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Abstract

A characterization of the Banach spaces of type C(K) which admit an equivalent
locally uniformly rotund norm is obtained, and a method to apply it to concrete
spaces is developed. As an application the existence of such renorming is deduced
when K is a Namioka–Phelps compact or for some particular class of Rosenthal
compacta, results recently obtained in [3] and [6] that were originally proved with
methods developed ad hoc.
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1 Introduction

The class of Banach spaces which admit an equivalent locally uniformly rotund norm
(LUR for short) has been extensively studied and some characterizations of such spaces
have already been obtained in terms of linear–topological conditions [2]. The LUR
renorming techniques for a Banach space developed until now, which are free of mar-
tingale techniques, are based in two different approaches. In the first one, enough
convex functions on the Banach space are constructed to apply Deville’s lemma [1], see
the decomposition method in Chapter 7, Lemma 1.1, sometimes adding an iteration
processes and Banach’s Contraction Mapping Theorem, to finally get an equivalent
LUR norm, [1]. In the second one the existence of such norm is deduced from the
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existence of a σ–slicely isolated network of the norm topology in C(K), introducing a
countable family of equivalent pointwise lower semicontinuous norms such that, roughly
speaking, the LUR condition on a fixed sequence (xn) and a point x controls whether
the segments [xn, x] live inside small slices, this gives the equivalent LUR norm [8, 10].
In this paper, taking ideas of both approaches, a characterization of the existence of
LUR norms on C(K) type spaces is presented and applied to the very recent cases
obtained in [3, 6] by means of the first method. More applications of this method can
be found in [7] where the cases when K is a R. Haydon tree [4] or a totally ordered
compact space [5] are discussed.

Theorem 1.1. Let K be a compact space. The Banach space C(K) admits an equivalent
pointwise lower semicontinuous and LUR norm if, and only if, there is a countable
family of subsets {Cn : n ∈ N} in C(K) such that, for every x ∈ C(K) and every ε > 0,
there are q ∈ N, a pointwise open half space H with x ∈ H ∩ Cq together with a finite
covering L of K such that

|y(s)− y(t)| < ε whenever s, t ∈ L, y ∈ H ∩ Cq, and L ∈ L.

Some compacta K which are relevant in this field are not defined by internal
topological properties but in terms of their immersion in a product of real lines, K ⊂ RΓ

where the elements of Γ can be viewed as coordinates of the elements of K, this happens
for instance in [6]. Therefore when we deal with this sort of compacta it is easier to
apply Corollary 1.2 below that may be understood as a version of Theorem 1.1, where
sets of controlling coordinates play the role that coverings have in Theorem 1.1.

Let us recall that any compact Hausdorff space can be embedded in a cube [0, 1]Γ

for some Γ. So let K ⊂ [0, 1]Γ and let x ∈ C(K), since any continuous function on K
is uniformly continuous, given ε > 0 there must exist a finite set T ⊂ Γ and δ > 0 such
that

s, t ∈ K, sup
γ∈T
|s(γ)− t(γ)| < δ =⇒ |x(s)− x(t)| < ε.(1)

Following [8], we say that T ε−controls x with δ whenever (1) holds.

Corollary 1.2. Let K be a compact space. The Banach space C(K) admits an equiva-
lent pointwise lower semicontinuous and LUR norm if, and only if, there is a countable
family of subsets {Cn : n ∈ N} in C(K) such that, for every x ∈ C(K) and every ε > 0,
there are q ∈ N, a pointwise open half space H with x ∈ H ∩ Cq together with a finite
set T ⊂ Γ and δ > 0 such that T ε−controls every y ∈ H ∩ Cq with δ.

Therefore, roughly speaking, the existence of a LUR renorming in C(K) is
equivalent to describing regularly the members of a finite covering of K on which each
x ∈ C(K) has arbitrarily small oscillation, alternatively a finite set of coordinates that
ε–controls it. The regularity of these descriptions is based, like in the case of [2], on the
existence of half spaces with certain properties, this is the motivation for developing,
in our Section 3, a method to obtain such half spaces. The characterization and the
method together allow us to deduce in Section 4 a unified approach to prove two new
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results in this field, on the one hand the existence of a LUR norm in a Banach space
X such that X∗ admits a LUR dual norm, result due to R. Haydon [3]; on the other
hand the existence of such renorming in C(K) spaces where K belongs to a particular
class of Rosenthal compacta [6].

As usual we denote by (K, T ) a compact Hausdorff topological space and by
C(K) the Banach space of real–valued continuous functions on K, endowed with the
supremum norm ‖x‖∞ = sup{|x(t)| : t ∈ K}. Let us remember that a norm ‖ · ‖ on a
normed space X is said to be locally uniformly rotund (LUR) if

lim
n→∞

‖x− xn‖ = 0 whenever lim
n→∞

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0.

Let us recall that given a bounded set A of a normed space X, the Kuratowski
index of non–compactness of A, α(A), is defined by α(A) = infn∈N α(A, n) where

α(A, n) = inf {ε > 0 : A can be covered by n sets of diameter less than ε} .

The characterization (iii) of Theorem 1.3 of Banach spaces that admit a LUR
norm is obtained in [2] and we shall need it here:

Theorem 1.3 ([2], [8], [10]). Let X be a Banach space and let F be a norming linear
subspace of X∗. The following assertions are equivalent:

(i) X admits an equivalent σ(X,F )−lower semicontinuous LUR norm;

(ii) there exists a decomposition X =
⋃
n∈NXn in such a way that given ε > 0, n ∈ N

and x ∈ Xn there exists a σ(X,F )−open half space H containing x such that
diam (H ∩Xn) < ε;

(iii) there exists a decomposition X =
⋃
n∈NXn in such a way that given ε > 0, n ∈ N

and x ∈ Xn there exists a σ(X,F )−open half space H containing x such that
α(H ∩Xn) < ε.

2 A characterization

Proof of Theorem 1.1. Assume that C(K) admits a pointwise lower semicontinuous
LUR norm. If C(K) =

⋃
n∈NCn is the decomposition of Theorem 1.3.(ii), given x ∈

C(K) and ε > 0 let n be a natural number and let H be a pointwise open half space
such that x ∈ Cn ∩H and

(2) diam (H ∩ Cn) < ε/3.

Since x is continuous, by compactness we get a finite covering L of K such that the
oscillation of x in every L ∈ L is

(3) osc (x, L) < ε/3.
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From (2) and (3) it follows that osc(y, L) < ε for every y ∈ H ∩ Cn and every L ∈ L.

Conversely let C(K) =
⋃+∞
n=1Cn be the decomposition of the statement. Then

given ε > 0, n ∈ N and x ∈ Cn there are a pointwise open half space H containing x
and a finite covering L of K such that osc(y, L) < ε/9 for every y ∈ H ∩ Cn and every
L ∈ L. If Cn,M = {x ∈ Cn : ‖x‖∞ ≤M} then Cn =

⋃
M∈NCn,M .

Following [6, Proposition 5], take x ∈ Cn,M and set {Ij}`j=1 a finite family of open

real intervals of length less than ε/9 satisfying [−M,M ] ⊂
⋃`
j=1 Ij. If L = {Li}mi=1 for

some m ∈ N, then for every 1 ≤ i ≤ m choose a point si ∈ Li and for every map
π : {1, . . . ,m} −→ {1, . . . , `} fix a function xπ ∈ H ∩ Cn,M satisfying xπ(si) ∈ Iπ(i)

for all 1 ≤ i ≤ m (whenever this is possible). We claim that for these xπ we have
H ∩ Cn,M ⊂

⋃
π B(xπ, ε/3). Indeed, if y ∈ H ∩ Cn,M then for every 1 ≤ i ≤ m there

exists 1 ≤ ki ≤ ` such that y(si) ∈ Iki
. Denote by π the map i 7−→ ki. If s ∈ K there

exists 1 ≤ i ≤ m such that s ∈ Li so that

|y(s)− xπ(s)| ≤ |y(s)− y(si)|+ |y(si)− xπ(si)|+ |xπ(si)− xπ(s)| <
< osc(y, Li) + length(Iπ(i)) + osc(xπ, Li) < ε/3.

Since the Kuratowski index of non–compactness ofH∩Cn,M is less than ε, from Theorem
1.3.(iii) we conclude that C(K) admits an equivalent pointwise lower semicontinuous
LUR norm. �

Proof of Corollary 1.2. Assume that C(K) admits a pointwise lower semicontinuous
LUR norm. Take Cn, x ∈ C(K), ε > 0, H, x ∈ H ∩Cn as in the proof of Theorem 1.1
satisfying (2). If the finite set T ⊂ Γ ε/3–controls x with δ > 0 it is easy to check that
T ε–controls every y ∈ H ∩ Cn with δ > 0.

Conversely let {Cn : n ∈ N} in C(K) satisfying the assertion of the corollary.
Given ε > 0 let q ∈ N, a pointwise open half space H with x ∈ H ∩ Cq and a finite set
T ⊂ Γ and δ > 0 such that

(4) T ε–controls every y ∈ H ∩ Cq with δ > 0.

Given s ∈ K let Vs the open neighbourhood of s made up by all t ∈ K such that
supγ∈T |s(γ)− t(γ)| < δ/2. The compactness of K yields a finite covering L of K such
that supγ∈T |s(γ)− t(γ)| < δ for each s, t ∈ L and each L ∈ L. This and (4) show that
|y(s) − y(t)| < ε whenever s, t ∈ L, y ∈ H ∩ Cq and L ∈ L. To finish the proof it is
enough to apply Theorem 1.1. �

Remark. Recall that a subset A of X is said to be radial if for every x ∈ X there
exists ρ > 0 such that ρx ∈ A. A linear subspace F of X∗ is called norming whenever
|x| = sup{|f(x)| : f ∈ BX∗ ∩F}, x ∈ X, is an equivalent norm on X. Theorem 1.1 and
Corollary 1.2 hold if we replace C(K) by any linear subspace X of it, if we change point-
wise lower semicontinuous by σ(C(K), F )–lower semicontinuous, where F is a norming
subspace of C(K)∗, and if we change X by any of its radial subsets. This observation
may be of some use to apply the above characterizations to spaces C0(L) where L is a
locally compact space. Moreover it shows that to apply the characterizations above it
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is enough to decompose the unit ball BC(K) =
⋃
Cn instead of the whole space C(K)

as it will be done below.

To apply Theorem 1.1 it is enough to show that for every ε > 0, there is a
countable family of subsets {Cn,ε : n ∈ N} in C(K) such that, for every x ∈ C(K)
there is q ∈ N and a pointwise open half space H with x ∈ H ∩ Cq,ε together with a
finite covering L of K such that |y(s)− y(t)| < ε whenever s, t ∈ L, y ∈ H ∩ Cq,ε, and
L ∈ L. Indeed, the (countable) family {Cn,1/m : n,m ∈ N} satisfies the requirements of
Theorem 1.1. A similar remark can be done about Corollary 1.2.

3 A method to construct half spaces

To apply Theorem 1.1 and Corollary 1.2 to concrete compact spaces K, it is necessary
to obtain a method to associate to each x ∈ C(K) and each ε > 0 a finite covering L of
K such that osc(x, L) < ε for every L ∈ L or, alternatively, a finite set of coordinates
that ε−controls x. Often this method gives a decomposition of C(K) that fulfills this
requirement where H is not a pointwise open half space but a finite intersection of
pointwise open half spaces. In general it is not possible to obtain a refinement of this
decomposition for which the above characterization holds [4]. In the lemma below a
method is developed to get necessary conditions to get such half spaces, specialists will
recognize in (7) the rigidity condition.

Lemma 3.1. Let ϕk be, 1 ≤ k ≤ n, convex and lower semicontinuous maps on a convex
set B of a locally convex space X. Let A0 ⊂ B for which

(5) osc(ϕk, A0) ≤ 1 for all 1 ≤ k ≤ n.

Let δ and θ be such that 0 < 4δ1/n ≤ θ ≤ 1. Fix x ∈ A0 and for every 1 ≤ k ≤ n set
Ak = {y ∈ Ak−1 : ϕk(x)− ϕk(y) < δ}. Suppose that for every 1 ≤ k ≤ n we have

ϕk(x) ≥ sup{ϕk(y) : y ∈ Ak−1} − δ, and(6)

{y ∈ Ak−1 : δ ≤ ϕk(x)− ϕk(y) < θ} = ∅.(7)

Then there exists a continuous linear map f on X such that {y ∈ A0 : f(x− y) < 1} ⊂
An.

Proof. Set q = 4/θ and ϕ =
∑n

i=1 q
n+1−iϕi. Since ϕ is a convex and lower semicontin-

uous function on B there must exist an ε−subdifferential at x for every ε > 0 [9, p. 48].
Then there exists a continuous linear map g on X such that ϕ(x)−ϕ(y) < g(x−y)+θ/6
for every y ∈ B. Set S = {y ∈ A0 : 6 g(x− y) < θ}. We will show by induction that
S ⊂ Ak for every 1 ≤ k ≤ n. Clearly S ⊂ A0. Assume that for some k, 1 ≤ k ≤ n,
we have S ⊂ Ak−1 and pick y ∈ S. Since A0 ⊇ A1 ⊇ . . . ⊇ Ak−1 ⊇ S from (6) we get
ϕi(x)− ϕi(y) ≥ −δ for every 1 ≤ i ≤ k − 1. From this and (5) we have
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qn+1−k (ϕk(x)− ϕk(y)) = ϕ(x)− ϕ(y)

−
∑

1≤i≤k−1

qn+1−i (ϕi(x)− ϕi(y))−
∑

k+1≤i≤n

qn+1−i (ϕi(x)− ϕi(y)) <

< g(x− y) +
θ

6
+ δ

∑
1≤i≤k−1

qn+1−i +
∑

k+1≤i≤n

qn+1−i.

Then

qn+1−k (ϕk(x)− ϕk(y)) <
θ

3
+
δqn+1

q − 1
+
qn+1−k

q − 1
.

Taking into account that q = 4/θ, the above inequality yields

ϕk(x)− ϕk(y) <
θ

3
+ θ

δ(4/θ)n + 1

4− θ
<
θ

3
+

2θ

4− θ
≤ θ.

Since y ∈ Ak−1, from (7) we deduce that ϕk(x)− ϕk(y) < δ so y ∈ Ak. �

4 Some applications

4.1 Namioka–Phelps compacta

In this section we will deduce from Theorem 1.1 and Lemma 3.1 the existence of an
equivalent locally uniformly rotund norm on C(K) when K is a Namioka–Phelps com-
pact. The existence of a LUR renorming in C(K) for such compacta K was proved
by R. Haydon in [3], deducing that a Banach space X has an equivalent LUR norm
whenever X∗ has a LUR dual norm. This class of compacta was introduced by M.
Raja in [11] proving that (BX∗ , ω

∗) belongs to this class whenever X∗ is a dual Banach
space with a LUR dual norm.

Let us recall that a family H = {Hi : i ∈ I} of subsets of a topological space
(X, T ) is said to be T −isolated if for every i ∈ I

Hi ∩
⋃
{Hj : j ∈ I, j 6= i}

T
= ∅.

We will say that H is a T − σ−isolated family if H is a countable union of T −isolated
families.

A collection N of subsets of a topological space (X, T ) is said to be a network
for the topology T if for every U ∈ T and every x ∈ U there exists N ∈ N such that
x ∈ N ⊂ U .

Definition 4.1. [11] A compact Hausdorff space (K, T ) is said to be a Namioka–
Phelps compact if there is a T −lower semicontinuous metric ρ on K such that the
metric topology induced by ρ has a network which is T − σ−isolated.
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In this section, using ideas of [3], we will deduce from our characterization and our
method of constructing half spaces that C(K) admits an equivalent pointwise lower
semicontinuous LUR norm when K is a Namioka–Phelps compact. As in [3], we first
show that there exists a σ−isolated covering of K with some special properties (see
Theorem 4.3 below). Then we associate to each x ∈ C(K) and each ε > 0 a finite
covering L of K such that

(8) osc(x, L) < ε for every L ∈ L,

then using Lemma 3.1 we will deduce that Theorem 1.1 holds.

Definition 4.2. Given a compact space (K, T ), a family I of subsets of K and a subset
H of K, we say that I is rigidly finite at H when

(i) the family {I ∈ I : I ∩H 6= ∅} is finite, nonempty and

(ii) H ∩
⋃
{I ∈ I : I ∩H = ∅} = ∅.

We start by proving the following result, which is based on [3, Lemma 3.3] and it is
essential to associate to each x ∈ C(K) and each ε > 0 a finite covering L of K for
which (8) holds; moreover it plays a key role to fulfil the requirements of Lemma 3.1,
see Proposition 4.5.(iii)–(iv) and (10) below.

Theorem 4.3. Let K be a compact space and let I be a σ−isolated covering of K.
Then there exists another covering J of K such that J =

⋃
i∈N J (i), where each family

J (i) is isolated and

(i) for every nonempty closed subset H of K there exists i ∈ N such that J (i) is
rigidly finite at H;

(ii) for every J ∈ J there is I ∈ I such that J ⊂ I.

As usual given a family of sets J the symbol
⋃
J stands for the union of all the elements

of J .

Lemma 4.4. Let K be a compact space, let H be a closed subset of K and J an
isolated family in K. If J is not rigidly finite at H then either H ∩

⋃
J = ∅ or

H ∩
⋃
J \

⋃
J 6= ∅.

Proof. Set M = {J ∈ J : J ∩H 6= ∅}, let us distinguish three possibilities:

a) M is empty. Then H ∩
⋃
J = ∅ and H ∩

⋃
J = H ∩

⋃
J \

⋃
J .

b) M is infinite. Then there exists a family {Ji : i ∈ N} ⊂ J with Ji 6= Jk for i 6= k,
satisfying Ji∩H 6= ∅ for every i ∈ N. Let ti ∈ Ji∩H, i ∈ N, choose an accumulation
point t of the set {ti : i ∈ N} then t ∈ H ∩

⋃
J and t /∈

⋃
J since J is isolated.
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c) M is a nonempty finite set. If J is not rigidly finite at H then

H ∩
⋃
{J ∈ J : J ∩H = ∅} 6= ∅.

Since J is isolated we get⋃
{J ∈ J : J ∩H = ∅} ⊂

⋃
J \

⋃
M =

(⋃
J \

⋃
J
)
∪
(⋃

(J \M)
)
.

Hence H ∩
⋃
{J ∈ J : J ∩H = ∅} ⊂ H ∩

⋃
J \

⋃
J .

�

Proof of Theorem 4.3. Let I be a σ−isolated covering of K. Then K =
⋃
{I : I ∈

I} and for every i ∈ N there is an isolated family I(i) such that I is the family of all
sets that belong to some I(i) for some i ∈ N. The proof is divided into three steps.

Step 1. We can assume that
⋃
I(i) \

⋃
I(i) is closed for every i ∈ N.

Indeed, for every i ∈ N we define the family

Ĩ(i) :=

{
I \
⋃
I(i) \ I : I ∈ I(i)

}
.

It is clear that Ĩ(i) is an isolated family and that each
⋃
Ĩ(i) \

⋃
Ĩ(i) is just the set of

all points t in K such that each neighbourhood of t meets at least two members of Ĩ(i),

then
⋃
Ĩ(i) \

⋃
Ĩ(i) is closed. Since each I(i) is isolated we have I ⊂ I \

⋃
I(i) \ I for

every I ∈ I(i), therefore the family of all sets that belong to some Ĩ(i) for some i ∈ N
is a σ−isolated covering of K. From now on we will write I(i) instead of Ĩ(i) for i ∈ N.

Step 2. The construction of J .
Following [3] we define recursively isolated families I(i1, . . . , in) for (i1, . . . , in) ∈

N<ω, the family of all finite sequences of natural numbers. If I(i1, . . . , in) has been
defined set

I(i1, . . . , in) =
⋃
I(i1, . . . , in) and J(i1, . . . , in) = I(i1, . . . , in) \ I(i1, . . . , in).

Given j ∈ N let I(i1, . . . , in, j) be the (isolated) family

I(i1, . . . , in, j) := {J(i1, . . . , in) ∩ I : I ∈ I(j)} .

From step 1 it follows that each J(i1, . . . , in) is closed and I(i1, . . . , in) = ∅ if (i1, . . . , in)
has repeated terms. Then set J as the family of all sets in any I(i1, . . . , in) for some
(i1, . . . , in) ∈ N<ω. From the choice of J we have that (ii) holds. Let us show condition
(i).

Step 3. For every nonempty closed subset H of K there is (i1, . . . , in) ∈ N<ω

such that I(i1, . . . , in) is rigidly finite at H.
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Indeed, otherwise from Lemma 4.4 there exists a non empty closed set H such
that

H ∩ I(i1, . . . , in) = ∅ or H ∩ J(i1, . . . , in) 6= ∅ for any (i1, . . . , in) ∈ N<ω.(9)

Since I is a covering of K, there is i ∈ N such that H ∩ I(i) 6= ∅. If we write
i1 = min{i ∈ N : H ∩ I(i) 6= ∅} then H ∩ I(i1) 6= ∅ and from (9) it follows that
H ∩ J(i1) 6= ∅. Thus, there is j ∈ N such that ∅ 6= H ∩ J(i1) ∩ I(j) = H ∩ I(i1, j) and
we can set i2 = min{i ∈ N : H ∩ I(i1, i) 6= ∅}. Note that i2 6= i1 since otherwise I(i1, i2)
is empty. Proceeding recursively we can obtain a sequence of pairwise distinct natural
numbers (in)n≥1 satisfying

(a) H ∩ I(`) = ∅ if ` < i1 but H ∩ I(i1) 6= ∅;

(b) H ∩ I(i1, . . . , in−1, `) = ∅ if ` < in and n ≥ 2 and H ∩ I(i1, . . . , in) 6= ∅.

We claim that (in)n≥1 is strictly increasing. Indeed, from H ∩ I(i1, i2) ⊂ H ∩ I(i2) and
(a) we get i2 > i1. Let n ≥ 2, since each set J(i1, . . . , in) is closed we have

I(i1, . . . , in+1) = J(i1, . . . , in) ∩ I(in+1) ⊂ I(i1, . . . , in) ∩ I(in+1)

⊂ J(i1, . . . , in−1) ∩ I(in+1) = I(i1, . . . , in−1, in+1)

which implies H ∩ I(i1, . . . , in+1) ⊂ H ∩ I(i1, . . . , in−1, in+1). From (b) we deduce that
in+1 > in.

Finally, by compactness there exists a point t ∈
⋂+∞
n=1 H∩J(i1, . . . , in) and there

is i ∈ N such that t ∈ I(i). For every n ∈ N it follows that t ∈ H ∩J(i1, . . . , in)∩ I(i) =
H ∩ I(i1, . . . , in, i) and by minimality we get i ≥ in+1 for all n ∈ N, a contradiction. �

We denote by K a (Namioka–Phelps) compact space, by T its topology and by
ρ a T −lower semicontinuous metric on K such that the metric topology induced by ρ
has a network D which is T −σ−isolated. From now on and unless otherwise stated, all
the closures are taken with respect to T . Theorem 4.3 applied to the T − σ−isolated
family D` = {A ∈ D : ρ−diam(A) ≤ 1/`} yields a covering I` of K made up by all the
sets that belong to any I`(i) for i ∈ N, where each family I`(i) is T −isolated, satisfying

(a) each set of I` is included in the closure of some set of ρ−diameter at most 1/`;

(b) for every nonempty closed subset H of K there is i ∈ N such that I`(i) is rigidly
finite at H.

Following [3], for every x ∈ C(K) and every ε > 0, we are going to describe a method
to split up every closed subset L of K where the oscillation of x on L is bigger than ε,
in such a way that Theorem 1.1 gives a pointwise lower semicontinuous renorming.

Given M⊂ I`(i) such that the cardinal of M is #M = m let

Φ(x, L,M) =
1

m

∑
M∈M

supx�L∩M and Ψ(x, L,M) =
1

m

∑
M∈M

inf x�L∩M .
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Proposition 4.5 ([3]). Let x ∈ C(K) be and let ε > 0. Then there exists ` ∈ N such
that if L is a closed subset of K with osc(x, L) ≥ ε then there are m,n, i, j ∈ N and a
pair (M,N ) satisfying

(i) M⊂ I`(i), N ⊂ I`(j), #M = m, #N = n and A∩L 6= ∅ for every A ∈M∪N ;

(ii)
⋃
M
⋂ ⋃

N = ∅;

(iii) Φ(x, L,M) > (1− 1/m) supx�L
+ 1/m supx�L∩

⋃
(I`(i)\M)

;

(iv) Ψ(x, L,N ) < (1− 1/n) inf x�L
+ 1/n inf x�L∩

⋃
(I`(j)\N )

.

Proof. It is easy to see that x is ρ−uniformly continuous then there exists ` ∈ N such
that |x(s)−x(t)| < ε/3 whenever ρ(s, t) ≤ 1/` with s, t ∈ K. Suppose that osc(x, L) ≥ ε
for some closed subset L of K and let H1 = {t ∈ L : x(t) = sup x�L}. According to the
properties of I` there exists i ∈ N such that the family M := {I ∈ I`(i) : I ∩H1 6= ∅}
is finite and nonempty, say #M = m for some m ∈ N, and H1 ∩

⋃
(I`(i) \M) = ∅.

This clearly implies

(10) sup x�L∩
⋃

(I`(i)\M)
< supx�L.

Note that Φ(x, L,M) = supx�L since sup x�L = supx�L∩M for all M ∈ M. A similar
argument with H2 = {t ∈ L : x(t) = inf x�L} gives a j ∈ N such that the set N :=
{I ∈ I`(j) : I ∩ H2 6= ∅} is finite and nonempty, say #N = n for some n ∈ N, and
Ψ(x, L,N ) = inf x�L < inf x�L∩

⋃
(I`(j)\N )

. Hence, (i), (iii) and (iv) hold.

To prove (ii) observe that given M ∈ M there exists A ∈ D such that M ⊂ A
and ρ− diam(A) ≤ 1/`. By ρ−uniform continuity of x it follows that osc(x,M) ≤ ε/3
and since M ∩ H1 6= ∅ we get x(t) ≥ supx�L − ε/3 for every t ∈ M . Similarly,
x(t) ≤ inf x�L + ε/3 for every N ∈ N and every t ∈ N . Condition (ii) follows from the
fact that osc(x, L) ≥ ε. �

We say that a pair (M,N ) satisfying (i)–(iv) of Proposition 4.5 is a good choice
of x of type (`,m, n, i, j) on L. From condition (ii), for every good choice (M,N )
we can and do fix a pair of closed sets, X(M,N ) and Y (M,N ), such that K =
X(M,N ) ∪ Y (M,N ) and

⋃
N ∩X(M,N ) =

⋃
M∩ Y (M,N ) = ∅.

Observe that given x ∈ C(K) and a closed subset L of K such that osc(x, L) ≥ ε
for some ε > 0, there exists a good choice (M,N ) of x on L of some type and we can
split L up into L ∩X(M,N ) and L ∩ Y (M,N ). Proposition 4.5.(iii)–(iv) enables us
to prove next lemma which shows that the good choice of x on L is unique, if we fix its
type, and that a suitable rigidity condition holds; from this it will be deduced a rule to
decompose every closed set on which a continuous function has an oscillation not less
than ε. Set

B(L, `,m, i) = {M ⊂ I`(i) : #M = m, M ∩ L 6= ∅ for all M ∈M}.

Lemma 4.6 ([3]). If (M,N ) is a good choice of x ∈ C(K) on a closed subset L of K
of type (`,m, n, i, j) then
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(i) sup{Φ(x, L,M′) :M′ ∈ B(L, `,m, i), M′ 6=M} < Φ(x, L,M);

(ii) inf{Ψ(x, L,N ′) : N ′ ∈ B(L, `, n, j), N ′ 6= N} > Ψ(x, L,N ).

Proof. IfM′ ∈ B(L, `,m, i) andM′ 6=M then there exists M0 ∈M′ \M ⊂ I`(i)\M
so that

Φ(x, L,M′) =
1

m

 ∑
M∈M′\{M0}

supx�L∩M

+
1

m
supx�L∩M0

≤
(

1− 1

m

)
supx�L

+
1

m
supx�L∩

⋃
(I`(i)\M)

.

The proof of (ii) is similar. �

Given x ∈ C(K) with osc(x,K) ≥ ε, we are going to iterate the above decom-
position to get a covering L fulfilling the requirements of Theorem 1.1. Such a covering
should be finite, so this iterative process is going to be defined in such a way that it
finishes after a finite number of steps.

In order to cope with this requirement, fix a map τ from the nonnegative integers
into N5 with the property that, for every (`,m, n, i, j) ∈ N5, the set τ−1(`,m, n, i, j) is
infinite. Let S = {−1, 0, 1}<ω be the set of all finite sequences of integers s = (i1, . . . , in),
where ik ∈ {−1, 0, 1} for 1 ≤ k ≤ n; this n is called the length |s| of s. We agree that
the empty sequence s = (·) belongs to S and has length zero. If s ∈ S and i ∈ {−1, 0, 1}
we write (s, i) for the element of S which extends s and has i in its last place. F(K)
will stand for the set of all closed subsets of K.

Proposition 4.7 ([3]). Given x ∈ C(K) and ε > 0 there exists a finite subset Υ ⊂
F(K)× S and a tree order on Υ with the following properties

(a) the unique minimal element of Υ is (K, (·));

(b) an element (L, s) is maximal in Υ if, and only if, osc(x, L) < ε;

(c) if (L, s) is not maximal in Υ and |s| = n with n ≥ 0 then there are two possibilities

(i) there exists a good choice (M,N ) of x of type τ(n) on L. Then the immediate
successors of (L, s) in Υ are (L∩X(M,N ), (s, 0)) and (L∩Y (M,N ), (s, 1));

(ii) no good choice of x of type τ(n) exists on L. In this case, the unique immediate
successor of (L, s) in Υ is (L, (s,−1)).

Moreover, the family

L = {L ∈ F(K) : (L, s) is a maximal node of Υ for some s ∈ S}

is a finite covering of K satisfying osc(x, L) < ε for all L ∈ L.
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Proof. Conditions (a)–(c) define a tree Υ, we claim that it has no infinite branches.
Indeed, otherwise there exists σ ∈ {−1, 0, 1}ω and there is a sequence {(Lk, σ�k)}k≥0 in
Υ such that (Lk+1, σ�k+1) is an immediate successor of (Lk, σ�k) for all k ≥ 0. Since
(Lk)k is a decreasing sequence of closed sets with the property that osc(x, Lk) ≥ ε for
all k ≥ 0, it follows that L =

⋂
k≥0 Lk is a nonempty closed set satisfying osc(x, L) ≥ ε.

From Proposition 4.5 there exists (M,N ) a good choice of x of type (`,m, n, i, j) on
L for some `,m, n, i, j ∈ N. By compactness there must exist k0 such that (M,N )
is a good choice on Lk for all k ≥ k0. As τ−1(`,m, n, i, j) is infinite there is some
k ≥ k0 such that τ(k) = (`,m, n, i, j). By construction, either Lk+1 = Lk ∩X(M,N )
or Lk+1 = Lk ∩ Y (M,N ). Therefore, either

⋃
M ∩ Lk+1 = ∅ or

⋃
N ∩ Lk+1 = ∅,

contradicting that
⋃
M∩ L 6= ∅ 6=

⋃
N ∩ L.

According to König’s Lemma, Υ is a finite tree. Consequently, if L is the family
of all sets L for which (L, s) is maximal in Υ for some s ∈ S, we have that L is finite.
Moreover from the choice of Υ it follows that L is a finite covering of K such that for
every L ∈ L we have osc(x, L) < ε. �

Now we are ready to prove the main result about Namioka–Phelps compacta.

Theorem 4.8 ([3]). Let K be a Namioka–Phelps compact space. Then C(K) admits
an equivalent pointwise lower semicontinuous LUR norm.

Proof. We divide the proof of this theorem into three steps. Given ε > 0 we begin by
decomposing the unit ball of C(K) into countably many sets {Cn : n ∈ N} in such a
way that for every n ∈ N the set Cn codifies the countable information relative to the
tree Υx associated to each ε and x ∈ Cn according to Proposition 4.7. In the second
step, for every n ∈ N and every x ∈ Cn we define a family of maps Φ(x) associated to
x and we prove that Φ(x) fulfils the hypothesis of Lemma 3.1. Finally, we deduce that
for every n ∈ N and every x ∈ Cn there is a pointwise open half space H containing x
such that Υy = Υx for every y ∈ H ∩ Cn. According to Proposition 4.7, the statement
follows from Theorem 1.1.

Let ε > 0. We write T (S) for the countable family of all finite trees (Υ,v)
in S, where v is the end–extension order, with the property that every Υ ∈ T (S)
has one minimal element and the set s+ of the immediate successors of each s of Υ
has at most two elements. Given x ∈ BC(K) let Υx be the tree associated to x and
ε by Proposition 4.7. We denote by P (Υx) the tree made up by all s ∈ S for which
there exists L such that (L, s) ∈ Υx, with the order induced by S. If Υ ∈ T (S) let
CΥ = {x ∈ BC(K) : P (Υx) = Υ}.

Fix Υ ∈ T (S). We assume that #Υ > 1, otherwise osc(x,K) < ε for every
x ∈ CΥ. For every s ∈ Υ and every x ∈ CΥ we write Lx,s for the closed subset of K
such that (Lx,s, s) ∈ Υx. If Υ2 = {s ∈ Υ : #s+ = 2} then for every s ∈ Υ2 and every
x ∈ CΥ there exists a good choice (Mx,s,Nx,s) of x on Lx,s of type τ(|s|) such that

Lx,(s,0) = Lx,s ∩X(Mx,s,Nx,s) and Lx,(s,1) = Lx,s ∩ Y (Mx,s,Nx,s).(11)
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If τ(|s|) = (`s,ms, ns, is, js) we let

αs(x) = sup {Φ(x, Lx,s,M) :M∈ B(Lx,s, `s,ms, is), M 6=Mx,s} ;

βs(x) = inf {Ψ(x, Lx,s,N ) : N ∈ B(Lx,s, `s, ns, js), N 6= Nx,s} .

From Lemma 4.6 it follows that Φ(x, Lx,s,Mx,s) > αs(x) and Ψ(x, Lx,s,Nx,s) < βs(x) for
every s ∈ Υ2 and every x ∈ CΥ. Hence, for every r ∈ N and every family U = {(Us, Vs) :
s ∈ Υ2} of pairs (Us, Vs) of open real intervals with rational end points and length equal
to (1/12r)2#Υ2 , let CΥ,r,U be the set of all x ∈ CΥ such that Φ(x, Lx,s,Mx,s) ∈ Us and
Ψ(x, Lx,s,Nx,s) ∈ Vs for every s ∈ Υ2 and

r−1 ≤ min
s∈Υ2

{Φ(x, Lx,s,Mx,s)− αs(x), βs(x)−Ψ(x, Lx,s,Nx,s)}.

It is clear that BC(K) is the (countable) union of the sets CΥ,r,U .
Fix Υ, r,U and x ∈ CΥ,r,U . For every s ∈ Υ2 and every i ∈ {0, 1} we define the

map ϕis : BC(K) −→ R by

ϕis(y) =

{
Φ(y, Lx,s,Mx,s)/2, if i = 0;

−Ψ(y, Lx,s,Nx,s)/2, if i = 1.

and fix the values θ = 1/3r and δ = (1/12r)2#Υ2 . If we write Φ(x) for the collection {ϕis :
s ∈ Υ2, i = 0, 1} then Φ(x) is a family of convex and pointwise lower semicontinuous
maps satisfying osc(ϕ,BC(K)) ≤ 1 for every ϕ ∈ Φ(x). The following result yields
information about setting an order on Φ(x) to apply Lemma 3.1.

Lemma 4.9. Let y ∈ CΥ,r,U be such that Ly,s = Lx,s for some s ∈ Υ2. If i ∈ {0, 1}
then

(12) ϕis(x) > ϕis(y)− δ and ϕis(x)− ϕis(y) /∈ [δ, θ).

Moreover,

if ϕis(x)− ϕis(y) < δ for i = 0, 1 then Ly,(s,0) = Lx,(s,0) and Ly,(s,1) = Lx,(s,1).(13)

Proof. Since Ly,s = Lx,s we haveMx,s ∈ B(Ly,s, `s,ms, is) andNx,s ∈ B(Ly,s, `s, ns, js).
Moreover, Φ(x, Lx,s,Mx,s), Φ(y, Ly,s,My,s) ∈ Us and Ψ(x, Lx,s,Nx,s), Ψ(y, Ly,s,Ny,s) ∈
Vs, then

2ϕ0
s(y) = Φ(y, Ly,s,Mx,s) ≤ Φ(y, Ly,s,My,s)

< Φ(x, Lx,s,Mx,s) + length(Us) = 2ϕ0
s(x) + δ.

Similarly we get −2ϕ1
s(y) > −2ϕ1

s(x) − δ. Hence for each i ∈ {0, 1} we have ϕis(x) >
ϕis(y)− δ and the first part of (12) follows.
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To show the second part of (12) suppose that ϕis(x) − ϕis(y) ∈ [δ, θ). Since
ϕ0
s(x)− ϕ0

s(y) < θ we get

Φ(y, Ly,s,Mx,s) > Φ(x, Lx,s,Mx,s)− 2θ > Φ(y, Ly,s,My,s)− length(Us)− 2θ >

> Φ(y, Ly,s,My,s)− 3θ ≥ αs(y)

which implies Mx,s =My,s so that Φ(y, Ly,s,Mx,s) ∈ Us. Similarly we get

Ψ(y, Ly,s,Nx,s) < Ψ(y, Ly,s,Ny,s) + 3θ ≤ βs(y) and Nx,s = Ny,s

so that Ψ(y, Ly,s,Nx,s) ∈ Vs. Nevertheless the inequalities ϕis(x) − ϕis(y) ≥ δ for
i = 0, 1 imply Φ(y, Ly,s,Mx,s) ≤ Φ(x, Lx,s,Mx,s) − 2δ < inf Us and Ψ(y, Ly,s,Nx,s) ≥
Ψ(x, Lx,s,Nx,s) + 2δ > supVs, a contradiction which shows the second part of (12).

Finally, suppose that ϕis(x) − ϕis(y) < δ for every i ∈ {0, 1}. Then ϕis(x) −
ϕis(y) < θ and we get (My,s,Ny,s) = (Mx,s,Nx,s) as above. Hence X(My,s,Ny,s) =
X(Mx,s,Nx,s) and Y (My,s,Ny,s) = Y (Mx,s,Nx,s) so (13) follows from (11). �

Let us turn into the proof of Theorem 4.8. To enumerate the family Φ(x) we
introduce an order ≺ as follows. Given two distinct maps ϕis, ϕ

j
t ∈ Φ(x) we write

ϕis ≺ ϕjt if, and only if, either |s| < |t|, or |s| = |t| and s <lex t, where <lex is the
lexicographic order, or s = t and i < j. Then we write Φ(x) as {ϕk : 1 ≤ k ≤ 2#Υ2}
where ϕk ≺ ϕ` if, and only if, 1 ≤ k < ` ≤ 2 #Υ2. Note that for every y ∈ CΥ,r,U we
have Ly,(·) = Lx,(·) = K and if Ly,s = Lx,s for some s ∈ Υ with #s+ = 1 then it follows
that Ly,(s,−1) = Ly,s = Lx,s = Lx,(s,−1). If for some n ≤ 2 #Υ2 there is y ∈ CΥ,r,U such
that ϕj(x)−ϕj(y) < δ for all j < n, according to Lemma 4.9 we get ϕn(x) > ϕn(y)− δ
and ϕn(x)− ϕn(y) /∈ [δ, θ). Since 0 < 4δ

1
2#Υ2 ≤ θ < 1, we can apply Lemma 3.1 to the

family Φ(x) with A0 = CΥ,r,U and B = BC(K). Then there exists a pointwise open half
space H containing x such that Υy = Υx for every y ∈ H∩CΥ,r,U . From Proposition 4.7
we have that the family L of the projections of all maximal elements of Υx into F(K) is
a finite covering of K satisfying osc(y, L) < ε for every y ∈ H ∩CΥ,r,U and every L ∈ L.
According to Theorem 1.1, C(K) admits an equivalent pointwise lower semicontinuous
LUR norm. �

Remark. A compact Hausdorff space is said to be descriptive if its topology has a
σ−isolated network. If (K, T ) is descriptive then there exists a metric ρK on K such
that the metric topology induced by ρK has a T − σ−isolated network. Thus, a proof
similar to that of Theorem 4.8 shows that for any descriptive compact space K the
linear subspace of all continuous functions on K which are ρK−uniformly continuous
admits an equivalent pointwise lower semicontinuous LUR norm [3].

4.2 A class of Rosenthal compacta

In what follows we denote by Γ a Polish space, i.e. a separable complete metric space.
Let K be a separable and pointwise compact set of functions on Γ, assume further that
each function s ∈ K has only countably many discontinuities. It is clear that every
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s in K is a Baire–1 function, so K is a Rosenthal compact [12]. For such subclass of
Rosenthal compacta K it has been proved in [6] that C(K) admits a pointwise lower
semicontinuous LUR equivalent norm. Using some ideas of [6] we are going to deduce
the existence of such renorming from Corollary 1.2 describing the controlling coordinates
of the functions in C(K), unlike Section 4.1 where Theorem 1.1 played the key role.

In what follows Q stands for a countable dense subset of Γ. As in Section 1 we
assume that K ⊂ [0, 1]Γ. If m ∈ N, R and S are subsets of Q and Γ\Q respectively, let

I(R, S,m) =
{

(s, t) ∈ K ×K : ‖(s− t) �R ‖∞ ≤ (4m)−1, ‖(s− t) �S ‖∞ ≤ m−1
}
.

Fix ε > 0. The uniform continuity of every x ∈ C(K) yields m(x) ∈ N and a
finite subset F of Γ such that

|x(s)− x(t)| < ε whenever s, t ∈ K and sup{|s(γ)− t(γ)| : γ ∈ F} ≤ m(x)−1.

If S = F ∩ (Γ \ Q) it is clear that |x(s) − x(t)| < ε whenever (s, t) ∈ I(Q,S,m(x)).
Furthermore we can associate to x a finite subset S(x) of Γ \Q of minimal cardinality
satisfying

(s, t) ∈ I(Q,S(x),m(x)) =⇒ |x(s)− x(t)| < ε.(14)

Since I(Q,S(x),m(x)) is pointwise compact, there must exist p(x) ∈ N such that
|x(s) − x(t)| ≤ ε − p(x)−1 whenever (s, t) ∈ I(Q,S(x),m(x)). We claim that there
exists a finite subset R(x) of Q such that

(s, t) ∈ I(R(x), S(x),m(x)) =⇒ |x(s)− x(t)| < ε.(15)

Indeed, otherwise for every finite subset R of Q there is (sR, tR) ∈ I(R, S(x),m(x))
such that |x(sR)− x(tR)| ≥ ε. By compactness, we can choose a cluster point (s, t) of
the net {(sR, tR)}R∈[Q]<ω in K × K. It is easy to check that (s, t) ∈ I(Q,S(x),m(x))
but applying continuity we get |x(s)−x(t)| ≥ ε, a contradiction with (14) which proves
our claim.

From (15) it follows that R(x)∪ S(x) ε–controls x with 1/4m(x) so, in order to
apply Corollary 1.2, we are going to split C(K) up into countably many subsets and,
fixed one of these subsets, to describe the set S(x) for each x in it. Given s ∈ K and
δ > 0 let

J(s, δ) = {γ ∈ Γ : osc(s, U) > δ whenever U is open and γ ∈ U}.

Each J(s, δ) is a countable closed subset of Γ, hence a scattered topological space.
By means of arguments of Descriptive Set Theory, in [6, Theorem 3] it is proved that
there exists a countable ordinal Ω such that for all s ∈ K and all δ > 0 the Ωth

derived set J(s, δ)(Ω) is empty; fix such Ω. Given s, t ∈ K and m ∈ N we write
J(s, t,m) = J(s, 1/4m) ∪ J(t, 1/4m). It is easily checked that J(s, t,m)(Ω) = ∅ for all
s, t ∈ K and all m ∈ N. The proof of the lemma below can be found in [6], we include
it here for the sake of completeness.
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Lemma 4.10. ([6, Lemma 5]) For every x ∈ C(K) and every proper subset F of S(x)
the set U(x, F ) = {(s, t) ∈ I(Q,F,m(x)) : |x(s) − x(t)| > ε − p(x)−1} is nonempty.
Moreover, there exists an ordinal ξ(x, F ) < Ω such that

(i) S(x) ∩ J(s, t,m(x))(ξ(x,F )) \ F 6= ∅ for all (s, t) ∈ U(x, F );

(ii) there is (s, t) ∈ U(x, F ) such that S(x) ∩ J(s, t,m(x))(ξ(x,F )+1) \ F = ∅.

Proof. Since S(x) is minimal the set U(x, F ) must be nonempty. For simplicity we
write m instead of m(x). By the choice of S(x), given (s, t) ∈ U(x, F ) there is γ ∈
S(x)\F such that |s(γ)− t(γ)| > m−1. We claim that any such γ belongs to J(s, t,m).
Indeed, if γ /∈ J(s, t,m) then there must exist an open set U ⊂ Γ containing γ such that
|s(α)− s(γ)| ≤ (4m)−1 and |t(α)− t(γ)| ≤ (4m)−1 for every α ∈ U . By density of Q we
can choose some α ∈ Q ∩ U . Since (s, t) ∈ I(Q,F,m), it follows that |s(α) − t(α)| ≤
(4m)−1 and applying the triangle inequality we get |s(γ)−t(γ)| ≤ 3/4m, a contradiction.
Hence, for every (s, t) ∈ U(x, F ) the set S(x) ∩ J(s, t,m) \ F is nonempty. Since S(x)
is finite, for every (s, t) ∈ U(x, F ) there is an unique ordinal ξ(s, t) < Ω such that
S(x) ∩ J(s, t,m)(ξ(s,t)) \ F 6= ∅ and S(x) ∩ J(s, t,m)(ξ(s,t)+1) \ F = ∅. If ξ(x, F ) =
min{ξ(s, t) : (s, t) ∈ U(x, F )} then (i) and (ii) hold. �

Lemma 4.10 gives some information to describe the coordinates of S(x), in fact,
it shows that some of them belong to J(s, t,m)(ξ) for some (s, t) ∈ K ×K, m ∈ N and
ξ < Ω. From now on we will codify the new countable information about the controlling
coordinates of the functions by taking countable decompositions of C(K). Indeed, for
R ∈ [Q]<ω, m, p ∈ N and n ≥ 0 let CR

m,n,p be the set of all x ∈ BC(K) for which p(x) = p,
#S(x) = n and (15) holds with R(x) = R and m(x) = m. Given n ≥ 1, x ∈ CR

m,n,p

and a proper subset F of S(x) let ξ(x, F ), or ξ for simplicity, as in Lemma 4.10. We
will focus on the coordinates of S(x) \ F which are in J(s, t,m)(ξ) for a pair (s, t) such
that J(s, t,m)(ξ+1) ∩ S(x) \ F = ∅ so we introduce the set I(x, F ) below. To fix the
minimum number of coordinates we may find there, consider j(x, F ) below. Therefore
set

I(x, F ) = {(s, t) ∈ U(x, F ) : S(x) ∩ J(s, t,m)(ξ+1) \ F = ∅};
j(x, F ) = min{#

(
S(x) ∩ J(s, t,m)(ξ) \ F

)
: (s, t) ∈ I(x, F )};

V (x, F ) = {(s, t) ∈ I(x, F ) : #
(
S(x) ∩ J(s, t,m)(ξ) \ F

)
= j(x, F )};

H(x, F ) = {S(x) ∩ J(s, t,m)(ξ) \ F : (s, t) ∈ V (x, F )}.

According to Lemma 4.10 we have I(x, F ) 6= ∅ and j(x, F ) ≥ 1 so H(x, F ) 6= ∅. For
every H ∈ H(x, F ) let

α(x, F,H) = sup
{
|x(s)− x(t)| : (s, t) ∈ V (x, F ), H = S(x) ∩ J(s, t,m)(ξ) \ F

}
.

Since |x(s)− x(t)| > ε− p−1 whenever (s, t) ∈ V (x, F ), it follows that

(16) α(x, F,H) > ε− p−1 for every H ∈ H(x, F ).
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Then if we let

D(x) = {α(x, F,H) : F is a proper subset of S(x), H ∈ H(x, F )} ∪ {ε− p−1}

there exists i(x) ∈ N such that

(17) min{|a− b| : a, b ∈ D(x), a 6= b} > i(x)−1.

For i ∈ N and n ≥ 1 let CR
m,n,p,i be the set of all x ∈ CR

m,n,p such that i(x) = i. It is
clear that BC(K) is the (countable) union of the sets CR

m,0,p and CR
m,n,p,i.

In the proposition below, after some new countable decompositions, we will
define some families of functions that will allow us to apply Lemma 3.1. Conditions
(I) and (IId) will allow us to describe inductively S(x), and (IIa)–(IIc) below to apply
Lemma 3.1.

Proposition 4.11. Given m,n, p, i ∈ N and R ∈ [Q]<ω let δ = (40i)−2n
and θ =

(10i)−1. Then for every k ≥ 0 there is a decomposition CR
m,n,p,i =

⋃+∞
`=1 B

k
` in such a

way that

(I) for every ` ≥ 1 and every x ∈ Bk
` there is a subset Fk(x) of S(x) such that

#Fk(x) ≥ min{k,#S(x)};

(II) if k ≥ 1, for every ` ≥ 1 and every x ∈ Bk
` there are r ≥ 1 and a family {ϕj}rj=1

of convex and pointwise lower semicontinuous maps, ϕj : BC(K) −→ [0,+∞),
1 ≤ j ≤ r, such that

(a) osc(ϕj, BC(K)) ≤ 1 for all 1 ≤ j ≤ r;

(b) if y ∈ Bk
` and Fk−1(y) = Fk−1(x) then ϕj(x) > ϕj(y)− δ for all 1 ≤ j ≤ r;

(c) {y ∈ Bk
` : Fk−1(y) = Fk−1(x), δ ≤ ϕj(x)− ϕj(y) < θ} = ∅ for all 1 ≤ j ≤ r;

(d) if y ∈ Bk
` , Fk−1(y) = Fk−1(x) and ϕj(x) − ϕj(y) < δ for all 1 ≤ j ≤ r then

Fk(y) = Fk(x).

Proof. We proceed by induction on k ≥ 0. For k = 0 set B0
` = CR

m,n,p,i for every
` ≥ 1, take F0(x) = ∅ for every x ∈ CR

m,n,p,i. Suppose that for some k ≥ 0 there is a

decomposition CR
m,n,p,i =

⋃+∞
`=1 B

k
` satisfying (I) and (II). To complete the induction it

suffices to split up Bk
` =

⋃+∞
s=1 B

k+1
s for every ` ≥ 1 in such a way that (I) and (II) hold

for every s ≥ 1 and every x ∈ Bk+1
s . To this end fix ` ≥ 1, let B0 = {x ∈ Bk

` : Fk(x) =
S(x)} and suppose Bk

` \ B0 6= ∅. Given x ∈ Bk
` \ B0, Fk(x) is a proper subset of S(x)

so choose ξ (x, Fk(x)) satisfying (i) and (ii) from Lemma 4.10. For every ordinal ξ < Ω
and every j ∈ N let Bξ,j be the set of all x ∈ Bk

` \ B0 such that ξ(x, Fk(x)) = ξ and
j(x, Fk(x)) = j. It is clear that Bk

` \ B0 is the union of the sets Bξ,j. We need the
following lemma to codify the new countable information.
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Lemma 4.12. Given ξ < Ω, j ∈ N and x ∈ Bξ,j let I(ξ, j, x) be the family of all
H ∈ H(x, Fk(x)) such that α(x, Fk(x), H) = sup{|x(s) − x(t)| : (s, t) ∈ V (x, Fk(x))}.
Then there is a pair of open real intervals (L,M) with rational end points such that

L ⊂M, supL = supM, inf M > ε− p−1, length L = δ, length M ≥ (2i)−1;(18)

α(x, Fk(x), H) ∈ L whenever H ∈ I(ξ, j, x), and(19)

α(x, Fk(x), H) < inf M when H ∈ H(x, Fk(x)) \ I(ξ, j, x).(20)

Moreover, if |x(s)− x(t)| ∈ M for some (s, t) ∈ V (x, Fk(x)) then there exists (s′, t′) ∈
V (x, Fk(x)) such that |x(s′)− x(t′)| ∈ L and

(21) S(x) ∩ J(s′, t′,m)(ξ) \ Fk(x) = S(x) ∩ J(s, t,m)(ξ) \ Fk(x).

Proof. Let {MH : H ∈ H(x, Fk(x))} be a family of pairwise disjoint open real intervals
with rational end points such that α(x, Fk(x), H) ∈MH for every H ∈ H(x, Fk(x)) and
with the property that MH = MH′ in case H,H ′ ∈ H(x, Fk(x)) and α(x, Fk(x), H) =
α(x, Fk(x), H ′). From (16) and (17) it follows that for every H ∈ H(x, Fk(x)) we can
assume that inf MH > ε− p−1 and that length MH ≥ (2i)−1, moreover we can take LH
to be an open real interval with rational end points satisfying LH ⊂ MH , supLH =
supMH , length LH = δ and α(x, Fk(x), H) ∈ LH . If (L,M) is the pair (LH ,MH)
corresponding to any H ∈ I(ξ, j, x) then (18)–(20) are fulfilled.

Suppose that |x(s) − x(t)| ∈ M for some (s, t) ∈ V (x, Fk(x)) and let H =
S(x)∩J(s, t,m)(ξ)\Fk(x). Since H ∈ H(x, Fk(x)), by the choice of M we have inf MH ≤
inf M < |x(s)−x(t)| ≤ α(x, Fk(x), H) < supMH so M = MH . Then α(x, Fk(x), H) ∈ L
and there must exist (s′, t′) ∈ V (x, Fk(x)) such that |x(s′) − x(t′)| ∈ L and H =
S(x) ∩ J(s′, t′,m)(ξ) \ Fk(x). �

Let us turn into the proof of Proposition 4.11. Given ξ < Ω, j ∈ N, a real
interval I and x ∈ Bξ,j let H(x, Fk(x), I) = {H ∈ H(x, Fk(x)) : α(x, Fk(x), H) ∈ I}.
For every pair of open real intervals (L,M) with rational end points satisfying (18) and
for every r ∈ N we write Bξ,j,L,M,r for the set of all x ∈ Bξ,j with #H(x, Fk(x), L) = r
such that (18)–(21) hold for x, L and M . It is clear that each Bξ,j is the union of the
sets Bξ,j,L,M,r.

Given ξ, j, L,M and r as above let B be a countable basis for the topology
of Γ. From the choice of Bξ,j,L,M,r and H(x, Fk(x), L) we have that for every x ∈
Bξ,j,L,M,r and every H ∈ H(x, Fk(x), L) there exists (s, t) ∈ V (x, Fk(x)) such that
|x(s)−x(t)| ∈ L and H = S(x)∩J(s, t,m)(ξ) \Fk(x). Since J(s, t,m)(ξ+1) is closed and
S(x)∩J(s, t,m)(ξ+1) \Fk(x) = ∅, for every γ ∈ S(x) \Fk(x) we can choose Uγ ∈ B with
γ ∈ Uγ such that if U = {Uγ}γ∈S(x)\Fk(x) then

(22) J(s, t,m)(ξ+1) ∩
⋃
U = ∅ and H = J(s, t,m)(ξ) ∩

⋃
U .

The second equality above shows that U , a finite subset of the countable set B, codifies
which are the controlling coordinates of S(x) \ Fk(x) lying in J(s, t,m)(ξ). Then for
every U ∈ [B]<ω we write BUξ,j,L,M,r for the set of all x ∈ Bξ,j,L,M,r for which S(x) \
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Fk(x) ⊂
⋃
U∈U U and with the property that for each H ∈ H(x, Fk(x), L) there exists

(s, t) ∈ I(Q,Fk(x),m) such that the equalities of (22) hold and |x(s)− x(t)| ∈ L. It is
clear that Bξ,j,L,M,r is the union of the sets BUξ,j,L,M,r.

Summarizing, we have written Bk
` as the countable union of B0 and the sets

BUξ,j,L,M,r; the rest of the proof is devoted to show that this decomposition satisfies the
requirements of Proposition 4.11. Indeed if x ∈ B0 it is enough to take Fk+1(x) = S(x)
because (I) and (II) trivially hold associating to x the zero function on BC(K). On the
other hand, fix ξ, j, L,M, r and U as above, if x ∈ BUξ,j,L,M,r take Fk+1(x) as the union of
Fk(x) and

⋃
{H : H ∈ H(x, Fk(x), L)}, it is clear that (I) holds. To show (II), for every

H ∈ H(x, Fk(x), L) we write P (x,H) for the set of all (s, t) ∈ I(Q,Fk(x),m) such that
(22) hold. Take ϕH : BC(K) −→ [0,∞) defined by ϕH(y) = (1/4) sup{|y(s) − y(t)| :
(s, t) ∈ P (x,H)}. Condition (IIa) is clearly fulfilled by any enumeration of the family
{ϕH : H ∈ H(x, Fk(x), L)}, to obtain one for which (IIb)–(IId) hold, we will prove the
following

Claim Given y ∈ BUξ,j,L,M,r and H ∈ H(x, Fk(x), L) if Fk(y) = Fk(x) we have 4 ϕH(y) <
supL.

Proof. Pick (s, t) ∈ P (x,H), since Fk(y) = Fk(x) we have (s, t) ∈ I(Q,Fk(y),m), from
this and (18) we get |y(s) − y(t)| < inf L whenever |y(s) − y(t)| ≤ ε − p−1; so we can
suppose that |y(s)− y(t)| > ε− p−1. Then (s, t) ∈ U(y, Fk(y)) and

∅ 6= (S(y) \ Fk(y)) ∩ J(s, t,m)(ξ) ⊂
⋃
U∈U

U ∩ J(s, t,m)(ξ) = H.

Moreover from the choice of P (x,H) we have
⋃
U∈U U ∩ J(s, t,m)(ξ+1) = ∅. Since

S(y)\Fk(y) ⊂
⋃
U∈U U , it follows that (S(y)\Fk(y))∩J(s, t,m)(ξ+1) = ∅. Furthermore,

since j ≤ #(S(y) \ Fk(y)) ∩ J(s, t,m)(ξ) ≤ #H = j, we have (s, t) ∈ V (y, Fk(y)) and
H = (S(y) \ Fk(y)) ∩ J(s, t,m)(ξ) ∈ H(y, Fk(y)). Hence, |y(s) − y(t)| ≤ α(y, Fk(y), H)
and the claim follows from (19) and (20). �

According to the above claim and the choice of BUξ,j,L,M,r we have 4 ϕH(x) ∈ L
for every H ∈ H(x, Fk(x), L). Given y ∈ BUξ,j,L,M,r such that Fk(y) = Fk(x) from the
claim it follows that 4ϕH(y) < supL, so 4ϕH(x) > supL− lengthL > 4ϕH(y)− δ and
(IIb) follows.

To show (IIc), suppose there are H ∈ H(x, Fk(x), L) and y ∈ BUξ,j,L,M,r with
Fk(y) = Fk(x) such that ϕH(x)− ϕH(y) ∈ [δ, θ). Since ϕH(x)− ϕH(y) < θ, we get

4ϕH(y) > 4ϕH(x)− 4θ > supL− lengthL− 4θ = supM − δ − 4θ >(23)

> supM − 5θ = supM − (2i)−1 ≥ supM − lengthM = inf M.

The inequality above, (18) and the claim imply 4ϕH(y) ∈ M , then there is (s, t) ∈
P (x,H) such that |y(s)− y(t)| ∈M . From this and (18) we get |y(s)− y(t)| > ε− p−1.
Bearing in mind this inequality, the proof of the claim yields (s, t) ∈ V (y, Fk(y)) and
H ∈ H(y, Fk(y)) where H = (S(y) \ Fk(y)) ∩ J(s, t,m)(ξ). According to Lemma 4.12
there exists (s′, t′) ∈ V (y, Fk(y)) such that H = (S(y) \ Fk(y)) ∩ J(s′, t′,m)(ξ) and
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|y(s′) − y(t′)| ∈ L. Therefore, we have inf L < |y(s′) − y(t′)| ≤ α(y, Fk(y), H) that
together with (19) and (20) imply H ∈ H(y, Fk(y), L). From the choice of BUξ,j,L,M,r we
deduce that there is (s′′, t′′) ∈ P (y,H) such that |y(s′′)− y(t′′)| ∈ L so, taking in mind
that P (x,H) = P (y,H), we get 4ϕH(y) ∈ L. However, the inequality ϕH(x)−ϕH(y) ≥
δ implies 4ϕH(y) ≤ 4ϕH(x)− 4δ < inf L, a contradiction which proves (IIc).

To show (IId) let y ∈ BUξ,j,L,M,r with Fk(y) = Fk(x) such that ϕH(x)− ϕH(y) <
δ for every H ∈ H(x, Fk(x), L). Arguing as in (23) we get that H(x, Fk(x), L) is
included in H(y, Fk(y), L). Since both sets have the same cardinality r it follows that
H(x, Fk(x), L) = H(y, Fk(y), L). Hence, Fk+1(y) = Fk+1(x) and (IId) follows. The
proof of Proposition 4.11 is now complete. �

Now we are ready to prove the following

Theorem 4.13. ([6, Theorem 1]) Let Γ be a Polish space and let K be a separable and
pointwise compact subset of functions on Γ with the property that each s ∈ K has at
most countably many discontinuities. Then C(K) admits an equivalent pointwise lower
semicontinuous LUR norm.

Proof. The ball BC(K) has already been decomposed as the union of the sets CR
m,0,p

and CR
m,n,p,i for R ∈ [Q]<ω and m, n, p, i ∈ N. From the choice of CR

m,0,p it follows that
R ε−controls every y ∈ CR

m,0,p with (4m)−1. On the other hand, given R ∈ [Q]<ω and
m, n, p, i ∈ N let Bk

` and {ϕj}rj=1 as in Proposition 4.11. For every ` ≥ 1 and k ∈ N
let Fk,`(x) = {ϕj}rj=1.
For every ` = (`1, . . . , `n) ∈ Nn set

CR,`
m,n,p,i =

{
x ∈

n⋂
k=1

Bk
`k

: Bk
`k
⊂ CR

m,n,p,i for all 1 ≤ k ≤ n

}
.

Then CR
m,n,p,i =

⋃
`∈Nn C

R,`
m,n,p,i. We are going to see that each CR,`

m,n,p,i satisfies the
requirement of Corollary 1.2.

Indeed, given ` ∈ Nn and x ∈ CR,`
m,n,p,i let F(x) =

⋃n
k=1Fk,`k(x). To enumerate

F(x) we introduce an order ≺ as follows. Given ϕj ∈ Fk,`k(x), ϕj′ ∈ Fk′,`k′ (x) with ϕj 6=
ϕj′ we write ϕj ≺ ϕj′ if, and only if, (k, j) <lex (k′, j′), where <lex is the lexicographic
order. If N = #F(x) then we can write F(x) as {ϕk}Nk=1 where ϕk ≺ ϕk′ if, and only
if, k < k′. If for some k < N there is y ∈ CR,`

m,n,p,i such that ϕj(x) − ϕj(y) < δ for all
j < k, Proposition 4.11 shows that ϕk(x) > ϕk(y) − δ and ϕk(x) − ϕk(y) /∈ [δ, θ). By
the choice of δ and θ we have 0 < 4δ1/N ≤ θ < 1, so applying Lemma 3.1 to F(x), with
A0 = CR,`

m,n,p,i and B = BC(K) we get a pointwise open half space H, containing x, such
that

H ∩ CR,`
m,n,p,i ⊂

{
y ∈ CR

m,n,p,i : S(y) = S(x)
}
.

From this and (15) we deduce that R ∪ S(x) ε−controls every y ∈ H ∩ CR,`
m,n,p,i with

(4m)−1. According to Corollary 1.2 we conclude that C(K) admits an equivalent point-
wise lower semicontinuous LUR norm. �
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A. Moltó, Departamento de Análisis Matemático, Facultad de Ma-
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