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A. AVILÉS, G. PLEBANEK, AND J. RODRÍGUEZ

Abstract. Di Piazza and Preiss asked whether every Pettis integrable func-

tion defined on [0, 1] and taking values in a weakly compactly generated Ba-

nach space is McShane integrable. In this paper we answer this question in

the negative.

1. Introduction

The classical Pettis’ measurability theorem [15] ensures that scalar and strong
measurability are equivalent for functions taking values in separable Banach spaces.
This fact has many interesting consequences in vector integration. For instance, it
is a basic tool to prove that Pettis and McShane integrability coincide in separable
Banach spaces, [10, 12, 13]. However, for non-separable Banach spaces the notions
of scalar and strong measurability are different in general. This leads to subtle
problems when trying to compare different types of integrals.

In this paper we deal with the Pettis and McShane integrals. Di Piazza and
Preiss [2] asked whether every Pettis integrable function f : [0, 1]→ X is McShane
integrable if X is a weakly compactly generated (WCG) Banach space. Recently,
Deville and the third author [1] have proved that the answer is affirmative when X
is Hilbert generated, thus improving the previous results obtained in [2, 16]. Our
main purpose here is to show that the question of Di Piazza and Preiss has negative
answer in general.

The paper is organized as follows.
In Section 2 we introduce the MC-integral for Banach space-valued functions

defined on probability spaces. This auxiliary tool is used as a substitute of the
McShane integral at some stages. We prove that, for functions defined on quasi-
Radon probability spaces, MC-integrability always implies McShane integrability
(Proposition 2.2), while the converse holds if the topology on the domain has a
countable basis (Proposition 2.3). This approach allows us to give a partial answer
(Corollary 2.4) to a question posed by Fremlin in [10, 4G(a)].
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and Fundación Séneca (Project 08848/PI/08). A. Avilés was supported by Ramon y Cajal contract

(RYC-2008-02051). G. Plebanek wishes to thank A. Avilés, B. Cascales and J. Rodŕıguez for their
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In Section 3 we show that the existence of scalarly null (hence Pettis integrable)
WCG-valued functions which are not McShane integrable is strongly related to the
existence of families of finite sets which are “measure filling” in the sense of the
following definition. Throughout the paper (Ω,Σ, µ) is a probability space and we
use the symbol [S]<ω to denote the family of all finite subsets of a given set S.

Definition 1.1. A hereditary family F ⊂ [Ω]<ω is MC-filling on Ω if there exists
ε > 0 such that for every countable partition (Ωm) of Ω there is F ∈ F such that

µ∗
(⋃
{Ωm : F ∩ Ωm 6= ∅}

)
> ε,

where µ∗ is the outer measure induced by µ.

This concept should be viewed as a measure-theoretic analogue of the notion of
ε-filling families arising in Fremlin’s problem DU [8]:

Definition 1.2. Let ε > 0. A hereditary family F ⊂ [S]<ω is ε-filling on the set S
if for every H ∈ [S]<ω there is F ∈ F with F ⊂ H and |F | ≥ ε|H|.

The existence of compact ε-filling families on uncountable sets is an open problem
(the above mentioned problem DU). However, we show that compact MC-filling
families on [0, 1] can be constructed from some weaker versions of filling families
that Fremlin proved to exist (Theorem 3.4). This leads to our main result:

Theorem 3.5. There exist a WCG Banach space X and a scalarly null function
f : [0, 1]→ X which is not McShane integrable.

In fact, the space X can be taken reflexive (Theorem 3.6). Observe that The-
orem 3.5 also answers in the negative the question (attributed to Musial in [2])
whether every scalarly null Banach space-valued function on [0, 1] is McShane in-
tegrable. Two counterexamples [2, 16] had been constructed under the Continuum
Hypothesis (and having non WCG spaces in the range).

In Section 4 we prove that if a family F ⊂ [A]<ω is ε-filling on a set A ⊂ Ω of
positive outer measure then it is MC-filling on Ω.

Finally, in Section 5 we provide an example of a McShane integrable function
which is not MC-integrable (Theorem 5.5). Our example also makes clear that, in
general, the results on the coincidence of Pettis and McShane integrability of [1, 2]
do not hold when McShane integrability is replaced by MC-integrability.

Terminology. Our standard references are [4, 18] (vector integration) and [11]
(topological measure theory). By a partition of a set S we mean a collection of
pairwise disjoint (maybe empty) subsets whose union is S. A set is countable if it is
either finite or countably infinite. As usual, the symbol |S| stands for the cardinality
of a set S. A family F ⊂ [S]<ω is hereditary if G ∈ F whenever G ⊂ F ∈ F . A
family F ⊂ [S]<ω is called compact if it is compact in 2S equipped with the product
topology. We say that a family E ⊂ Σ is η-thick (for some η > 0) if µ(Ω \

⋃
E) ≤ η.

Throughout the paper X is a (real) Banach space. The norm of X is denoted
by ‖ · ‖ if it is needed explicitly. We denote by X∗ the topological dual of X and
BX = {x ∈ X : ‖x‖ ≤ 1}. The space X is WCG if there is a weakly compact
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subset of X whose linear span is dense in X. Recall that a function f : Ω → X

is called scalarly null if, for each x∗ ∈ X∗, the composition x∗f : Ω → R vanishes
µ-a.e. (the exceptional set depending on x∗).

If T ⊂ Σ is a topology on Ω, we say that (Ω,T,Σ, µ) is a quasi-Radon probability
space (following [11, Chapter 41]) if µ is complete, inner regular with respect to
closed sets, and µ(

⋃
G) = sup{µ(G) : G ∈ G} for every upwards directed family

G ⊂ T. A gauge on Ω is a function δ : Ω→ T such that t ∈ δ(t) for all t ∈ Ω. Every
Radon probability space is quasi-Radon [11, 416A].

The vector-valued McShane integral was first studied in [12, 13] for functions
defined on [0, 1] equipped with the Lebesgue measure. Fremlin [10] extended the
theory to deal with functions defined on arbitrary quasi-Radon probability spaces.
We next recall an alternative way of defining the McShane integral taken from [9,
Proposition 3].

Definition 1.3. Suppose (Ω,T,Σ, µ) is quasi-Radon. A function f : Ω → X is
McShane integrable, with integral x ∈ X, if for every ε > 0 there exist η > 0 and
a gauge δ on Ω such that: for every η-thick finite family (Ei) of pairwise disjoint
measurable sets and every choice of points ti ∈ Ω with Ei ⊂ δ(ti), we have∥∥∥∑

i

µ(Ei)f(ti)− x
∥∥∥ ≤ ε.

Every McShane integrable function is also Pettis integrable (and the corre-
sponding integrals coincide), [10, 1Q]. The converse does not hold in general, see
[1, 2, 12, 16] for examples.

2. Another look at the McShane integral

We next introduce a variant of the McShane integral that is defined in terms of
the measure space only, without any reference to a topology.

Definition 2.1. A function f : Ω → X is MC-integrable, with integral x ∈ X, if
for every ε > 0 there exist η > 0, a countable partition (Ωm) of Ω and sets Am ∈ Σ
with Ωm ⊂ Am, such that: for every η-thick finite family (Ei) of pairwise disjoint
elements of Σ with Ei ⊂ Am(i) and every choice of points ti ∈ Ωm(i), we have∥∥∥∑

i

µ(Ei)f(ti)− x
∥∥∥ ≤ ε.

Clearly, given η > 0, a countable partition (Ωm) of Ω and sets Ωm ⊂ Am ∈ Σ,
we can always find families (Ei) as in Definition 2.1. It is routine to check that the
vector x in Definition 2.1 is unique.

The relationship between the MC-integral and the McShane integral is analyzed
in the following two propositions.

Proposition 2.2. Suppose (Ω,T,Σ, µ) is quasi-Radon. If f : Ω → X is MC-
integrable, then it is McShane integrable (and the corresponding integrals coincide).
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Proof. Let x ∈ X be the MC-integral of f and fix ε > 0. Since f is MC-integrable,
there exist η > 0, a countable partition (Ωm) of Ω and measurable sets Am ⊃ Ωm
satisfying the condition of Definition 2.1.

For each m,n ∈ N, set Ωm,n := {t ∈ Ωm : n − 1 ≤ ‖f(t)‖ < n} and choose
Um,n ⊃ Am open such that

µ(Um,n \Am) ≤ 1
2m+n

min
{ ε
n
,
η

2

}
.

Clearly, (Ωm,n) is a partition of Ω. Define a gauge δ : Ω → T by δ(t) := Um,n if
t ∈ Ωm,n.

Let (Ei) be a η
2 -thick finite family of pairwise disjoint measurable sets and let

ti ∈ Ω be points such that Ei ⊂ δ(ti). We will check that

(1)
∥∥∥∑

i

µ(Ei)f(ti)− x
∥∥∥ ≤ 2ε.

For each i, let m(i), n(i) ∈ N be such that ti ∈ Ωm(i),n(i). The set Fi := Ei∩Am(i)

is measurable, Fi ⊂ Am(i) and ti ∈ Ωm(i). The Fi’s are pairwise disjoint. Since

Ei \ Fi = Ei \Am(i) ⊂ δ(ti) \Am(i) = Um(i),n(i) \Am(i)

we have

µ
(

Ω \
⋃
i

Fi

)
= µ

(
Ω \

⋃
i

Ei

)
+ µ

(⋃
i

Ei \
⋃
i

Fi

)
≤

≤ η

2
+ µ

(⋃
m,n

Um,n \Am
)
≤ η

2
+
∑
m,n

η

2m+n+1
= η,

and so the family (Fi) is η-thick. From the MC-integrability condition it follows
that

(2)
∥∥∥∑

i

µ(Fi)f(ti)− x
∥∥∥ ≤ ε.

For each m,n ∈ N, let I(m,n) be the (maybe empty) set of all indexes i for
which m(i) = m and n(i) = n. Observe that∑

i∈I(m,n)

µ(Ei \ Fi)‖f(ti)‖ ≤
∑

i∈I(m,n)

µ(Ei \ Fi)n =

= µ
( ⋃
i∈I(m,n)

Ei \ Fi
)
n ≤ µ(Um,n \Am)n ≤ ε

2m+n
.

Therefore

(3)
∥∥∥∑

i

µ(Ei)f(ti)−
∑
i

µ(Fi)f(ti)
∥∥∥ ≤∑

i

µ(Ei \ Fi)‖f(ti)‖ =

=
∑
m,n

∑
i∈I(m,n)

µ(Ei \ Fi)‖f(ti)‖ ≤
∑
m,n

ε

2m+n
= ε.

Inequality (1) now follows from (2) and (3). This shows that f is McShane
integrable, with McShane integral x. �
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The converse of Proposition 2.2 does not hold in general (see Theorem 5.5 below),
although it is true for certain quasi-Radon spaces like [0, 1], as we next prove.

Proposition 2.3. Suppose (Ω,T,Σ, µ) is quasi-Radon and T has a countable basis.
Then f : Ω→ X is McShane integrable if and only if it is MC-integrable.

Proof. It only remains to prove the “only if”. Assume that f is McShane intgerable,
with McShane integral x ∈ X. Let {Um : m ∈ N} be a countable basis for T. Fix
ε > 0. Since f is McShane integrable, there exist η > 0 and a gauge δ on Ω
fulfilling the condition of Definition 1.3. We can suppose without loss of generality
that δ(t) ∈ {Um : m ∈ N} for every t ∈ Ω. Set

Ωm := {t ∈ Ω : δ(t) = Um} and Am := Um for all m ∈ N.

Clearly, (Ωm) is a partition of Ω and Ωm ⊂ Am ∈ Σ. Now let (Ei) be an η-
thick finite family of pairwise disjoint measurable sets with Ei ⊂ Am(i) and let
ti ∈ Ωm(i). Then δ(ti) = Um(i) = Am(i), hence Ei ⊂ δ(ti) for all i. From the
McShane integrability condition it follows that ‖

∑
i µ(Ei)f(ti) − x‖ ≤ ε. This

shows that f is MC-integrable. �

Fremlin raised in [10, 4G(a)] the following question: Does any topology on Ω for
which µ is quasi-Radon yield the same collection of McShane integrable X-valued
functions? In view of Propositions 2.2 and 2.3, we get a partial answer:

Corollary 2.4. Let T1 and T2 be two topologies on Ω for which µ is quasi-Radon.
Suppose T1 has a countable basis. If f : Ω→ X is McShane integrable with respect
to T1, then it is also McShane integrable with respect to T2 (and the corresponding
integrals coincide).

3. MC-filling families vs the McShane integral

The connection between MC-filling families (Definition 1.1) and the MC-integral
is explained in Proposition 3.2 below. First, it is convenient to characterize MC-
filling families as follows:

Lemma 3.1. A family F ⊂ [Ω]<ω is MC-filling on Ω if and only if there exists
ε > 0 such that for every countable partition (Ωm) of Ω and sets Am ∈ Σ with
Ωm ⊂ Am, there is F ∈ F such that

µ
(⋃
{Am : F ∩ Ωm 6= ∅}

)
> ε.

Proof. The “only if” is obvious. For the converse, we will prove that the condition of
Definition 1.1 holds for 0 < η < ε. Suppose we are given a countable partition (Ωm)
of Ω. For every finite set I ⊂ N, we choose BI ∈ Σ such that BI ⊃

⋃
m∈I Ωm and

µ(BI)− µ∗(
⋃
m∈I Ωm) < ε− η. For each m ∈ N, we define Am :=

⋂
{BI : m ∈ I}.

We have Ωm ⊂ Am ∈ Σ, so we can apply the hypothesis to find F ∈ F such that

µ
(⋃
{Am : F ∩ Ωm 6= ∅}

)
> ε.
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Consider the finite set I := {m ∈ N : F ∩Ωm 6= ∅}. Since
⋃
m∈I Am ⊂ BI , we have

µ∗
( ⋃
m∈I

Ωm
)
> µ(BI)− (ε− η) ≥ µ

( ⋃
m∈I

Am

)
− (ε− η) > η.

This proves that F is MC-filling. �

A set B ⊂ BX∗ is called norming if ‖x‖ = sup{|x∗(x)| : x∗ ∈ B} for all x ∈ X.
As usual, given a set C ⊂ Ω, we write 1C to denote the real-valued function on Ω
defined by 1C(t) = 1 if t ∈ C and 1C(t) = 0 if t 6∈ C.

Proposition 3.2. Let f : Ω → X be a function for which there exist a norming
set B ⊂ BX∗ and a family (Cx∗)x∗∈B of subsets of Ω such that x∗f = 1Cx∗ and
µ∗(Cx∗) = 0 for every x∗ ∈ B. The following statements are equivalent:

(i) f is not MC-integrable;
(ii)

⋃
x∗∈B [Cx∗ ]<ω is MC-filling on Ω.

Proof. Observe first that for every finite family (Ei) of pairwise disjoint elements
of Σ and every choice of points ti ∈ Ω, we have

(4)
∥∥∥∑

i

µ(Ei)f(ti)
∥∥∥ = sup

x∗∈B

∣∣∣x∗(∑
i

µ(Ei)f(ti)
)∣∣∣ =

= sup
x∗∈B

∑
i

µ(Ei)1Cx∗ (ti) = sup
x∗∈B

µ
(⋃
{Ei : ti ∈ Cx∗}

)
.

Since B separates the points of X and x∗f vanishes µ-a.e. for each x∗ ∈ B, the
MC-integral of f is 0 ∈ X whenever f is MC-integrable. Bearing in mind (4),
statement (i) is equivalent to:

(iii) There exists ε > 0 such that for every η > 0, every countable partition (Ωm)
of Ω and sets Am ∈ Σ with Ωm ⊂ Am, there exist an η-thick finite family
(Ei) of pairwise disjoint elements of Σ with Ei ⊂ Am(i), points ti ∈ Ωm(i)

and a functional x∗ ∈ B such that µ (
⋃
{Ei : ti ∈ Cx∗}) > ε.

Let us turn to the proof of (iii)⇔(ii). Assume first that (iii) holds and take a
countable partition (Ωm) of Ω and sets Ωm ⊂ Am ∈ Σ. Choose η > 0 arbitrary
and let (Ei), (ti) and x∗ be as in (iii). Observe that the set F made up of all ti’s
belonging to Cx∗ satisfies⋃

{Am : F ∩ Ωm 6= ∅} ⊃
⋃
{Ei : ti ∈ Cx∗}

and so µ(
⋃
{Am : F ∩ Ωm 6= ∅}) > ε. According to Lemma 3.1, this proves that

the family
⋃
x∗∈B [Cx∗ ]<ω is MC-filling on Ω.

Conversely, assume that (ii) holds. Let ε > 0 be as in Lemma 3.1 applied to
the family

⋃
x∗∈B [Cx∗ ]<ω. Fix η > 0, a countable partition (Ωm) of Ω and sets

Am ∈ Σ with Ωm ⊂ Am. There exist x∗ ∈ B and F ⊂ Cx∗ finite such that
µ(
⋃
m∈I Am) > ε, where I := {m ∈ N : F ∩ Ωm 6= ∅}. Now take a finite set J ⊂ N

disjoint from I such that (Am)m∈I∪J is η-thick. Enumerate I = {m(1), . . . ,m(n)}
and J = {m(n+ 1), . . . ,m(k)}. Set E1 := Am(1) and Ei := Am(i) \

⋃i−1
j=1Am(j) for

i = 2, . . . , k. Then (Ei) is an η-thick finite family of pairwise disjoint elements of Σ



THE MCSHANE INTEGRAL IN WEAKLY COMPACTLY GENERATED SPACES 7

with Ei ⊂ Am(i) and
⋃n
i=1Ei =

⋃
m∈I Am. Choose ti ∈ F ∩ Ωm(i) for i = 1, . . . , n

and choose ti ∈ Ωm(i) arbitrary for i = n+ 1, . . . , k. Then

µ
(⋃
{Ei : ti ∈ Cx∗}

)
≥ µ

( n⋃
i=1

Ei

)
= µ

( ⋃
m∈I

Am

)
> ε.

This shows that (iii) holds, that is, f is not MC-integrable. �

Given a compact Hausdorff topological space K, we write C(K) to denote the
Banach space of all real-valued continuous functions on K (with the sup norm).

Proposition 3.3. Let F ⊂ [Ω]<ω be a compact hereditary family made up of sets
having outer measure 0. Let f : Ω→ C(F) be defined by f(t)(F ) := 1F (t). Then:

(i) f is scalarly null;
(ii) f is not MC-integrable if and only if F is MC-filling on Ω.

Proof. Part (i) follows from a standard argument which we include for the sake
of completeness. Since F is an Eberlein compact (i.e., it is homeomorphic to a
weakly compact subset of a Banach space), the space C(F) is WCG and BC(F)∗ is
Eberlein compact when equipped with the w∗-topology, cf. [3, Theorem 4, p. 152].
Set B := {δF : F ∈ F} ⊂ BC(F)∗ , where δF denotes the “evaluation functional”
at F . Since B is norming, its absolutely convex hull aco(B) is w∗-dense in BC(F)∗ .
Bearing in mind that (BC(F)∗ , w

∗) is homeomorphic to a weakly compact subset of
a Banach space, the Eberlein-Smulyan theorem (cf. [7, 3.10]) ensures that aco(B)
is w∗-sequentially dense in BC(F)∗ . Since the composition δF f = 1F vanishes µ-
a.e. for every F ∈ F , we conclude that f is scalarly null. Part (ii) follows from
Proposition 3.2 applied to f and the norming set B defined above. �

On the other hand, it turns out that we can always find compact MC-filling
families on [0, 1]. As usual, we denote by c the cardinality of the continuum.

Theorem 3.4. There exists a compact MC-filling family on [0, 1] equipped with the
Lebesgue measure.

Proof. According to a result by Fremlin [8, 4B], there is a family D ⊂ [c]<ω which
is hereditary and compact, and for every nonempty A ∈ [c]<ω there is D ∈ D such
that D ⊂ A and |D| ≥ log |A|. In particular, D has the following property:

(*) If P ⊂ c is infinite, then for every n ∈ N there is D ∈ D such that D ⊂ P

and |D| = n.

We denote by λ the Lebesgue measure on [0, 1]. Fix a partition {Zα : α < c} of
[0, 1] made up of sets of outer measure one (cf. [11, 419I]). Let ϕ : [0, 1]→ c be the
function defined by ϕ(t) = α whenever t ∈ Zα. We define the family

F :=
{
F ⊂ [0, 1] finite : ϕ is one-to-one on F and ϕ(F ) ∈ D

}
.

It is clear that F is hereditary (because D is). We claim that F is compact or,
equivalently, that every set A ⊂ [0, 1] with [A]<ω ⊂ F is finite. Indeed, observe
that ϕ is one-to-one on A. Given any C ∈ [ϕ(A)]<ω, we have C = ϕ(B) for some
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B ∈ [A]<ω ⊂ F and so C ∈ D. Hence [ϕ(A)]<ω ⊂ D and the compactness of D
ensures that ϕ(A) is finite. Since ϕ is one-to-one on A, we conclude that A is finite.

We shall check that F is MC-filling on [0, 1] with arbitrary constant 0 < ε < 1.
Fix a countable partition (Ωm) of [0, 1]. For each α < c we have

1 = λ∗(Zα) = lim
n→∞

λ∗
(
Zα ∩

n⋃
m=1

Ωm
)
,

so we can pick n(α) ∈ N such that

(5) λ∗
(
Zα ∩

n(α)⋃
m=1

Ωm
)
> ε.

Fix n ∈ N such that Pn := {α < c : n(α) = n} is infinite. By property (*), there is
D ∈ D such that D ⊂ Pn and |D| = n. Write D = {α1, . . . , αn}.

We next define tj ∈ Zαj and mj ∈ {1, . . . , n} inductively as follows. By (5) the
set Zα1 ∩

⋃n
m=1 Ωm is nonempty and we pick any t1 ∈ Zα1 ∩

⋃n
m=1 Ωm. Choose

m1 ∈ {1, . . . , n} so that t1 ∈ Ωm1 . Now suppose we have already constructed
a set {m1, . . . ,ml} ⊂ {1, . . . , n} and points tj ∈ Zαj ∩ Ωmj for j = 1, . . . , l. If
λ∗(
⋃l
j=1 Ωmj ) > ε, the construction stops. Otherwise λ∗(

⋃l
j=1 Ωmj ) ≤ ε and

therefore l < n (bear in mind that λ∗(
⋃n
m=1 Ωm) > ε by (5)). Writing N :=

{1, . . . , n} \ {m1, . . . ,ml}, another appeal to (5) yields

λ∗
(
Zαl+1 ∩

⋃
m∈N

Ωm
)
≥ λ∗

(
Zαl+1 ∩

n⋃
m=1

Ωm
)
− λ∗

(
Zαl+1 ∩

l⋃
j=1

Ωmj
)
> 0,

so we can find tl+1 ∈ Zαl+1 ∩ Ωml+1 for some ml+1 ∈ N . Repeating the process,
the construction stops for some l ∈ {1, . . . , n}.

After that, we obtain a set {m1, . . . ,ml} ⊂ {1, . . . , n} with λ∗(
⋃l
j=1 Ωmj ) > ε

and points tj ∈ Zαj ∩ Ωmj for all j = 1, . . . , l. Putting F := {t1, . . . , tl} we have

λ∗
(⋃
{Ωm : F ∩ Ωm 6= ∅}

)
= λ∗

( l⋃
j=1

Ωmj
)
> ε.

Since ϕ(tj) = αj for all j, it follows that ϕ is one-to-one on F and ϕ(F ) ⊂ D, thus
ϕ(F ) ∈ D and so F ∈ F . The proof is complete. �

We now arrive at our main result:

Theorem 3.5. There exist a WCG Banach space X and a scalarly null function
f : [0, 1]→ X which is not McShane integrable.

Proof. By Theorem 3.4, there is a compact MC-filling family F on [0, 1]. As we
observed in the proof of Proposition 3.3, the space X := C(F) is WCG. The
function

f : [0, 1]→ C(F), f(t)(F ) := 1F (t),

from Proposition 3.3 is scalarly null and fails to be MC-integrable. According to
Proposition 2.3, f is not McShane integrable. �

Moreover, the Banach space in the range can be taken reflexive:
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Theorem 3.6. There exist a reflexive Banach space Y and a scalarly null function
g : [0, 1]→ Y which is not McShane integrable.

Proof. Let F and f be as in the proof of Theorem 3.5. Observe first that f([0, 1]) is
relatively weakly compact in C(F). Indeed, by the Eberlein-Smulyan theorem (cf.
[7, 3.10]), it is enough to check that (f(tn)) converges weakly to 0 whenever (tn) is
a sequence of distinct points of [0, 1]. But this follows directly from Grothendieck’s
theorem (cf. [7, 4.2]) just bearing in mind that for each F ∈ F (finite!) we have
f(tn)(F ) = 1F (tn) = 0 for n large enough.

Then, by the Davis-Figiel-Johnson-Pelczynski theorem (cf. [3, Chapter 5, §4]),
there exist a reflexive Banach space Y and a one-to-one linear continuous mapping
T : Y → C(F) such that f([0, 1]) ⊂ T (BY ). The set of compositions

V := {φ ◦ T : φ ∈ C(F)∗}

is a linear subspace of Y ∗ which separates the points of Y (because T is one-to-
one). Since Y is reflexive, V is norm dense in Y ∗. Let g : [0, 1]→ Y be the function
satisfying T ◦ g = f . For each y∗ ∈ V the composition y∗g vanishes a.e. (f is
scalarly null). This fact and the norm density of V imply that g is scalarly null.
Moreover, since f is not McShane integrable and T is linear and continuous, g is
not McShane integrable either. �

Remark 3.7. A glance at the proof of Proposition 3.3 reveals that the function f
from Theorem 3.5 satisfies that, for each x∗ ∈ X∗, the composition x∗f vanishes
up to a countable set. This property and the boundedness of f ensure that f is
universally Pettis integrable, that is, Pettis integrable with respect to any Radon
probability on [0, 1]. The same holds true for the function g from Theorem 3.6.
Thus, we answer Question 2.2 in [17]: there exist ZFC examples of universally
Pettis integrable functions which are not universally McShane integrable.

4. Filling vs MC-filling families

In this section we prove that ε-filling families (Definition 1.2) on sets of positive
outer measure are MC-filling. This result is less powerful than Theorem 3.4, in the
sense that the existence of ε-filling families on uncountable sets is unknown while
Theorem 3.4 is a ZFC result. Yet, we have decided to include it as it may have
some interest in relation with problem DU.

Theorem 4.1. Suppose µ is atomless. Let A ⊂ Ω with µ∗(A) > 0 and F ⊂ [A]<ω

be a family which is ε-filling on A for some ε > 0. Then F is MC-filling on Ω.

Proof. Write η := µ∗(A) and fix η > η1 > η2 > 0. We take a countable partition
(Ωm) of Ω and sets Am ⊃ Ωm with Am ∈ Σ. We will prove that there is F ∈ F
such that

µ
(⋃
{Am : F ∩ Ωm 6= ∅}

)
> ε(η − η1).

According to Lemma 3.1, this means that F is MC-filling on Ω.
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To this end, take m0 ∈ N large enough such that

(6) µ∗(A)− µ∗
(
A ∩

m0⋃
m=1

Ωm
)
< η2.

Since µ is atomless, every finite subset of Ω has outer measure 0, so we can assume
without loss of generality that A ∩ Ωm is infinite for all m = 1, . . . ,m0. Take
0 < η3 < (η1 − η2)/m0.

We can find pairwise disjoint B1, . . . , Bm0 ∈ Σ such that
⋃m0
m=1Bm =

⋃m0
m=1Am

and Bm ⊂ Am. Let M be the set of all m ∈ {1, . . . ,m0} for which µ(Bm) > 0. For
each m ∈M , choose a positive rational αm such that

µ(Bm) > αm > µ(Bm)− η3.

We can write αm = pm/q for some pm ∈ N and q ∈ N, for m = 1, . . . ,m0. Set
θ := 1/q. Since µ is atomless, for each m ∈ M we can find pairwise disjoint
Em1 , . . . , E

m
pm ∈ Σ contained in Bm with µ(Emi ) = θ. Then

µ
(
Bm \

pm⋃
i=1

Emi

)
< η3

and we have

µ∗
(
A ∩

m0⋃
m=1

Ωm
)
≤ µ∗

(
A ∩

m0⋃
m=1

Am

)
= µ∗

(
A ∩

⋃
m∈M

Bm

)
≤

≤
∑
m∈M

µ
(
Bm \

pm⋃
i=1

Emi

)
+
∑
m∈M

pm∑
i=1

µ(Emi ) ≤

≤ |M |η3 +
( ∑
m∈M

pm

)
θ ≤ m0η3 +

( ∑
m∈M

pm

)
θ < (η1 − η2) +

( ∑
m∈M

pm

)
θ.

From these inequalities and (6) we obtain

(7) η = µ∗(A) < η1 +
( ∑
m∈M

pm

)
θ.

For each m ∈ M and i = 1, . . . , pm we pick a point t(m,i) ∈ A ∩ Ωm. This can
be done in such a way that the points t(m,i)’s are different, since A∩Ωm is infinite
for all m ∈ M . Now H := {t(m,i) : m ∈ M, i = 1, . . . , pm} is a subset of A with
cardinality

∑
m∈M pm. Since F is ε-filling on A, there exists F ⊂ H with F ∈ F

such that |F | ≥ ε(
∑
m∈M pm). By (7), we get

µ
(⋃
{Am : F ∩ Ωm 6= ∅}

)
≥

≥ µ
(⋃
{Emi : t(m,i) ∈ F}

)
= |F |θ ≥ ε

( ∑
m∈M

pm

)
θ > ε(η − η1).

The proof is over. �
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5. McShane integrability vs MC-integrability

This section is devoted to ensure the existence of McShane integrable functions
which are not MC-integrable (Theorem 5.5). The proof is divided into several
auxiliary lemmas. The first one translates the problem into the language of MC-
filling families.

Lemma 5.1. Let Γ be a set. The following statements are equivalent:

(i) there exists a scalarly null function f : Ω → c0(Γ) which is not MC-
integrable and satisfies f(Ω) ⊂ {eγ : γ ∈ Γ}, where eγ(γ′) = δγ,γ′ (the
Kronecker symbol) for all γ, γ′ ∈ Γ;

(ii) there exists a partition (Cγ)γ∈Γ of Ω into sets having outer measure 0 such
that the family

⋃
γ∈Γ[Cγ ]<ω is MC-filling on Ω.

Proof. The set B := {e∗γ : γ ∈ Γ} ⊂ Bc0(Γ)∗ is norming, where e∗γ(x) = x(γ) for all
x ∈ c0(Γ) and γ ∈ Γ.

(i)⇒(ii) For each γ ∈ Γ we have e∗γf = 1Cγ , where Cγ := {t ∈ Ω : f(t) = eγ} has
outer measure 0 (because f is scalarly null). Clearly, (Cγ)γ∈Γ is a partition of Ω.
Since f is not MC-integrable, we can apply Proposition 3.2 to conclude that the
family

⋃
γ∈Γ[Cγ ]<ω is MC-filling on Ω.

(ii)⇒(i) Define f : Ω → c0(Γ) by f(t) := eγ whenever t ∈ Cγ , γ ∈ Γ. Then
e∗γf = 1Cγ for all γ ∈ Γ and f is scalarly null, because µ∗(Cγ) = 0 for all γ ∈ Γ and
the linear span of {e∗γ : γ ∈ Γ} is norm dense in c0(Γ)∗ = `1(Γ). By Proposition 3.2,
since

⋃
γ∈Γ[Cγ ]<ω is MC-filling on Ω, the function f is not MC-integrable. �

Thus, bearing in mind that Pettis and McShane integrability are equivalent for
c0(Γ)-valued functions [2], in order to find McShane integrable functions which
are not MC-integrable we will look for MC-filling families like in condition (ii) of
Lemma 5.1. The following sufficient condition will be helpful.

Lemma 5.2. Let (Cγ)γ∈Γ be a partition of Ω and ε > 0 such that, whenever
(ΓA)A⊂N is a partition of Γ, there is some A ⊂ N such that µ∗(

⋃
γ∈ΓA

Cγ) > ε.
Then the family

⋃
γ∈Γ[Cγ ]<ω is MC-filling on Ω.

Proof. Fix a countable partition (Ωm) of Ω. For each A ⊂ N, set

ΓA := {γ ∈ Γ : Cγ ∩ Ωm 6= ∅ ⇔ m ∈ A}.

Then (ΓA)A⊂N is a partition of Γ and so there is A ⊂ N such that µ∗(
⋃
γ∈ΓA

Cγ) > ε.
Observe that ⋃

m∈A
Ωm ⊃

⋃
γ∈ΓA

Cγ ,

hence µ∗(
⋃
m∈A Ωm) > ε. Choose B ⊂ A finite with µ∗(

⋃
m∈B Ωm) > ε. Take

γ ∈ ΓA. We can find a finite set F ⊂ Cγ such that F ∩ Ωm 6= ∅ for every m ∈ B,
hence

µ∗
(⋃
{Ωm : F ∩ Ωm 6= ∅}

)
≥ µ∗

( ⋃
m∈B

Ωm
)
> ε.

This shows that
⋃
γ∈Γ[Cγ ]<ω is MC-filling on Ω. �
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We now focus on 2κ (for a cardinal κ), which is a Radon probability space when
equipped with (the completion of) the usual product probability, cf. [11, 416U].

Lemma 5.3. Let κ be an uncountable cardinal, (Aα)α<κ a partition of κ into
infinite sets and consider, for each α < κ, the sets

Dα := {x ∈ 2κ : x(γ) = 0 for all γ ∈ Aα} and Eα := Dα \
⋃
β<α

Dβ .

Then
⋃
α∈I Eα has outer measure 1 for every uncountable set I ⊂ κ.

Proof. It suffices to check that Z ∩ (
⋃
α∈I Eα) 6= ∅ whenever Z belongs to the

product σ-algebra of 2κ and has positive measure. Fix a countable set A ⊂ κ such
that, for any z ∈ Z, we have

(8) {x ∈ 2κ : x(γ) = z(γ) for all γ ∈ A} ⊂ Z.

Since the Aα’s are disjoint, the set J := {α < κ : A∩Aα 6= ∅} is countable. Clearly,
the Dα’s have measure zero (because Aα is infinite) and so Z\

⋃
α∈J Dα has positive

measure. In particular, we can choose z ∈ Z \
⋃
α∈J Dα. Since J is countable and

I is not, there is β ∈ I \ J . We now define an element x ∈ 2κ by declaring

x(γ) :=


z(γ) if γ ∈

⋃
α∈J Aα,

0 if γ ∈ Aβ ,
1 otherwise.

We claim that x ∈ Z ∩ Eβ . Indeed, we have x ∈ Z by (8) (bear in mind that
A ⊂

⋃
α∈J Aα). On the other hand, take any α < κ with α 6= β. If α ∈ J then

z 6∈ Dα and so x 6∈ Dα as well. If α 6∈ J , then x(γ) = 1 for all γ ∈ Aα and so
x 6∈ Dα. It follows that x ∈ Z ∩Eβ , as claimed. Therefore Z ∩ (

⋃
α∈I Eα) 6= ∅. �

Lemma 5.4. Let κ be a cardinal with κ > c. Then there is a partition (Cγ)γ∈Γ

of 2κ into sets of measure zero such that, whenever (ΓA)A⊂N is a partition of Γ,
there is some A ⊂ N such that

⋃
γ∈ΓA

Cγ has outer measure 1.

Proof. Let (Aα)α<κ be a partition of κ into infinite sets. Clearly, the Eα’s of
Lemma 5.3 are pairwise disjoint and have measure zero (since Aα is infinite). We
claim that the following partition of 2κ satisfies the desired property:

C :=
{
Eα : α < κ

}
∪
{
{x} : x ∈ 2κ \

⋃
α<κ

Eα

}
.

Indeed, let (CA)A⊂N be any partition of C. Since κ > c, there is some A ⊂ N such
that CA contains uncountably many Eα’s. By Lemma 5.3, the outer measure of⋃
CA is 1, as required. �

We can now state the aforementioned result:

Theorem 5.5. Let κ be a cardinal with κ > c. Then there is a McShane integrable
function f : 2κ → c0(Γ) (for some set Γ) which is not MC-integrable.
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Proof. By Lemmas 5.1, 5.2 and 5.4, there is a scalarly null function f : 2κ → c0(Γ)
(for some set Γ) which is not MC-integrable. Since f is Pettis integrable, it is also
McShane integrable [2]. �

In [1] it is proved that Pettis and McShane integrability are equivalent for X-
valued functions defined on quasi-Radon probability spaces whenever X is Hilbert
generated (i.e., there exist a Hilbert space Y and a linear continuous map T : Y → X

such that T (Y ) is dense in X). Clearly, every Hilbert generated space is WCG.
Typical examples of Hilbert generated spaces are the separable ones, c0(Γ) (for any
set Γ) and L1(ν) (for any probability measure ν). Moreover, any super-reflexive
space embeds into a Hilbert generated space. For more information on this class of
spaces, we refer the reader to [5, 6] and [14, Chapter 6].

In view of our Theorem 5.5, we cannot replace McShane integrability by MC-
integrability in the results of [1]. However, something can be said for a particular
class of functions. The following proposition is inspired in [1, Lemma 3.3]. Recall
that a Markushevich basis of X is a family {(xi, x∗i ) : i ∈ I} ⊂ X ×X∗ such that
x∗i (xj) = δi,j for every i, j ∈ I, the linear span of {xi : i ∈ I} is dense in X and
{x∗i : i ∈ I} separates the points of X.

Proposition 5.6. Suppose µ is atomless and X is a closed subspace of a Hilbert
generated Banach space. Let {(xi, x∗i ) : i ∈ I} be a Markushevich basis of X with
xi ∈ BX for all i ∈ I. Let ϕ : Ω→ I be a one-to-one function and define f : Ω→ X

by f(t) := xϕ(t). Then f is scalarly null and MC-integrable.

Proof. Fix ε > 0. Since X embeds into a Hilbert generated space, there is a
partition I =

⋃
m∈N Im such that

(9) for all x∗ ∈ BX∗ and all m ∈ N, |{i ∈ Im : |x∗(xi)| > ε}| ≤ m,

see [6, Theorem 6] (cf. [14, Theorem 6.30]). In particular, for each x∗ ∈ BX∗ ,
the set {t ∈ Ω : |x∗f(t)| > ε} is countable (ϕ is one-to-one) and so it has outer
measure 0 (because µ is atomless). As ε > 0 is arbitrary, f is scalarly null.

For each m ∈ N, define Ωm := {t ∈ Ω : ϕ(t) ∈ Im} and choose finitely many
disjoint sets A1,m, . . . , AN(m),m ∈ Σ with

µ(An,m) ≤ ε

2mm
, n = 1, . . . , N(m),

and Ωm ⊂
⋃N(m)
n=1 An,m. Set Ωn,m := Ωm∩An,m for all m ∈ N and n = 1, . . . , N(m),

so that (Ωn,m) is a countable partition of Ω.
Fix a finite family (Ej) of pairwise disjoint elements of Σ with Ej ⊂ An(j),m(j)

and choose points tj ∈ Ωn(j),m(j). Fix x∗ ∈ BX∗ and set

C := {i ∈ I : |x∗(xi)| ≤ ε} and Bm := {i ∈ Im : |x∗(xi)| > ε} for all m ∈ N.

We can write

(10)
∑
j

µ(Ej)f(tj) =
∑
i∈C

∑
ϕ(tj)=i

µ(Ej)xi +
∑
m∈N

∑
i∈Bm

∑
ϕ(tj)=i

µ(Ej)xi.
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On the one hand

(11)
∣∣∣x∗(∑

i∈C

∑
ϕ(tj)=i

µ(Ej)xi
)∣∣∣ ≤ µ(⋃

i∈C

⋃
ϕ(tj)=i

Ej

)
ε ≤ ε.

On the other hand, for each m ∈ N and i ∈ Bm, we have
⋃
ϕ(tj)=i

Ej ⊂ An,m for
some n (here we use again that ϕ is one-to-one) and therefore

(12)
∣∣∣x∗( ∑

ϕ(tj)=i

µ(Ej)xi
)∣∣∣ ≤ µ( ⋃

ϕ(tj)=i

Ej

)
≤ ε

2mm
.

From (9), (10), (11) and (12) it follows that∣∣∣x∗(∑
j

µ(Ej)f(tj)
)∣∣∣ ≤ 2ε.

As x∗ ∈ BX∗ is arbitrary, we have ‖
∑
j µ(Ej)f(tj)‖ ≤ 2ε. Hence f is MC-

integrable, with MC-integral 0 ∈ X. �

References
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