ii).
Let L : Xc → X be the linear and continuous mapping which sends each sequence
to its limit. Then, since F is Birkhoff integrable, the same holds for L(F ) = f and,
for each A ∈ Σ, we have

lim
n

∫
A

fn dµ = L
((∫

A

fn dµ
))

= L
(∫

A

F dµ
)

=
∫

A

f dµ.

The proof is finished. �

Statement (ii) in the previous theorem has been proved in [1, Theorem 6] by a
different method.

Lemma 2.2. Suppose X is isomorphic to a subspace of `∞. Let fn : Ω → X be a
sequence of functions converging pointwise in norm to a function f : Ω → X. The
following statements are equivalent:

(i) Zfn
has the Bourgain property for every n ∈ N;

(ii)
⋃

n∈N Zfn
has the Bourgain property.

Proof. (ii)⇒(i) is obvious and it only remains to prove (i)⇒(ii). Without loss
of generality, we can assume that X is isometric to a subspace of `∞, which is
equivalent to saying that BX∗ is weak∗-separable. Therefore, since the fn’s and
f are scalarly measurable, all the real-valued functions t 7→ ‖fn(t) − f(t)‖ are
measurable (cf. [20, Corollary 4.6]). Fix ε > 0 and A ∈ Σ with µ(A) > 0. By
Egorov’s theorem, we have ‖fn(·)− f(·)‖ → 0 almost uniformly and, in particular,
there exist A′ ⊂ A, A′ ∈ Σ with µ(A′) > 0, and N ∈ N such that

(3) sup
t∈A′, n>N

‖fn(t)− f(t)‖ ≤ ε.

By [16, Lemma 2.3], the family Zf has the Bourgain property. Set f0 := f . Since⋃N
n=0 Zfn has the Bourgain property, there exist B1, . . . , Bk ⊂ A′, Bi ∈ Σ with

µ(Bi) > 0, such that

sup
0≤n≤N, x∗∈BX∗

min
1≤i≤k

osc(x∗ ◦ fn|Bi) ≤ ε.

Bearing in mind (3), it follows that

sup
n∈N, x∗∈BX∗

min
1≤i≤k

osc(x∗ ◦ fn|Bi
) ≤ 3ε.

This shows that
⋃

n∈N Zfn has the Bourgain property. �

Theorem 2.3. Suppose X is isomorphic to a subspace of `∞. Let fn : Ω → X
be a sequence of Birkhoff integrable functions converging pointwise in norm to a
function f : Ω → X. The following statements are equivalent:

(i) {fn : n ∈ N} is equi-Birkhoff integrable;
(ii)

⋃
n∈N Zfn

is uniformly integrable.
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Proof. By Proposition 2.1 it only remains to prove (ii)⇒(i). Let F : Ω → Xc be as
in Proposition 2.1. Then ZF,B =

⋃
n∈N Zfn

is uniformly integrable, where B ⊂ BX∗
c

is the norming set defined in (2). On the other hand, for each n ∈ N the function fn

is Birkhoff integrable and so Zfn
has the Bourgain property (Theorem 1.1 (i)). By

Lemma 2.2, we conclude that the family ZF,B has the Bourgain property. Observe
also that Xc is isomorphic to a subspace of `∞ because X is. Now Theorem 1.2
applied to F ensures that it is Birkhoff integrable, which is equivalent to saying that
{fn : n ∈ N} is equi-Birkhoff integrable (Proposition 2.1). The proof is over. �

Corollary 2.4. Suppose X is separable. Let fn : Ω → X be a sequence of functions
converging pointwise in norm to a function f : Ω → X. Then {fn : n ∈ N} is equi-
Birkhoff integrable if and only if

⋃
n∈N Zfn is uniformly integrable.

Proof. Fix n ∈ N. Since X is separable, fn is Birkhoff integrable if and only if it is
Pettis integrable (see [14, Corollary 5.11]), if and only if Zfn

is uniformly integrable
(cf. [12, Theorem 5.2]). The result now follows from Theorem 2.3. �

Corollary 2.5. Let fn : Ω → R be a sequence of functions converging pointwise
to f : Ω → R. Then {fn : n ∈ N} is equi-Birkhoff integrable if and only if it is
uniformly integrable.

Remark 2.6. The analogue of the previous corollary for the notion of “equi-
McShane integrability” is known, see [11]. In fact, our methods can be adapted
easily to deduce this result as well. For detailed information on the McShane inte-
gral theory, we refer the reader to [2], [8] and [10].

As we have mentioned in the introduction, the analogue of Lebesgue’s dominated
convergence theorem for the Birkhoff integral does not hold in general. In [16]
and [17] one can find examples of uniformly bounded sequences of Birkhoff inte-
grable functions converging pointwise to non Birkhoff integrable functions. It turns
out that the difficulty of interchanging the operations of limit and Birkhoff integral
relies on the integrability character of the limit function, rather than on the behavior
of the sequence of integrals, see Theorem 2.8 below. We first recall a “Vitali-type”
theorem for the Pettis integral due to K. Musia l, cf. [12, Theorem 8.1]. For more
information on convergence theorems for the Pettis integral, see [12] and [13].

Theorem 2.7 (Musia l). Let fn : Ω → X be a sequence of Pettis integrable functions
and f : Ω → X a function such that:

• for each x∗ ∈ X∗, we have x∗ ◦ fn → x∗ ◦ f µ-a.e.;
•

⋃
n∈N Zfn

is uniformly integrable.

Then f is Pettis integrable and, for each A ∈ Σ, we have
∫

A
fn dµ →

∫
A

f dµ
weakly in X.

Theorem 2.8. Let fn : Ω → X be a sequence of Pettis integrable functions con-
verging pointwise in norm to a function f : Ω → X. The following statements are
equivalent:

(i)
⋃

n∈N Zfn is uniformly integrable;
(ii) f is Pettis integrable and, for each A ∈ Σ, we have∫

A

fn dµ →
∫

A

f dµ in norm.

Proof. (ii)⇒(i) follows from the Nikodým boundedness theorem (cf. [6, Theorem 1,
p. 14]) and the Vitali-Hahn-Saks theorem (cf. [6, Corollary 10, p. 24]) applied to
the sequence of vector measures νn : Σ → X defined by νn(E) =

∫
E

fn dµ, because
their semivariation is given by ‖νn‖(A) = supx∗∈BX∗

∫
A
|x∗ ◦ fn| dµ for all A ∈ Σ.
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(i)⇒(ii): The Pettis integrability of f follows from Theorem 2.7. Since Zf and⋃
n∈N Zfn

are uniformly integrable, the same holds for the family
⋃

n∈N Zfn−f .
Thus, we can suppose without loss of generality that f = 0. Consider the function

F : Ω → Xc0 , F (t) := (fn(t)),

where Xc0 = (X ⊕ X ⊕ . . . )c0 is the subspace of Xc made up of all sequences
converging to 0 in norm. For each k ∈ N, the function

Fk : Ω → Xc0 , Fk(t) = (f1(t), . . . , fk(t), 0, 0, . . . ),

is Pettis integrable, as can be easily seen. Observe that Fk → F pointwise for the
norm topology of Xc0 . We claim that

⋃
k∈N ZFk

is uniformly integrable. Indeed,
notice that X∗

c0
can be identified with the Banach space E := (X∗ ⊕ X∗ ⊕ . . . )`1

of all sequences (x∗n) in X∗ such that
∑

n ‖x∗n‖ < ∞, equipped with the norm
‖(x∗n)‖E :=

∑
n ‖x∗n‖, the duality being

〈(x∗n), (xn)〉 =
∑

n

x∗n(xn).

Therefore, each h ∈
⋃

k∈N ZFk
can be written as h =

∑k
i=1 x∗i ◦ fi, where x∗i ∈ X∗

and
∑k

i=1 ‖x∗i ‖ ≤ 1; taking y∗i ∈ BX∗ with ‖x∗i ‖ · y∗i = x∗i , we have

h =
k∑

i=1

‖x∗i ‖ · (y∗i ◦ fi) ∈ aco
( ⋃

n∈N
Zfn

)
,

where the symbol “aco” stands for “absolutely convex hull” in RΩ. It follows that⋃
k∈N ZFk

⊂ aco(
⋃

n∈N Zfn). Since
⋃

n∈N Zfn is uniformly integrable, the same
holds for its absolutely convex hull and the claim is proved.

Theorem 2.7 applied to the sequence (Fk) now ensures that the Xc0-valued func-
tion F is Pettis integrable. For each n ∈ N, let pn : Xc0 → X be the nth-coordinate
projection (which is linear and continuous). Then, for each A ∈ Σ, we have∫

A

fn dµ =
∫

A

pn ◦ F dµ = pn

(∫
A

F dµ
)
→ 0 in norm.

The proof is over. �

Combining Proposition 2.1 and Theorems 2.3 and 2.8, we arrive at:

Corollary 2.9. Suppose X is isomorphic to a subspace of `∞. Let fn : Ω → X
be a sequence of Birkhoff integrable functions converging pointwise in norm to a
function f : Ω → X. The following statements are equivalent:

(i) {fn : n ∈ N} is equi-Birkhoff integrable;
(ii)

⋃
n∈N Zfn is uniformly integrable;

(iii) f is Birkhoff integrable and, for each A ∈ Σ, we have∫
A

fn dµ →
∫

A

f dµ in norm.

The situation can change dramatically if the assumption “X is isomorphic to a
subspace of `∞” is dropped, as the following example shows. We take some ideas of
[20, Example 3.1] (due to D. H. Fremlin). In our example the unit interval [0, 1] is
equipped with the Lebesgue measure on the σ-algebra of all Lebesgue measurable
subsets. Recall that a function g : Ω → X scalarly null if for each x∗ ∈ X∗ the
composition x∗ ◦ g is negligible, that is, x∗ ◦ g = 0 µ-a.e.

Example 2.10. There is a sequence of scalarly null Birkhoff integrable functions
fn : [0, 1] → `∞(c) converging pointwise to 0 in norm such that

⋃
n∈N Zfn

fails the
Bourgain property and {fn : n ∈ N} is not equi-Birkhoff integrable.
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Proof. Let {Eα : α < c} be an enumeration of all non-empty finite collections of
Borel subsets of [0, 1] with positive Lebesgue measure. Then there is a family
(Jα)α<c of pairwise disjoint finite subsets of [0, 1] such that Jα ∩ E 6= ∅ for every
α < c and every E ∈ Eα (see the proof of [20, Example 3.1]). For each n ∈ N, set

Hn := {nχ{t} : t ∈ Jα, α < c, #(Jα) = n} ⊂ R[0,1]

and Fn := co(Hn) (the convex hull of Hn in R[0,1]), where the symbol #(S) denotes
the cardinality of a set S. Take F :=

⋃
n∈N Fn and observe that #(F) = c. For

each n ∈ N, define fn : [0, 1] → `∞(F) by

fn(t)(h) :=

{
h(t) if h ∈ Fn,
0 if h ∈ F \ Fn.

We will check that the sequence (fn) satisfies the required properties.
X Each fn is Birkhoff integrable. For each h ∈ F , let eh ∈ B`∞(F)∗ be the

functional given by eh(x) := x(h). The set B = {eh : h ∈ F} ⊂ B`∞(F)∗ is norming
and

Zfn,B = {eh ◦ fn : h ∈ F} = {0} ∪ Fn.

The family Hn has the Bourgain property; indeed, given a measurable set A ⊂ [0, 1]
with positive measure, we can find disjoint measurable sets A1, A2 ⊂ A with positive
measure and, clearly, each h ∈ Hn vanishes on either A1 or A2. Since, in addition,
Hn is uniformly bounded, it follows that its convex hull Fn has the Bourgain
property too, see [20, p. 1304]. Therefore, Zfn,B has the Bourgain property as well.
Since fn is bounded, we can apply Theorem 1.1 (ii) to conclude that fn is Birkhoff
integrable, as required.

X Each fn is scalarly null. Since Zfn,B is made up of negligible functions, given
any A ∈ Σ we have eh(

∫
A

fn dµ) =
∫

A
eh ◦ fn dµ = 0 for all h ∈ F , that is,∫

A
fn dµ = 0. Therefore, Zfn

is also made up of negligible functions.
X fn → 0 pointwise for the norm topology of `∞(F). Fix t ∈ [0, 1]. If t does

not belong to
⋃

α<c Jα, then h(t) = 0 for all h ∈ F and so fn(t) = 0 for all n ∈ N.
Suppose, on the contrary, that t ∈ Jα for some α < c. Set n0 := #(Jα). Then
fn(t) = 0 for all n > n0. Indeed, if β < c satisfies #(Jβ) = n, then β 6= α and,
since the J ′γs are pairwise disjoint, we have t 6∈ Jβ . Thus h(t) = 0 for all h ∈ Hn

and so h(t) = 0 for all h ∈ Fn. It follows that fn(t) = 0, as claimed.
X

⋃
n∈N Zfn fails the Bourgain property. Given α < c and taking n := #(Jα),

we observe that

χJα
=

∑
t∈Jα

1
n
· nχ{t} ∈ co(Hn) = Fn.

It follows that {χJα : α < c} ⊂ F . It was noticed in [20, Example 3.1] that
the family {χJα : α < c} fails the Bourgain property; this follows from the inner
regularity of the Lebesgue measure with respect to the Borel σ-algebra of [0, 1]
and the fact that, given finitely many Borel sets A1, . . . , An ⊂ [0, 1] with positive
measure, there is α < c such that Eα = {A1, . . . , An}, and therefore osc(χJα

|Ai
) = 1

for all 1 ≤ i ≤ n. Since⋃
n∈N

Zfn ⊃
⋃
n∈N

Zfn,B ⊃ F ⊃ {χJα : α < c},

we conclude that
⋃

n∈N Zfn
fails the Bourgain property.

X {fn : n ∈ N} is not equi-Birkhoff integrable. Indeed, this follows from Propo-
sition 2.1 bearing in mind that

⋃
n∈N Zfn

fails the Bourgain property. �
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We next deal with a sequence of functions fn : Ω → X converging pointwise to
a function f : Ω → X for the weak topology of X. Observe that, by the Banach-
Steinhaus theorem, such a sequence is pointwise bounded, that is, for each t ∈ Ω
the sequence (fn(t)) is bounded in X.

Proposition 2.11. Let fn : Ω → X be a pointwise bounded sequence of functions.
(i) Then {fn : n ∈ N} is equi-Birkhoff integrable if and only if the function

F : Ω → X`∞ , F (t) := (fn(t)),

is Birkhoff integrable. In this case,
⋃

n∈N Zfn
is uniformly integrable and

has the Bourgain property.
(ii) Suppose X is isomorphic to a subspace of `∞. Then {fn : n ∈ N} is equi-

Birkhoff integrable if and only if
⋃

n∈N Zfn is uniformly integrable and has
the Bourgain property.

Proof. (i) can be deduced in the same way as Proposition 2.1. Part (ii) follows from
Theorem 1.2 bearing in mind that

⋃
n∈N Zfn

= ZF,B , where B is the norming set

B := {x∗ ◦ πn : x∗ ∈ BX∗ , n ∈ N} ⊂ BX∗
`∞

and πn : X`∞ → X denotes the nth-coordinate projection. �

Theorem 2.12. Let fn : Ω → X be a sequence of functions converging pointwise
in the weak topology to a function f : Ω → X. If {fn : n ∈ N} is equi-Birkhoff
integrable, then f is Birkhoff integrable and, for each A ∈ Σ, we have∫

A

fn dµ →
∫

A

f dµ weakly.

Proof. By Proposition 2.11 (i), the family
⋃

n∈N Zfn
is uniformly integrable. Then

we can apply Theorem 2.7 to infer that f is Pettis integrable and that the sequence
(
∫

A
fn dµ) converges weakly to

∫
A

f dµ for all A ∈ Σ. It only remains to show
that f is Birkhoff integrable. Observe that Zf is contained in the pointwise closure
of

⋃
n∈N Zfn

in RΩ. Since the Bourgain property is preserved by taking pointwise
closures (cf. [15, Theorem 11]) and

⋃
n∈N Zfn

has the Bourgain property (Propo-
sition 2.11 (i)), the family Zf also has the Bourgain property and an appeal to
Theorem 1.1 (i) ensures that f is Birkhoff integrable. The proof is complete. �

We finish the paper by showing that the analogues of Lemma 2.2, Theorem 2.3
and Corollary 2.4 for the weak topology are not valid in general. To this end, we
need the following fact due to D. H. Fremlin (personal communication) which is
included here with his kind permission.

Lemma 2.13 (Fremlin). Suppose µ(Ω) = 1 and let (An) be an independent se-
quence of measurable subsets such that∑

n∈N
µ(An)(1− µ(An)) = ∞.

Then the family {χAn
: n ∈ N} fails the Bourgain property.

Proof. Since the sequence (An) is independent, the same happens with (Ω\An) and,
therefore, (An × (Ω \ An)) is an independent sequence in the product probability
space (Ω× Ω, Σ⊗ Σ, µ× µ) such that∑

n∈N
(µ× µ)

(
(An × (Ω \An)

)
=

∑
n∈N

µ(An)(1− µ(An)) = ∞.

Fix B1, . . . , Bm ∈ Σ with positive measure. We claim that there is n ∈ N such
that

(4) (Bi ×Bi) ∩ (An × (Ω \An)) 6= ∅ for all 1 ≤ i ≤ m.
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Indeed, suppose not. Then N =
⋃m

i=1 Pi, where

Pi := {n ∈ N : (Bi ×Bi) ∩ (An × (Ω \An)) = ∅}.

There is some 1 ≤ i ≤ m such that
∑

n∈Pi
(µ × µ)

(
(An × (Ω \ An)

)
= ∞. Write

Pi = {n1 < n2 < . . . }. By the Borel-Cantelli lemma, we have

(µ× µ)
( ∞⋂

k=1

⋃
m≥k

(
Anm

× (Ω \Anm
)
))

= 1.

Since (µ× µ)(Bi ×Bi) > 0, we have

(Bi ×Bi) ∩
( ∞⋂

k=1

⋃
m≥k

(
Anm × (Ω \Anm)

))
6= ∅,

which contradicts the definition of Pi.
Therefore, (4) holds for some n ∈ N. Thus, osc(χAn

|Bi
) = 1 for all 1 ≤ i ≤ m.

It follows that {χAn
: n ∈ N} fails the Bourgain property. �

Recall that a Banach space has the Schur property if every weakly convergent
sequence is norm convergent.

Theorem 2.14. Suppose X fails the Schur property and µ is an atomless proba-
bility. Then there is a uniformly bounded sequence of simple (hence Birkhoff inte-
grable) functions fn : Ω → X converging pointwise in the weak topology to 0 such
that

⋃
n∈N Zfn

fails the Bourgain property and {fn : n ∈ N} is not equi-Birkhoff
integrable.

Proof. Since X fails the Schur property, there is a weakly convergent sequence in X,
say (xn), which is not norm convergent. We can assume without loss of generality
that xn → 0 weakly and ‖xn‖ = 1 for all n ∈ N. For each n ∈ N, fix x∗n ∈ BX∗

such that x∗n(xn) = 1.
Since µ is atomless, we can find an independent sequence (An) in Σ such that

µ(An) = 1/n for all n ∈ N (cf. [9, 272X(a)]). Then the family {χAn : n ∈ N}
fails the Bourgain property (by Lemma 2.13). Moreover, since

∑
n∈N µ(An) = ∞,

the Borel-Cantelli lemma ensures that the set E :=
⋂

n∈N
⋃

m≥n Am ∈ Σ satisfies
µ(E) = 1.

For each n ∈ N, we consider the simple function

fn : Ω → X, fn := xnχAn∩E .

On the one hand, we have fn → 0 pointwise for the weak topology of X. Indeed,
given t ∈ Ω we have, for each n ∈ N, that either fn(t) = 0 or fn(t) = xn; since
xn → 0 weakly, it follows at once that fn(t) → 0 weakly as well. On the other hand,
observe that x∗m◦fm = χAm∩E ∈

⋃
n∈N Zfn

for all m ∈ N. Since {χAn
: n ∈ N} fails

the Bourgain property and µ(E) = 1, the family {χAn∩E : n ∈ N} fails the Bourgain
property too. It follows that

⋃
n∈N Zfn

does not have the Bourgain property. The
fact that {fn : n ∈ N} is not equi-Birkhoff integrable is now a consequence of
Proposition 2.11 (i). The proof is complete. �
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