
Generalized First Class Selectors for Upper

Semi-Continuous Set-Valued maps in Banach

Spaces.

by

R. W. Hansell, L. Oncina. 1

Abstract

In this paper we deal with weakly upper semi-continuous set-valued

maps, taking arbitrary non-empty values, from a non-metric domain to a

Banach space. We obtain selectors having the point of continuity property

relative to the norm topology for a large class of compact spaces as a

domain. Exact conditions under which the selector is of the first Borel

class are also investigated.

Introduction

A map F from a topological space X to the power set of a topological space E
is said to be upper semi-continuous (usc, for short) if for every x ∈ X and every
open set U in E such that F (x) ⊂ U , there exists an open neighbourhood V of
x such that F (V ) ⊂ U . When F takes non-empty values, a map f : X → E is
said to be a selector for F if f(x) ∈ F (x) for every x ∈ X .

We are primarily interested in the case when E is a Banach space endowed
with its weak topology. In this case we shall talk about weakly upper semi-
continuous maps to avoid any confusion with the norm topology.

The case of X being a metric space and F : X → 2E a weak usc map,
has been studied by several authors in a series of papers [9, 3, 7, 13]. The
definitive result was given by Srivatsa in [13]: If F is as above, then it admits
a selector f which is a pointwise ‖ · ‖-limit of ‖ · ‖-continuous functions, i.e., f
is in the first Baire class relative to the norm topology. Later, in [8] Srivatsa’s
result was extended to some duals to Asplund spaces, in the sense that, if
F : X → 2(E∗,weak∗) is upper semi-continuous, then F admits a selector which
is of the first Baire class relative to the norm topology.

In [13], Remark 2.7, the author asks whether his main theorem could be ex-
tended to non-metric domains, and particularly to the case of Eberlein compact
spaces. However, not even the single-valued version of the Main Theorem of
[13] holds when the domain space is a non-metrizable Eberlein compact. For
example, if K is weakly compact, then the identity, id : (K, weak) → (K, ‖ · ‖)
is Baire 1 only if K is metrizable (compare the footnote on page 622 of [13]).
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In this paper we give a best possible answer in terms of generalized first class
selectors by proving the following:

Main Theorem: Let K be an Eberlein or Gul’ko compact space, E a Banach
space and F : K → 2E a weak upper semi-continuous map taking non-empty
arbitrary values. Then F admits a selector f which is, relative to the norm
topology on E, (F ∧ G)σ-measurable and has the point of continuity property.

1 Some definitions and notation.

All topological spaces are assumed to be Hausdorff. Let us begin by recalling
some definitions. A family A of subsets of a topological space X is said to be:

• Scattered if A can be well ordered A = {Aα : α < λ} in such a way that
there exists a family {Uα : α < λ} of open subsets of X such that for all
α < λ

Aα ⊂ Uα \
⋃

β<α

Uβ .

• Discrete if for each x ∈ X there exists U ⊂ X open with x ∈ U such that
U intersects at most one element from A.

• Relatively discrete if A is discrete in its union with the relative topology.

• σ-scattered (resp. σ-discrete, σ-relatively discrete) if A =
⋃

n∈N
Nn where

each family Nn is scattered (resp. discrete, relatively discrete).

• A network if each open set in X can be written as a union of members
from A.

Scattered collections can also be characterized intrinsically. One can show
that a collection A of subsets of a space X is scattered if, and only if, each
non-empty H ⊂

⋃

A has a non-empty relatively open subset of the form H ∩A
for some A ∈ A (for a proof of this and other properties of scattered collections
see §2 of [6]).

Let f : X → Y be a map, and B a family of subsets of X . Then B is said to
be a function base for f if, whenever V is open in Y , f−1(V ) can be written as
a union of members from B. Also, f is said to be B-measurable if f−1(V ) ∈ B
whenever V is open in Y .

As usual F will denote the family of closed sets and G the family of open
subsets of a fixed topological space X . By an F ∧ G-set of X we mean a set
that is the intersection of a closed with an open set (equivalently, the difference
of two closed or two open sets) of X . By an (F ∧ G)σ-set we mean a set that is
a countable union of F ∧ G-sets.

By an H-set in X we mean a set that is the union of a scattered collection
of F ∧G-sets of X . Our Lemma 2.1 below shows that our definition of an H-set
is equivalent to that used in [2]. It also follows from this lemma that the H-sets
form an algebra of subsets of the space, a fact that is critical to the proof of our
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Main Theorem. Let us also note that, if {Aα : α < λ} is a scattered collection

of subsets of X with associated open sets Uα, then {A
X

α ∩ Uα : α < λ} (where
the bar denotes closure in X) is a scattered collection of F ∧ G-sets of X . In
particular, note that the members of a scattered partition of X are necessarily
F ∧ G-sets in X .

Finally, a map f : X → Y is said to be F ∧ G-simple if X has a σ-scattered
partition into F∧G-sets such that f is constant on each element of the partition.

2 Preliminaries

Let us continue with some preliminary lemmas which will lead us to the proof
of our Main Theorem.

The following lemma can be viewed as an extension of Lemma 2.2 of [2]
where the equivalence of (a) and (b) is established. The equivalence of (b) and
(c) in effect shows that any scattered collection of F ∧ G-sets in a space X can
be extended to a scattered partition of X , a fact we use in the proof of Lemma
2.2. From the equivalence of (a) and (c) we see that the H-sets of a space form
an algebra of subsets of the space (compare also Proposition 2.1 of [2]).

Lemma 2.1 For any subset H of a topological space X the following are equiv-
alent.

(a) H has the property that for any non-empty A ⊂ X, A has a non-empty
relatively open subset U ⊂ A such that either U ⊂ H or U ⊂ X \ H.

(b) There is a scattered partition P of X such that

H =
⋃

{P ∈ P : P ∩ H 6= ∅}.

(c) H is an H-set of X (that is, H is the union of a scattered collection of
F ∧ G-sets of X).

Proof. (a) ⇔ (b). This is Lemma 2.2 of [2].
(b) ⇒ (c). This is obvious since a subcollection of a scattered collection

is again scattered, and the members of a scattered partition of a space are
necessarily F ∧ G-sets of the space.

(c) ⇒ (a). Let H = {Hα : α < λ} be a scattered collection of F ∧ G-sets in
X , with associated open sets {Uα : α < λ}, such that H =

⋃

H. Since each Hα

is an F ∧ G-set in X , choose open sets Gα of X such that

Hα = H
X

α ∩ Gα (α < λ),

where we may (and do) assume that Gα ⊂ Uα. To see that H satisfies (a), let
∅ 6= A ⊂ X be given. If A ⊂ X \ H , then (a) holds with U = A. Otherwise,
there exists a least α < λ such that A ∩ Hα 6= ∅. Now, if A ∩ (Gα \ Hα) = ∅,
then

∅ 6= A ∩ Gα ⊂ Hα ⊂ H,
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hence (a) holds with U = Gα ∩ A. Otherwise,

∅ 6= A ∩ (Gα \ Hα) ⊂ X \ H,

hence (a) holds with U = (Gα \ Hα) ∩ A.

Corollary 2.2 Every σ-scattered cover by F∧G-sets of a space X can be refined
by a σ-scattered partition of F ∧ G-sets.

Proof. Let
⋃

n∈N
Hn be a cover of X where each Hn is a scattered collection

of F ∧ G-sets of X . By (c)⇒(b) of Lemma 2.1, for each n

X \
⋃

Hn =
⋃

Kn

where Kn is a scattered collection F ∧ G-sets of X .
Now we define L1 = H1 and

Ln = {H ∩ K : H ∈ Hn and K ∈ Kn−1},

for n ≥ 2. It follows that
⋃

n∈N
Ln is a σ-scattered collection of X by F ∧G-sets

and is a refinement of
⋃

n∈N
Hn.

Lemma 2.3 If X is a regular topological space with a σ-scattered network, then
X has a σ-scattered network of F ∧ G-sets. If X has a σ-scattered network of
F∧G-sets, then X has a network

⋃

n∈N
Nn where each Nn is a scattered partition

of X and Nn+1 is a refinement of Nn for each n.

Proof. Let N be any scattered collection in X . Then, as noted above, there is
a scattered collection of F ∧ G-sets {HN : N ∈ N} such that, for each N ∈ N ,

N ⊂ HN ⊂ N
X

.

Using this and the fact that each point in a regular space has a base of closed
neighbourhoods, it easily follows that X will have a σ-scattered network of
F ∧ G-sets whenever X has a σ-scattered network.

Let N=
⋃

n∈N
Nn be a network for X where each Nn is a scattered collection

of F ∧ G-sets in X . By (c)⇒(b) of Lemma 2.1 we may assume that each Nn is
a partition of X . Replacing Nn by the scattered partition

{N1 ∩ N2 ∩ . . . ∩ Nn : Ni ∈ Ni, i = 1, 2, . . . , n }

yields the desired σ-scattered network of X .

Lemma 2.4 Let f be a map from a topological space X to a metric space (Y, d).
Then the following are equivalent.

(a) f has a σ-scattered function base of F ∧ G-sets of X.

(b) There exists a sequence of F ∧ G-simple maps fn : X → (Y, d) which con-
verges uniformly to f .
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Proof. (a)⇒(b). Let B be a σ-scattered function base for f consisting of
F ∧ G-sets in X . Fix n ∈ N . By the property of a function base there exists a
σ-scattered collection Bn ⊂ B which is a refinement of the family

{f−1(B(y, 1/2n)) : y ∈ Y },

where B(y, ε) denotes the open ball about y of radius ε in (Y, d).
By Corollary 2.2, Bn can be refined by a σ-scattered partition Kn of F ∧ G-

sets. For each non-empty K ∈ Kn fix a point xK ∈ K and define fn : X → Y
by

fn(x) = f(xK) for each x ∈ K.

It follows that fn is F ∧ G-simple and, for each x ∈ K, d(f(x), fn(x)) < 1/n.
Thus, the maps fn converge uniformly to f as required.

(b)⇒(a). For each n ∈ N , let Hn be a σ-scattered partition of X and
let fn : X → Y be a map that is constant on each member of Hn. Suppose
the sequence 〈fn〉 converges uniformly to the map f . It suffices to show that
H =

⋃∞

n=1 Hn is a function base for f . Thus let V be an open subset of Y and
consider any x0 ∈ X such that f(x0) ∈ V . Let ε > 0 be such that the ball
B(f(x0); ε) ⊂ V . We need to show that for some H ∈ H we have x0 ∈ H and
f(H) ⊂ V .

For the given ε there exists m ∈ N such that d(fm(x), f(x)) < ε
2 for any

x ∈ X . Now choose H ∈ Hm such that x0 ∈ H . To see that H ⊂ f−1(V ), let
x ∈ H and note that, since fm is constant on H , we have

d(f(x0), f(x)) ≤ d(f(x0), fm(x0)) + d(fm(x0), fm(x)) + d(fm(x), f(x)) <

<
ε

2
+

ε

2
= ε.

Thus, f(x) ∈ B(f(x0); ε) ⊂ V as required.

The following lemma is similar to Lemma 2.1 of [13] and Theorem 5 of [8]
and makes crucial use of the fact that the H-sets form an algebra of the space.

Lemma 2.5 Let (X, τ) be a topological space with a σ-scattered network of
F ∧G-sets, let (E, ‖ · ‖) be a Banach space, and let F : X → 2E be a weak upper
semi-continuous set-valued map with non-empty values. Then, for every ε > 0,
there exists a F ∧ G-simple map fε : X → E such that

‖ · ‖ −dist(fε(x), F (x)) < ε for all x ∈ X.

Proof. Let N=
⋃

n∈N
Nn be a network for X of the type given in Lemma 2.3 so

that each Nn is a partition of X . For each n ∈ N and N ∈ Nn, fix xN ∈ N and
yN ∈ F (xN ) arbitrarily and define F ∧ G-simple maps fn : X → E by defining

fn(x) = yN for all x ∈ N ∈ Nn.

Let 〈hn〉 denote the sequence of all finite rational linear combinations of the
sequence 〈fn〉. One easily sees that each of the maps hn is also F ∧ G-simple.
For each n ∈ N let

An = {x ∈ X : B(hn(x); ε) ∩ F (x) 6= ∅},
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where B(y; ε) = {z ∈ E : ‖z − y‖ ≤ ε}.
Our first objective is to show that X =

⋃

n∈N
An. Fix x ∈ X . The point

x belongs to exactly one Nn ∈ Nn (n ∈ N), thus {Nn : n ∈ N} forms a
local network at x, and it follows that 〈xNn

〉 τ -converges to x. Now, if F (x)
were contained in the complement of the weak closure of {fn(x) : n ∈ N}
then, by the upper semi-continuity of F , for some m we would have F (Nm)
contained in the complement as well. But this would contradict the fact that
fm(x) = yNm

∈ F (xNm
). Thus the sequence 〈fn(x)〉 has a weak cluster point in

F (x), and therefore there is a subsequence of 〈hn(x)〉 converging in the norm to
a point in F (x). It follows that for some n ∈ N we have B(hn(x); ε)∩F (x) 6= ∅,
thus proving that X =

⋃

n∈N
An.

As hn is F ∧ G-simple, X has a σ-scattered partition Mn into F ∧ G-sets
such that hn takes a constant value, say yM , on each M ∈ Mn. Thus

An =
⋃

M∈Mn

M ∩ {x ∈ X : B(yM ; ε) ∩ F (x) 6= ∅}.

As F is weakly usc, {x ∈ X : B(yM ; ε)∩F (x) 6= ∅} is closed in X , and it follows
that each An is an H-set in X . Since by Lemma 2.1 the H-sets form an algebra
we can find disjoint H-sets Bn ⊂ An so that X =

⋃

n∈N
Bn. Defining

fε(x) = hn(x) whenever x ∈ Bn,

it follows that fε is a F ∧G-simple map and ‖ · ‖–dist(fε(x), F (x)) ≤ ε, for each
x ∈ X .

For convenience, let us call a partition of a space X amenable if it is σ-
scattered and consists of F ∧ G-sets in X . The following lemma isolates the
technical part of the proof of Theorem 3.1 below.

Lemma 2.6 Let X be a topological space with a σ-scattered network of F ∧ G-
sets, and let (E, ‖ · ‖) be a Banach space. Suppose given an amenable partition
H of X, weakly closed sets {BH : H ∈ H}, and a set-valued map F : X → 2E

such that, for every H ∈ H, the restriction F |H is weakly usc and F (x)∩BH 6= ∅
for all x ∈ H. Then, for any ε > 0, there exists an amenable partition M of X
which is a refinement of H, a set-valued map G : X → 2E, and a F ∧ G-simple
map g : X → E such that, for each M ∈ M with M ⊂ H ∈ H, the following
hold:

(i) for each x ∈ M

G(x) =

{

{g(x)} if g(x) ∈ F (x),
F (x) ∩ BH ∩ B(g(x); ε) otherwise;

(ii) there exists at least one xM ∈ M such that G(xM ) = {g(xM )};

(iii) ‖ · ‖–dist(g(x), G(x)) ≤ ε for all x ∈ M ;

(iv) the restriction G|M is weakly usc.
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Proof. For each H ∈ H the assumptions of Lemma 2.5 apply to the set-valued
map FH : H → 2E where FH(x) = F (x) ∩ BH for each x ∈ H , hence there is
an F ∧ G-simple map fH : H → E such that ‖ · ‖–dist(fH(x), FH (x)) < ε/2 for
each x ∈ H . Let MH be an amenable partition of H associated with fH and
note that each member of MH is an F ∧ G-set in X since H has this property.
For each M ∈ MH fix

xM ∈ M and yM ∈ F (xM ) ∩ BH ∩ B(fH(xM ); ε/2),

and define

M+ = {x ∈ M : yM ∈ F (x)} and M− = M \ M+.

Since F |H is weakly usc, M+ is closed in M and so both M+ and M− are
F ∧ G-sets in X . Now let

M =
⋃

H∈H

⋃

M∈MH

{M+, M−},

and define g : X → E and G : X → 2E as follows: If x ∈ M ∈ MH , then

g(x) = yM and G(x) =

{

{yM} x ∈ M+

F (x) ∩ BH ∩ B(yM ; ε) x ∈ M−.

Note that, if fH takes the fixed value wM on M ∈ MH , then

yM ∈ B(wM ; ε/2) and ‖ · ‖ −dist(wM , F (x) ∩ BH) < ε/2

for all x ∈ M , so

F (x) ∩ BH ∩ B(yM ; ε) 6= ∅ for all x ∈ M.

The remainder of property (i) follows from the above definitions and the fact
that each member of M has either the form M+ or M− for some M ∈ MH .

Property (ii) follows from the fact that xM ∈ M+ for each M ∈ MH and
H ∈ H. One easily verifies that M is an amenable partition of X that is a
refinement of H and that g is an F ∧ G-simple map associated with M.

Finally, (iii) holds since G(x) ⊂ B(g(x); ε) for each x ∈ X , and (iv) follows
immediately from the definition of G.

3 Selection theorems for upper semi-continuous

set-valued maps.

Now we are able to prove our main result.

Theorem 3.1 Let X be a topological space with a σ-scattered network of F∧G-
sets, and let (E, ‖ · ‖) be a Banach space. If F : X → 2(E,weak) is an upper
semi-continuous set-valued map with non-empty values, then F has a selector
that is a norm uniform limit of F ∧ G-simple maps defined on X.
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Proof. Let N =
⋃

n∈N
Nn be a network for X of the type given in Lemma 2.3.

We will call the triple 〈G, g,M〉 a partial selector for F of order ε associated with
{BH : H ∈ H} if the components G, g and M have the properties ascribed to
them in the conclusion of Lemma 2.6. Note that if N is any amenable partition
that is a refinement for M, then 〈G, g,N〉 is a partial selector for F of order ε
associated with {BH : H ∈ H} whenever 〈G, g,M〉 is.

We begin by applying Lemma 2.6 to F with H = {X} and BX = X to
obtain a partial selector 〈F1, f1,M1〉 of F of order 2−1, and we may assume
that M1 is a refinement of N1. Applying Lemma 2.6 again to F , the amenable
partition M1, and the weakly closed sets BM1

= B(yM1
; ε), where yM1

is the
fixed value taken by f1 on M1 ∈ M1, we obtain a partial selector 〈F2, f2,M2〉 of
F of order 2−2, and we may assume that M2 is a refinement of N2. Repeating
this for each n ∈ N we obtain a partial selector 〈Fn, fn,Mn〉 for F of order
2−n such that Mn is a refinement of both Mn−1 and Nn. Note that by (i) of
Lemma 2.6 we have, for each x ∈ X ,

Fn(x) =

{

{fn(x)} if fn(x) ∈ F (x),
F (x) ∩ B(f1(x); 2−1) ∩ . . . ∩ B(fn(x); 2−n) otherwise.

Furthermore, by (i) and (iii) of Lemma 2.6,

‖ · ‖ −dist(fn(x), Fn(x)) ≤ 2−n, Fn+1(x) ⊂ Fn(x)

for each n ∈ N, and ‖ · ‖– diam(Fn(x)) ≤ 2−n+1, and thus it follows that

‖fn+1(x) − fn(x)‖ ≤ 3 · 2−n

for all x ∈ X and n ∈ N. Hence the sequence 〈fn〉 uniformly converges to some
f : X → E relative to the norm topology. It remains to show that f is a selector
for F .

Fix x ∈ X and let Mn be the member of the partition Mn which contains
x. If for some m we have fm(x) ∈ F (x), then it follows that

fn(x) = fm(x) ∈ F (x) ∀ n ≥ m,

and in this case we clearly have f(x) ∈ F (x). Otherwise, we have fn(x) /∈ F (x)
for each n. By (ii) of Lemma 2.6 we can choose xn ∈ Mn such that Fn(xn) =
{fn(xn)}, and thus fn(x) = fn(xn) ∈ F (xn) for each n. Suppose f(x) /∈ F (x).
Then F (x) is contained in the weak open set

U = E \ {f(x), f1(x), f2(x), . . .}.

By the weak usc of F and the fact that the sets {Mn : n ∈ N} form a local
network at x (since Mn is a refinement of Nn), we must have F (x′) ⊂ U for all
x′ ∈ Mn for some n. But this contradicts the fact that fn(x) ∈ F (xn). Thus
f(x) ∈ F (x) for all x ∈ X showing that f is the desired selector.

Now if X is a hereditary Baire space (that is, every closed subspace is a
Baire space), Y a metric space and f : X → Y has a σ-scattered function base
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of F ∧G-sets then, by Theorem 2.2 in [5], f has the point of continuity property,
i.e., f |A has a point of continuity for each non-empty closed set A ⊂ X (such
maps are called PC functions in [5]).

Corollary 3.2 Let (E, ‖ · ‖) be a Banach space, K a compact space with a
σ-scattered network and F : K → 2E a weak usc map with non-empty values.
Then F admits a selector with the point of continuity property.

The class of compact spaces to which the Corollary above applies is quite
large: Every compact space that is fragmented (or even σ-fragmented) by a
metric whose topology is finer than the topology of the space, has a σ-scattered
network of F ∧ G-sets by Theorem 6.4 of [4]; in particular Eberlein, Radon-
Nikodým [10] and Gul’ko [12] compact spaces. However, in order to obtain a
Borel measurable selector something more is required as the following example
shows.

Example 3.3 The identity map Id : [0, ω1] → ([0, ω1], discrete topology) is not
measurable, since the Borel sets in [0, ω1] do not coincide with the Borel sets for
the discrete topology [14]. Yet, the identity map has a σ-scattered function base
of F ∧ G-sets [4].

Definition 3.4 A topological space X is said to be hereditary weakly θ-refinable
if each open collection in X has a σ-relatively discrete refinement.

A result in [5] shows that if f : X → (Y, d) is a PC map and X is hereditary
weakly θ-refinable, then f is (F∧G)σ-measurable and has a σ-relatively discrete
function base of (F ∧ G)-sets in X . It is known that Eberlein compact spaces
[4, 11] and Gul’ko compact spaces [1] are hereditary weakly θ-refinable, and so
our Main Theorem in the introduction has been proved.
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