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Abstract. Let X be a Banach space. The property (?) “the unit ball of X
belongs to Baire(X, weak)” holds whenever the unit ball of X∗ is weak∗-
separable; on the other hand, it is also known that the validity of (?) ensures
that X∗ is weak∗-separable. In this paper we use suitable renormings of `∞(N)

and the Johnson-Lindenstrauss spaces to show that (?) lies strictly between

the weak∗-separability of X∗ and that of its unit ball. As an application, we
provide a negative answer to a question raised by K. Musia l.

1. Introduction

There are several σ-algebras on a Banach space X, like the Borel σ-algebras
associated to the weak (w) and norm topologies, as well as the Baire σ-algebra
Baire(X, w) associated to w. G. A. Edgar [2] showed that Baire(X, w) is exactly
the smallest σ-algebra on X for which each element of X∗ (the topological dual
of X) is measurable. In general, we have

Baire(X, w) ⊂ Borel(X, w) ⊂ Borel(X, norm).

Although this chain collapses for separable X, some of these inclusions may be
strict beyond the separable case, see [2], [3] and [15].

Let ‖ · ‖ be an equivalent norm on X and denote by ‖ · ‖∗ its corresponding
equivalent norm on X∗. Clearly, the unit ball B(X, ‖ · ‖) = {x ∈ X : ‖x‖ ≤ 1}
belongs to Baire(X, w) provided that B(X∗, ‖ · ‖∗) is separable for the weak∗ (w∗)
topology (equivalently, (X, ‖ · ‖) is isometric to a subspace of `∞(N)), because in
this case

B(X, ‖ · ‖) =
⋂

x∗∈D

{x ∈ X : |x∗(x)| ≤ 1}

for any countable w∗-dense set D ⊂ B(X∗, ‖ · ‖∗). On the other hand, it is known
(cf. [10, Theorem 1.5.3]) that the statement “B(X, ‖·‖) ∈ Baire(X, w)” (equivalent
to saying that the mapping ‖ · ‖ : X → R is Baire(X, w)-measurable) implies
that X∗ is w∗-separable. In general, the w∗-separability of X∗ is not sufficient
to ensure the w∗-separability of B(X∗, ‖ · ‖∗) (see the next paragraph), so it is
natural to ask whether the statement “B(X, ‖ · ‖) ∈ Baire(X, w)” is equivalent to
the w∗-separability of B(X∗, ‖ · ‖∗) or that of X∗. We stress that the weak Baire
measurability of the norm has important consequences in vector integration, see
[6], [13] and [14].

The aim of this paper is to discuss the question above. We use some ideas of
G. A. Edgar (from [3] and [16]) to construct suitable equivalent norms on the follow-
ing Banach spaces with w∗-separable dual: `∞(N) and the Johnson-Lindenstrauss
spaces JL0 and JL2 [11] (see Section 2 for the definitions). In this way, for each of
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dación Séneca (Spain), project 00690/PI/04.

1
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these spaces X we find an equivalent norm ‖ ·‖ such that B(X, ‖ ·‖) does not belong
to Baire(X, w) (Theorem 2.3). This improves the well known fact that each of these
spaces admits an equivalent norm whose dual unit ball is not w∗-separable; see [5]
(cf. [4, Theorem 12.58 and Exercise 12.40]) for `∞(N) and JL0, and [11] for JL2 (in
fact, no norm on this space has w∗-separable dual unit ball). Incidentally, the proof
of Theorem 2.3 provides an example of an X-valued Pettis integrable function f for
which there is no scalarly equivalent X-valued function g such that the mapping
‖g(·)‖ is measurable (Corollary 2.4). This answers negatively to a question posed
by K. Musia l [12, Problem 4]. Finally, the previous constructions also allow us
to show that there is an equivalent norm ‖ · ‖ on `∞(N) such that B(`∞(N), ‖ · ‖)
belongs to Baire(`∞(N), w) but B(`∞(N)∗, ‖·‖∗) is not w∗-separable (Theorem 2.9).

For all unexplained terminology and notation we refer the reader to our standard
references [4], [12] and [16]. The cardinality of the continuum is denoted by c and
the first uncountable ordinal by ω1. Let X be a Banach space. Given x∗ ∈ X∗ and
x ∈ X, we write either x∗(x) or 〈x∗, x〉 to denote the evaluation of x∗ at x. We say
that a function f : Ω → X defined on a complete probability space (Ω, Σ, µ) is

(i) scalarly measurable if the composition 〈x∗, f〉 is Σ-measurable for every
x∗ ∈ X∗ (equivalently, f is Σ-Baire(X, w)-measurable);

(ii) Pettis integrable if 〈x∗, f〉 is µ-integrable for every x∗ ∈ X∗ and for each
E ∈ Σ there is xE ∈ X such that

∫
E
〈x∗, f〉 dµ = 〈x∗, xE〉 for every x∗ ∈ X∗.

Two functions f, g : Ω → X are said to be scalarly equivalent if for each x∗ ∈ X∗

we have 〈x∗, f〉 = 〈x∗, g〉 µ-a.e. (the null set depends on x∗). Recall that X has the
property (C) of Corson if every family of convex closed subsets of X with empty
intersection contains a countable subfamily with empty intersection.

2. The results

In order to recall the definition of the Johnson-Lindenstrauss spaces [11] we need
to introduce the following notation:

• Tn := {0, 1}n for every n ∈ N;
• T :=

⋃∞
n=1 Tn;

• K := {0, 1}N;
• u|n := (ui)n

i=1 ∈ Tn for every u = (ui)∞i=1 ∈ K and every n ∈ N;
• Bu := {u|n : n ∈ N} ⊂ T for every u ∈ K.

Note that T is infinite countable and that (i) each Bu is infinite; (ii) Bu ∩ Bu′

is finite whenever u 6= u′; and (iii) the family {Bu : u ∈ K} has cardinality c.
The existence of a family of subsets of N satisfying (i)–(ii)–(iii) was first proved by
Sierpinski (cf. [4, Lemma 5.16]). We next isolate this fact for future reference.

Lemma 2.1. Let A be an infinite countable set. Then there is a family {Aγ : γ < c}
of infinite subsets of A such that Aγ ∩Aγ′ is finite whenever γ 6= γ′.

As usual, for each A ⊂ T we write χA ∈ `∞(T ) to denote the characteristic
function of A. Let U0 be the linear span of c0(T ) ∪ {χBu : u ∈ K} in `∞(T ). Any
x ∈ U0 can be written in a unique way as x = y +

∑p
i=1 aiχBui

, where y ∈ c0(T ),
{u1, . . . , up} ⊂ K and ai ∈ R for all 1 ≤ i ≤ p. For such an x, set

‖x‖JL2 := max
{
‖x‖∞,

( p∑
i=1

|ai|2
)1/2}

.

(U0, ‖·‖JL2) is a normed space whose completion will be denoted by (JL2, ‖·‖JL2);
this is the Banach space U studied in [11, Example 1]. On the other hand, the
closure JL0 of U0 in `∞(T ) is a Banach space when equipped with ‖·‖∞; this space
was discussed in [11, Example 2]. Our notation for the Johnson-Lindenstrauss
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spaces comes from [17], where the reader can find a lot of information on the role
played by these spaces in Banach space theory.

In the proofs of Theorems 2.3 and 2.9 we will use the following norm introduced
by Edgar in his example [16, Example 3-3-5] (cf. [12, Example 3.4]) of a scalarly
bounded function which is not scalarly equivalent to a bounded function.

Definition 2.2. For each u ∈ K, consider the seminorm ‖ · ‖u on `∞(T ) given by

‖x‖u := lim sup
n→∞

|xu|n|, x ∈ `∞(T ).

Let a : K → [1,∞) be a bounded function. Define

‖x‖a := max
{
‖x‖∞, sup

u∈K
a(u)‖x‖u

}
, x ∈ `∞(T ).

Clearly, ‖ · ‖a is an equivalent norm on `∞(T ).

We write (K, ΣK , µK) to denote the complete probability space obtained after
completing the usual product probability measure on Borel(K). Recall that this
measure space is isomorphic to [0, 1] equipped with the Lebesgue measure on the
σ-algebra of all Lebesgue measurable sets, cf. [8, 254K].

Theorem 2.3. Let X be either `∞(N), JL0 or JL2. Then X∗ is w∗-separable
and there is an equivalent norm ‖ · ‖ on X such that B(X, ‖ · ‖) does not belong to
Baire(X, w).

Proof. The first assertion is obvious for `∞(T ) and its closed subspace JL0. The
w∗-separability of JL∗2 was proved in [11, Example 1].

Now fix a bounded non ΣK-measurable function a : K → [1,∞).
First case: JL2. The identity mapping on U0 can be extended to a linear

continuous mapping S : JL2 → JL0. Note that the formula

‖z‖ := ‖z‖JL2 + ‖S(z)‖a, z ∈ JL2,

defines an equivalent norm on JL2. On the other hand, Edgar showed in the proof
of [3, Proposition 5.12(c)] that the function

φ : K → JL2, φ(u) := χBu ,

is scalarly measurable, i.e. ΣK-Baire(JL2, w)-measurable. For each u ∈ K we
have ‖χBu

‖a = a(u), hence ‖φ(u)‖ = 1 + a(u). Since a is not ΣK-measurable, the
mapping ‖ · ‖ : JL2 → R cannot be Baire(JL2, w)-measurable.

Second case: JL0 and `∞(T ). Clearly, the composition S ◦ φ : K → JL0 is also
scalarly measurable, i.e. ΣK-Baire(JL0, w)-measurable, and ‖(S ◦ φ)(u)‖a = a(u)
for every u ∈ K. It follows that the restriction of ‖ ·‖a to JL0 is not Baire(JL0, w)-
measurable. Finally, since

Baire(JL0, w) = {C ∩ JL0 : C ∈ Baire(`∞(T ), w)},

we infer that ‖ · ‖a is not Baire(`∞(T ), w)-measurable. The proof is over. �

Let (Ω, Σ, µ) be a complete probability space and (X, ‖ · ‖) a Banach space.
Musia l posed in [12, Problem 4] the following question. Is it true that for each
Pettis integrable function f : Ω → X there is a function g : Ω → X such that f and
g are scalarly equivalent and the mapping ‖g(·)‖ is Σ-measurable? Naturally, the
answer is affirmative if (X, w) is measure compact (e.g. Lindelöf), since in this case
every scalarly measurable X-valued function is scalarly equivalent to a strongly
measurable one [2]. The following corollary provides a negative answer to Musia l’s
question even for spaces with property (C) (like JL0 and JL2, cf. [17, Section 2]).
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Corollary 2.4. Let X be either `∞(N), JL0 or JL2. Then there exist an equivalent
norm ‖ · ‖ on X and a Pettis integrable function f : K → X for which there is
no function g : K → X such that f and g are scalarly equivalent and the mapping
‖g(·)‖ is ΣK-measurable.

Proof. We first deal with JL2. Let f := φ be the function considered in the
proof of Theorem 2.3. Since JL2 has property (C) and f is bounded and scalarly
measurable, we can apply [16, Theorem 5-2-2] to conclude that f is Pettis integrable.
As we have shown in the proof of Theorem 2.3, there is an equivalent norm ‖ · ‖
on JL2 such that the mapping ‖f(·)‖ is not ΣK-measurable. Now, if a function
g : K → JL2 is scalarly equivalent to f , the w∗-separability of JL∗2 ensures that
f = g µK-a.e. and, therefore, ‖g(·)‖ is not ΣK-measurable as well.

The proof for JL0 and `∞(T ) is similar, bearing in mind the Pettis integrable
function f := S ◦ φ. �

Remark 2.5. A. S. Granero et al. [9] have shown that any Banach space X without
property (C) admits an equivalent norm ‖ · ‖ such that B(X∗, ‖ · ‖∗) is not w∗-
separable (see [1] for related results). In general, the failure of property (C) does not
ensure the existence of an equivalent norm ‖ · ‖ such that B(X, ‖ · ‖) 6∈ Baire(X, w).
For instance, `1(ω1) fails property (C) [3] and

Baire(`1(ω1), w) = Borel(`1(ω1), norm),

according to a theorem of D. H. Fremlin [7].

In Proposition 2.8 below we study the w∗-separability of B(`∞(T )∗, ‖ · ‖∗a) in
terms of a. To this end we need a couple of lemmas. The first one follows easily
from the “lifting property” of `1(N), cf. [4, Proposition 5.10]. As usual, we write

c0(T )⊥ := {x∗ ∈ `∞(T )∗ : 〈x∗, x〉 = 0 for every x ∈ c0(T )}.

Lemma 2.6. There is a decomposition `∞(T )∗ = Y ⊕ c0(T )⊥, where Y is isomor-
phic to `1(T ). The isomorphism Θ : `1(T ) → Y is given by

〈Θ(z), x〉 =
∑

u|n∈T

zu|nxu|n, z ∈ `1(T ), x ∈ `∞(T ),

and the projection P : `∞(T )∗ → Y is given by

P (x∗) = Θ
(
(x∗(χ{u|n}))u|n∈T

)
, x∗ ∈ `∞(T )∗.

Let a : K → [1,∞) be a bounded function. If `∞(T )∗ is equipped with ‖ · ‖∗a and
`1(T ) is equipped with its canonical norm ‖·‖`1(T ), then Θ, Θ−1 and P have norm 1.

The second lemma isolates a property used by J. Hagler in his example (cf. [16,
Example 3-2-4] or [12, Example 3.3]) of a scalarly measurable function which is not
scalarly equivalent to a strongly measurable one. The original proof for the family
{Bu : u ∈ K} can be extended straightforwardly to this more general case.

Lemma 2.7. Let {Ci : i ∈ I} be a family of subsets of T such that Ci∩Ci′ is finite
whenever i 6= i′. Let x∗ ∈ c0(T )⊥. Then the set {i ∈ I : x∗(χCi

) 6= 0} is countable.

Proposition 2.8. Let a : K → [1,∞) be a bounded function. The following
statements are equivalent:

(i) B(`∞(T )∗, ‖ · ‖∗a) is w∗-separable.
(ii) a(u) = 1 for every u ∈ K.

Proof. Clearly, (ii) implies that ‖ · ‖a = ‖ · ‖∞, so it only remains to prove (i)⇒(ii).
Suppose that (ii) fails, that is, there is u ∈ K such that a(u) > 1. Take any
countable set D ⊂ B(`∞(T )∗, ‖ · ‖∗a). Since Bu is infinite countable, we can find a
family {Aγ : γ < c} of infinite subsets of Bu such that Aγ ∩ Aγ′ is finite whenever
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γ 6= γ′ (Lemma 2.1). With the notations of Lemma 2.6, for each x∗ ∈ D we can
write x∗ = P (x∗) + (x∗ − P (x∗)), where x∗ − P (x∗) ∈ c0(T )⊥, P (x∗) ∈ Y and
‖P (x∗)‖∗a ≤ 1. Since D is countable, we can apply Lemma 2.7 to find γ < c such
that x∗(χAγ ) = P (x∗)(χAγ ) for every x∗ ∈ D. By the definition of P , we have

P (x∗)(χAγ
) =

∑
u|n∈Aγ

x∗(χ{u|n}).

On the other hand, since Θ−1 has norm 1, we get∑
v|n∈T

|x∗(χ{v|n})| = ‖Θ−1(P (x∗))‖`1(T ) ≤ 1.

It follows that |x∗(χAγ
)| ≤ 1 for every x∗ ∈ D. Since Aγ ⊂ Bu is infinite, we

conclude that
‖χAγ‖a = a(u) > 1 ≥ sup

x∗∈D
|x∗(χAγ )|.

Therefore, D is not w∗-dense in B(`∞(T )∗, ‖·‖∗a). This shows that B(`∞(T )∗, ‖·‖∗a)
is not w∗-separable. �

Theorem 2.9. There is an equivalent norm ‖ · ‖ on `∞(N) such that:
(i) B(`∞(N), ‖ · ‖) belongs to Baire(`∞(N), w).
(ii) B(`∞(N)∗, ‖ · ‖∗) is not w∗-separable.

Proof. Fix a bounded function a : K → [1,∞) such that a−1((1,∞)) is countable
and non empty. Then B(`∞(T )∗, ‖ · ‖∗a) is not w∗-separable, by Proposition 2.8.
On the other hand, note that for each u ∈ K the mapping

‖ · ‖u : `∞(T ) → R, ‖x‖u = lim sup
n→∞

|xu|n| = inf
k∈N

sup
n≥k

|xu|n|,

is Baire(`∞(T ), w)-measurable. Since

‖x‖a = max
{
‖x‖∞, sup

u∈a−1((1,∞))

a(u)‖x‖u

}
, x ∈ `∞(T ),

it follows that ‖ · ‖a is Baire(`∞(T ), w)-measurable, as required. �
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Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001.

[5] C. Finet and G. Godefroy, Biorthogonal systems and big quotient spaces, Banach space theory
(Iowa City, IA, 1987), Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989,
pp. 87–110.

[6] D. H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions, University of

Essex Mathematics Department Research Report 92-10, version of 18.5.07 available at URL
http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm.

[7] , Borel sets in nonseparable Banach spaces, Hokkaido Math. J. 9 (1980), no. 2, 179–
183.

[8] , Measure Theory. Volume 2: Broad Foundations, Torres Fremlin, Colchester, 2001.
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