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Abstract. Let ν be a countably additive measure defined on a measurable

space (Ω, Σ) and taking values in a Banach space X. Let f : Ω → R be a

measurable function. In order to check the integrability (respectively, weak

integrability) of f with respect to ν it is sometimes enough to test on a norm-

ing set Λ ⊂ X∗. In this paper we show that this is the case when Λ is a

James boundary for BX∗ (respectively, Λ is weak∗-thick). Some examples

and applications are given as well.

1. Introduction

The modern theory of integration of scalar functions with respect to vector mea-

sures was introduced by Bartle, Dunford and Schwartz [2] in order to provide

an analogue of Riesz’s representation theorem for weakly compact operators de-

fined on Banach spaces of continuous functions. After the seminal contributions by

Lewis [10, 11] and Kluvanek and Knowles [9], many authors have worked on this

topic and recently the spaces of scalar functions integrable with respect to vector

measures have shown to play an important role within the theory of Banach lat-

tices, see e.g. [3], [4] and [7]. Whereas the original definition of the integral given

by Bartle, Dunford and Schwartz is based on approximation by simple functions,

Lewis’ equivalent approach uses scalar measures through a barycentric formula, as

follows.

Let (Ω,Σ) be a measurable space, X a Banach space with dual X∗ and ν : Σ → X

a countably additive measure. A Σ-measurable function f : Ω → R is called

integrable (with respect to ν) if:
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• f is weakly integrable, i.e. f ∈ L1(〈ν, x∗〉) for every x∗ ∈ X∗, where 〈ν, x∗〉 :

Σ → R is the countably additive measure given by 〈ν, x∗〉(A) := 〈ν(A), x∗〉;

and

• for each A ∈ Σ there is a vector
∫

A
fdν ∈ X such that〈∫

A

fdν, x∗
〉

=
∫

A

fd〈ν, x∗〉 for every x∗ ∈ X∗.

The set of all integrable (resp. weakly integrable) functions f : Ω → R is denoted

by L1(ν) (resp. L1
w(ν)).

A typical situation in Functional Analysis is the absence of a “good” descrip-

tion for the dual of certain Banach spaces. Sometimes we can deal only with a

particular subset of the dual and it can be useful to obtain “global” information

from that smaller set of functionals. This idea can be nicely applied to the setting

of integration with respect to vector measures. Given a norming set Λ ⊂ X∗, we

introduce the following terminology:

• L1
Λ(ν) is the set of all Σ-measurable functions f : Ω → R such that f ∈

L1(〈ν, x∗〉) for every x∗ ∈ Λ.

• L1,s
Λ (ν) is the set of all f ∈ L1

Λ(ν) with the following property: for each

A ∈ Σ there is ξf,Λ(A) ∈ X such that

〈ξf,Λ(A), x∗〉 =
∫

A

fd〈ν, x∗〉 for every x∗ ∈ Λ.

In this paper we discuss under which conditions the equalities L1(ν) = L1,s
Λ (ν)

and L1
w(ν) = L1

Λ(ν) hold. The last one is satisfied whenever Λ is weak∗-thick (in

the sense of Fonf [8]), see Theorem 2.2. Nygaard [12, 13, 14], also together with

Abrahamsen and Poldvere [1], has extended recently Fonf’s ideas showing that

weak∗-thick sets can be used to test properties like boundedness, summability and

integrability (for vector functions with respect to non-negative finite measures).

As regards the equality L1(ν) = L1,s
Λ (ν), we prove that a function f ∈ L1,s

Λ (ν)

belongs to L1(ν) if and only if the mapping ξf,Λ : Σ → X is countably additive, see

Theorem 2.5. This fact paves the way to deduce that L1(ν) = L1,s
Λ (ν) whenever

X contains no isomorphic copy of `∞ or Λ is a James boundary for BX∗ (see the

comments after Proposition 2.8). Some results in this fashion were obtained by

Thomas [18] within his theory of integration of scalar functions with respect to a

Radon vector measure.

In general, for any norming set Λ ⊂ X∗ we have

L1(ν) ⊂ L1,s
Λ (ν) ⊂ L1

w(ν) ⊂ L1
Λ(ν),
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see Theorem 2.5. Our methods allow us to prove that L1(ν) = L1
Λ(ν) provided

that X contains no isomorphic copy of c0 and Λ is a James boundary for BX∗

(Corollary 2.4). We also show that, if X is the dual of another Banach space Y ,

then L1,s
Y (ν) = L1

w(ν) = L1
Y (ν) (Theorem 2.10). We finish the paper with some

examples making clear that in the previous chain of inclusions all combinations of

“(” and “=” are possible.

All unexplained terminology can be found in our standard references [5] and [6].

The closed unit ball of X∗ is denoted by BX∗ and the symbol w∗ stands for the

weak∗ topology on X∗. The evaluation of a functional x∗ ∈ X∗ at x ∈ X is denoted

by 〈x, x∗〉. The semivariation of ν is the mapping ‖ν‖ : Σ −→ [0,∞) defined by

‖ν‖ (A) := sup {|〈ν, x∗〉| (A) : x∗ ∈ BX∗} , A ∈ Σ,

where |〈ν, x∗〉| denotes the total variation measure of 〈ν, x∗〉. A set Λ ⊂ X∗ is called

norming if there is λ ≥ 1 such that

‖x‖ ≤ λ · sup{〈x, x∗〉 : x∗ ∈ span(Λ) ∩BX∗} for every x ∈ X

(we sometimes say that Λ is λ-norming). A set B ⊂ BX∗ is called a James boundary

for BX∗ if for every x ∈ X there is x∗ ∈ B such that ‖x‖ = 〈x, x∗〉. The classical

example of James boundary is given by the set Ext(BX∗) of extreme points of BX∗ ,

cf. [6, Fact 3.45]. A set T ⊂ X∗ is w∗-thin if we can write T =
⋃∞

n=1 Tn, where

Tn ⊂ Tn+1 and

inf
‖x‖=1

sup
x∗∈Tn

|〈x, x∗〉| = 0.

A subset of X∗ is w∗-thick if it is not w∗-thin. Clearly, every w∗-thick set is

norming. A simple example of a norming set (even James boundary) which is not

w∗-thick is given by the set {e∗n : n ∈ N} ⊂ c∗0 = `1 of all “coordinate projections”

on c0.

2. The results

We begin by discussing the relationship between the spaces L1
w(ν) and L1

Λ(ν) for

a norming set Λ ⊂ X∗. Given f ∈ L1
Λ(ν), we define

‖f‖L1
Λ(ν) := sup

x∗∈span(Λ)∩BX∗

∫
Ω

|f |d|〈ν, x∗〉| ∈ [0,∞].

It is known that ‖f‖L1
w(ν) := ‖f‖L1

X∗ (ν) < ∞ for every f ∈ L1
w(ν), see [10, p. 163]

(cf. [17, Proposition 2]). Clearly, ‖ · ‖L1
w(ν) is a seminorm on L1

w(ν).

Our starting point is the following characterization.
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Theorem 2.1. Let f : Ω → R be a function. The following conditions are equiva-

lent:

(i) f ∈ L1
w(ν).

(ii) There exists a norming set Λ ⊂ X∗ such that f ∈ L1
Λ(ν) and ‖f‖L1

Λ(ν) < ∞.

In this case, for any λ-norming set Λ ⊂ X∗, we have

‖f‖L1
Λ(ν) ≤ ‖f‖L1

w(ν) ≤ 2λ‖f‖L1
Λ(ν).

Proof. For the implication (i)⇒(ii), just take Λ = X∗.

The proof of (ii)⇒(i) is as follows. Assume that Λ is λ-norming for some λ ≥ 1.

Fix η > 0. Since f is Σ-measurable, there is a function of the form g =
∑∞

n=1 anχAn

(where an ∈ R for every n ∈ N and the An’s belong to Σ and are pairwise disjoint)

such that |f − g| ≤ η pointwise. Clearly, we have f − g ∈ L1
w(ν). We claim that

g ∈ L1
w(ν) as well. Indeed, fix x∗0 ∈ BX∗ , N ∈ N and ε > 0. For each 1 ≤ n ≤ N

we can find Dn ⊂ An, Dn ∈ Σ, such that

(1) |an| · |〈ν, x∗0〉|(An) ≤ 2|an| · |〈ν, x∗0〉(Dn)|+ ε

N
.

On the other hand, since Λ is λ-norming, the Hahn-Banach separation theorem

ensures that

BX∗ ⊂ λ · span(Λ) ∩BX∗
w∗

.

Therefore, we can find x∗ ∈ span(Λ) ∩BX∗ such that

(2) |an| · |〈ν(Dn), λx∗〉 − 〈ν(Dn), x∗0〉| ≤
ε

N
for every 1 ≤ n ≤ N.

Observe that g ∈ L1(〈ν, λx∗〉) and

(3)
∫

Ω

|g|d|〈ν, λx∗〉| ≤
∫

Ω

|f − g|d|λ〈ν, x∗〉|+
∫

Ω

|f |d|λ〈ν, x∗〉|

≤ ηλ‖ν‖(Ω) + λ‖f‖L1
Λ(ν).

By putting together (1), (2) and (3) we obtain

N∑
n=1

|an| · |〈ν, x∗0〉|(An) ≤
N∑

n=1

2|an| · |〈ν, x∗0〉(Dn)|+ ε

≤
N∑

n=1

2|an| · |λ〈ν, x∗〉(Dn)|+ 3ε ≤
N∑

n=1

2|an| · |λ〈ν, x∗〉|(An) + 3ε

≤ 2
∫

Ω

|g|d|〈ν, λx∗〉|+ 3ε ≤ 2ηλ‖ν‖(Ω) + 2λ‖f‖L1
Λ(ν) + 3ε.

As N ∈ N and ε > 0 are arbitrary, it follows that∫
Ω

|g|d|〈ν, x∗0〉| ≤ 2ηλ‖ν‖(Ω) + 2λ‖f‖L1
Λ(ν) < ∞.



NORMING SETS AND INTEGRATION WITH RESPECT TO VECTOR MEASURES 5

Therefore, g ∈ L1
w(ν) and ‖g‖L1

w(ν) ≤ 2ηλ‖ν‖(Ω)+2λ‖f‖L1
Λ(ν). Finally, notice that

(f − g) + g = f ∈ L1
w(ν) and

‖f‖L1
w(ν) ≤ ‖f − g‖L1

w(ν) + ‖g‖L1
w(ν) ≤ η‖ν‖(Ω) + 2ηλ‖ν‖(Ω) + 2λ‖f‖L1

Λ(ν).

As η > 0 was arbitrary, the proof is over. �

The norming sets Λ ⊂ X∗ for which the equality L1
w(ϑ) = L1

Λ(ϑ) holds for

any countably additive X-valued measure ϑ can be characterized as those which

are w∗-thick. To this end, we will apply a result of Abrahamsen, Nygaard and

Poldvere (see [1, Corollary 2.4]) saying that a set Λ ⊂ X∗ is w∗-thick if and only if

every series
∑

n xn in X satisfying
∑∞

n=1 |〈xn, x∗〉| < ∞ for every x∗ ∈ Λ is weakly

unconditionally Cauchy (i.e.
∑∞

n=1 |〈xn, x∗〉| < ∞ for every x∗ ∈ X∗).

Theorem 2.2. Let Λ ⊂ X∗ be a w∗-thick set. Then L1
w(ν) = L1

Λ(ν).

Proof. Fix f ∈ L1
Λ(ν). Since f is Σ-measurable, there exists a function of the form

g =
∑∞

n=1 anχAn
(where an ∈ R for every n ∈ N and the An’s belong to Σ and are

pairwise disjoint) such that |f−g| ≤ 1 pointwise. Of course, we have f−g ∈ L1
w(ν)

and we only have to check that g ∈ L1
w(ν). To this end, fix x∗0 ∈ BX∗ and for each

n ∈ N choose Dn ⊂ An, Dn ∈ Σ, such that

|an| · |〈ν, x∗0〉|(An) ≤ 2|an| · |〈ν, x∗0〉(Dn)|+ 1
2n

.

Since f − (f − g) = g ∈ L1
Λ(ν), we have

∞∑
n=1

|〈anν(Dn), x∗〉| ≤
∞∑

n=1

|an| · |〈ν, x∗〉|(An) =
∫

Ω

|g|d|〈ν, x∗〉| < ∞

for every x∗ ∈ Λ. Bearing in mind that Λ is w∗-thick, an appeal to the result of

Abrahamsen, Nygaard and Poldvere ensures us that∫
Ω

|g|d|〈ν, x∗0〉| =
∞∑

n=1

|an| · |〈ν, x∗0〉|(An) ≤ 2 ·

( ∞∑
n=1

|〈anν(Dn), x∗0〉|

)
+ 1 < ∞,

and the proof is over. �

Proposition 2.3. Let Λ ⊂ X∗ be a norming set such that the equality L1
w(ϑ) =

L1
Λ(ϑ) holds for every countably additive X-valued measure ϑ. Then Λ is w∗-thick.

Proof. Suppose if possible otherwise. By the aforementioned result of Abrahamsen,

Nygaard and Poldvere, there is a sequence (xn) in X such that
∑∞

n=1 |〈xn, x∗〉| < ∞

for every x∗ ∈ Λ, but
∑∞

n=1 |〈xn, x∗0〉| = ∞ for some x∗0 ∈ X∗. Define

yn :=
1

2n(‖xn‖+ 1)
· xn ∈ X for every n ∈ N.
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Since the series
∑

n yn is unconditionally convergent, the mapping

ϑ : P(N) → X, ϑ(A) :=
∑
n∈A

yn,

is a countably additive measure. It is now clear that the function f : N → R given

by f(n) := 2n(‖xn‖+ 1) satisfies∫
N
|f |d|〈ν, x∗〉| =

∞∑
n=1

|〈xn, x∗〉|

for every x∗ ∈ X∗. It follows that f ∈ L1
Λ(ϑ) but f 6∈ L1

w(ϑ). �

The proof of the previous proposition, together with Theorems 2.1 and 2.2, make

clear that a norming set Λ ⊂ X∗ is w∗-thick if and only if every series
∑

n xn in X

satisfying
∑∞

n=1 |〈xn, x∗〉| < ∞ for every x∗ ∈ Λ has the property that

sup
x∗∈span(Λ)∩BX∗

∞∑
n=1

|〈xn, x∗〉| < ∞.

A deep result of Fonf [8] (cf. [13, Theorem 6.2] or [14, Theorem 2.3]) states that

if X does not contain subspaces isomorphic to c0, then every James boundary B ⊂

BX∗ is w∗-thick. On the other hand, Lewis [11] (cf. [9, Theorem 1, p. 31]) showed

that the absence of isomorphic copies of c0 implies the equality L1(ν) = L1
w(ν). As

a consequence we get:

Corollary 2.4. Suppose X does not contain subspaces isomorphic to c0 and let

B ⊂ BX∗ be a James boundary. Then L1(ν) = L1
B(ν).

We now focus on L1,s
Λ (ν) for a norming set Λ ⊂ X∗. We start by showing that

this space lies between L1(ν) and L1
w(ν). Recall that, given f ∈ L1

w(ν), for each

A ∈ Σ there is νf (A) ∈ X∗∗ such that

〈x∗, νf (A)〉 =
∫

A

fd〈ν, x∗〉 for every x∗ ∈ X∗,

see [10, p. 163] (cf. [17, Corollary 3]).

Theorem 2.5. Let Λ ⊂ X∗ be a norming set and f ∈ L1,s
Λ (ν). Then:

(i) The mapping ξf,Λ : Σ → X is a bounded finitely additive measure.

(ii) f ∈ L1
w(ν).

(iii) The following conditions are equivalent:

(a) f ∈ L1(ν);

(b) ξf,Λ(A) = νf (A) for every A ∈ Σ;

(c) ξf,Λ is countably additive.
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Proof. (i) follows directly from a result of Dieudonné and Grothendieck (cf. [5,

Corollary 3, p. 16]), because the composition 〈ξf,Λ, x∗〉 is bounded and finitely

additive (in fact, it is countably additive) for every x∗ ∈ Λ, and Λ separates the

points of X. Moreover, we have

‖f‖L1
Λ(ν) = sup

x∗∈span(Λ)∩BX∗

|〈ξf,Λ, x∗〉|(Ω) ≤ ‖ξf,Λ‖(Ω) < ∞,

hence Theorem 2.1 can be applied to conclude that f ∈ L1
w(ν).

Let us turn to the proof of (iii). Assume that Λ is λ-norming for some λ ≥ 1.

(a)⇒(b) If f is integrable then νf takes its values in X and, since Λ separates

the points of X, it follows from the very definitions that νf = ξf,Λ.

(b)⇒(c) Since νf = ξf,Λ takes its values in X, the Orlicz-Pettis theorem (cf. [5,

Corollary 4, p. 22]) ensures that it is countably additive.

(c)⇒(a) Given A ∈ Σ, we can apply Theorem 2.1 to the restriction f |A obtaining

(4) ‖νf (A)‖ = sup
x∗∈BX∗

〈x∗, νf (A)〉 = sup
x∗∈BX∗

∫
A

fd〈ν, x∗〉

≤ 2λ ·

(
sup

x∗∈span(Λ)∩BX∗

∫
A

|f |d|〈ν, x∗〉|

)
≤ 2λ · ‖ξf,Λ‖(A).

Let µ be a non-negative finite measure on Σ such that ν � µ (i.e. limµ(A)→0 ν(A) =

0), cf. [5, Corollary 6, p. 14]. Since ξf,Λ is countably additive and vanishes on all

µ-null sets, we have ξf,Λ � µ (cf. [5, Theorem 1, p. 10]) and we can use (4) to

deduce that limµ(A)→0 νf (A) = 0. It follows that f ∈ L1(ν), see [10, Theorem 2.6].

The proof is finished. �

Given a norming set Λ ⊂ X∗, the linear space L1,s
Λ (ν) (obtained from L1,s

Λ (ν)

by identifying functions which coincide ‖ν‖-a.e.) is a normed space when endowed

with any of the two equivalent norms ‖ · ‖L1
Λ(ν) and ‖ · ‖L1

w(ν) (Theorem 2.1). In

fact, we have:

Proposition 2.6. Let Λ ⊂ X∗ be a norming set. Then L1,s
Λ (ν) is a Banach space.

Proof. Since (L1
w(ν), ‖ · ‖L1

w(ν)) is complete (see [17, Theorem 9]), it suffices to

check that L1,s
Λ (ν) is a closed subspace of L1

w(ν). To this end, take a sequence (fn)

in L1,s
Λ (ν) that ‖ · ‖L1

w(ν)-converges to some f ∈ L1
w(ν). In order to check that

f ∈ L1,s
Λ (ν), fix A ∈ Σ and observe that for every n, m ∈ N we have

‖ξfn,Λ(A)− ξfm,Λ(A)‖ ≤ λ · ‖fn − fm‖L1
Λ(ν) ≤ λ · ‖fn − fm‖L1

w(ν),
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where λ ≥ 1 is a constant such that Λ is λ-norming. Therefore, there exists

limn ξfn,Λ(A) = xA ∈ X for the norm topology. Finally, given x∗ ∈ span(Λ) ∩BX∗

we have ∣∣∣〈ξfn,Λ(A), x∗〉 −
∫

A

fd〈ν, x∗〉
∣∣∣ ≤ ‖fn − f‖L1

w(ν) → 0,

hence 〈xA, x∗〉 =
∫

A
fd〈ν, x∗〉. It follows that f ∈ L1,s

Λ (ν). �

The following proposition shows that L1,s
Λ (ν) is an ideal of the lattice of all

Σ-measurable real-valued functions on Ω (with the ‖ν‖-a.e. order).

Proposition 2.7. Let Λ ⊂ X∗ be a norming set. Let f ∈ L1,s
Λ (ν) and g : Ω → R a

Σ-measurable function such that |g| ≤ |f | ‖ν‖-a.e. Then g ∈ L1,s
Λ (ν).

Proof. We can assume without loss of generality that |g(t)| ≤ |f(t)| for every t ∈ Ω.

Define h : Ω → R by h(t) := g(t)
f(t) if f(t) 6= 0, h(t) := 0 otherwise. Since h is

bounded and Σ-measurable, there is a sequence of simple functions sn : Ω → R

such that limn ‖sn − h‖∞ = 0. Clearly, snf ∈ L1,s
Λ (ν) for every n ∈ N. Since

‖snf − g‖L1
w(ν) = ‖snf − hf‖L1

w(ν)

= sup
x∗∈BX∗

∫
Ω

|snf − hf |d|〈ν, x∗〉| ≤ ‖sn − h‖∞ · ‖f‖L1
w(ν) → 0,

an appeal to Proposition 2.6 establishes that g ∈ L1,s
Λ (ν). �

We next provide some conditions ensuring that L1(ν) = L1,s
Λ (ν) for a norming

set Λ ⊂ X∗. As usual, we write σ(X, Λ) to denote the topology on X of point-

wise convergence on Λ. Following [18, Appendice II], we say that a norming set

Λ ⊂ X∗ has the Orlicz property if, for every sequence (xn) in X, the series
∑

n xn is

unconditionally convergent whenever all subseries are σ(X, Λ)-unconditionally con-

vergent. Clearly, Λ has the Orlicz property if and only if every X-valued mapping

ϑ defined on a σ-algebra such that the composition 〈ϑ, x∗〉 is countably additive for

all x∗ ∈ Λ is a countably additive vector measure.

Proposition 2.8. Let Λ ⊂ X∗ be a norming set having the Orlicz property. Then

L1(ν) = L1,s
Λ (ν).

Proof. Fix f ∈ L1,s
Λ (ν) and consider the finitely additive measure ξf,Λ. Since

〈ξf,Λ, x∗〉 is countably additive for every x∗ ∈ Λ and Λ has the Orlicz property,

we deduce that ξf,Λ is countably additive. In view of Theorem 2.5, this means that

f ∈ L1(ν). �

Some examples of norming sets having the Orlicz property are:
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• Norming sets Λ ⊂ X∗ when X does not contain subspaces isomorphic to `∞,

see [5, Corollary 7, p. 23].

• James boundaries, as we show in the following proposition.

Proposition 2.9. Let B ⊂ BX∗ be a James boundary. Then B has the Orlicz

property.

Proof. Let ξ be an X-valued mapping defined on a σ-algebra Σ such that 〈ξ, x∗〉 is

a countably additive measure for every x∗ ∈ B.

Note first that ξ is finitely additive and bounded, by the Dieudonné-Grothendieck

criterion already mentioned in the proof of Theorem 2.5.

Let (An) be a disjoint sequence in Σ. We claim that
∑

n ξ(An) converges un-

conditionally to ξ(
⋃

n An). Indeed, fix an increasing sequence n1 < n2 < . . . in N

and define xk =
∑k

i=1 ξ(Ani
) = ξ(

⋃k
i=1 Ani

) ∈ X for every k ∈ N. Then (xk) is

bounded and σ(X, B)-converges to ξ(
⋃

i Ani
). Since B is a James boundary, Si-

mons’ [16] extension of Rainwater’s theorem [15] ensures that (xk) converges weakly

to ξ(
⋃

i Ani). An appeal to the Orlicz-Pettis theorem (cf. [5, Corollary 4, p. 22])

now establishes that
∑

n ξ(An) is unconditionally convergent (with sum ξ(
⋃

n An)),

as claimed. It follows that ξ is a countably additive measure. �

We now deal with a particular case of special interest.

Theorem 2.10. Suppose X = Y ∗ for another Banach space Y . Then L1,s
Y (ν) =

L1
w(ν) = L1

Y (ν).

Proof. Fix f ∈ L1
Y (ν). Since f is Σ-measurable, there is a sequence of simple

functions sn : Ω → R such that |sn| ≤ |f | for every n ∈ N and limn sn = f

pointwise. For each n ∈ N the vector measure νsn
: Σ → X is countably additive

and satisfies

〈νsn(A), y〉 =
∫

A

snd〈ν, y〉 for every A ∈ Σ and every y ∈ Y.

Fix A ∈ Σ. The dominated convergence theorem yields∣∣∣∫
A

fd〈ν, y〉 − 〈νsn(A), y〉
∣∣∣ ≤ ∫

Ω

|f − sn|d|〈ν, y〉| → 0

for every y ∈ Y . From the Banach-Steinhaus theorem (applied to the sequence

(νsn
(A)) in X = Y ∗) it follows that the linear mapping

xA : Y → R, xA(y) :=
∫

A

fd〈ν, y〉,

is continuous, that is, xA ∈ X. As A ∈ Σ is arbitrary, f ∈ L1,s
Y (ν). �
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We finish the paper with some examples. We write M to denote the σ-algebra

of all Lebesgue measurable subsets of [0, 1] and µ stands for the Lebesgue measure

on M. We fix a countable partition (An) of [0, 1] in M such that µ(An) > 0 for

every n ∈ N. Define

ϑ : M→ RN, ϑ(A) := (µ(A ∩An)),

and consider the function f : [0, 1] → R given by f :=
∑∞

n=1
n

µ(An)χAn
.

Example 2.11. Consider ϑ as a countably additive `1-valued measure. Then there

is a norming set Λ ⊂ `∗1 = `∞ such that

L1(ϑ) = L1,s
Λ (ϑ) = L1

w(ϑ) ( L1
Λ(ϑ).

Thus, the conclusion of Corollary 2.4 is not valid for arbitrary norming sets.

Proof. Take the norming set

Λ := {(cn) ∈ `∞ : there is N ∈ N such that cn = 0 for every n ≥ N}.

As we mentioned just before Corollary 2.4, the fact that `1 contains no isomorphic

copy of c0 ensures that L1(ϑ) = L1
w(ϑ). On the other hand, the function f belongs

to L1
Λ(ϑ) and fulfills ‖f‖L1

Λ(ϑ) = ∞, so f 6∈ L1
w(ϑ) (by Theorem 2.1). �

Example 2.12. Consider ϑ as a countably additive c0-valued measure. Then:

(i) There is a James boundary B ⊂ Bc∗0
= B`1 such that

L1(ϑ) = L1,s
B (ϑ) ( L1

w(ϑ) ( L1
B(ϑ).

(ii) Taking Λ = c∗0 = `1, we have

L1(ϑ) = L1,s
Λ (ϑ) ( L1

w(ϑ) = L1
Λ(ϑ).

Proof. Consider the James boundary B := {e∗n : n ∈ N} ⊂ B`1 , where e∗n(m) =

δn,m (the Kronecker symbol) for every n, m ∈ N. In view of the comments after

Proposition 2.8, we have the equality L1(ϑ) = L1,s
B (ϑ). On the other hand, it is

clear that f belongs to L1
B(ϑ) but not to L1

w(ϑ) (bear in mind that ‖f‖L1
B(ϑ) = ∞).

Finally, the function g : [0, 1] → R given by

g :=
∞∑

n=1

1
µ(An)

χAn

belongs to L1
B(ϑ) and ‖g‖L1

B(ϑ) < ∞, so we have g ∈ L1
w(ϑ) (by Theorem 2.1). An

easy computation shows that ϑg : M→ `∞ = c∗∗0 is given by ϑg(A) =
(

µ(A∩An)
µ(An)

)
,

hence ϑg(M) 6⊂ c0 and, therefore, g 6∈ L1(ϑ). �
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Example 2.13. Consider ϑ as a countably additive `∞-valued measure.

(i) There is a norming set Λ ⊂ `∗∞ such that

L1(ϑ) ( L1,s
Λ (ϑ) = L1

w(ϑ) ( L1
Λ(ϑ).

(ii) There is a norming set Λ′ ⊂ `∗∞ such that

L1(ϑ) ( L1,s
Λ′ (ϑ) = L1

w(ϑ) = L1
Λ′(ϑ).

Proof. Take Λ := {e∗n : n ∈ N} ⊂ `∗∞ and Λ′ = `1. By Theorem 2.10 we have

L1,s
Λ′ (ϑ) = L1

w(ϑ) = L1
Λ′(ϑ). Since L1,s

Λ (ϑ) ⊂ L1
w(ϑ) and Λ ⊂ Λ′, it follows that

L1,s
Λ′ (ϑ) = L1,s

Λ (ϑ) = L1
w(ϑ) = L1

Λ′(ϑ).

As in the previous example, f ∈ L1
Λ(ϑ) but f 6∈ L1

w(ϑ). We claim that the function

g defined in the previous example belongs to L1,s
Λ (ϑ) but not to L1(ϑ). Indeed, it

is not difficult to check that g belongs to L1
Λ′(ϑ) = L1,s

Λ (ϑ) and that

ξg,Λ(A) =
(

µ(A ∩An)
µ(An)

)
for every A ∈M.

Since the series
∑

k ξg,Λ(Ak) is not convergent in `∞, ξg,Λ is not countably additive

and so g 6∈ L1(ϑ) (by Theorem 2.5). �

Our last examples are based on the following standard construction (cf. [9, II.7]

for the case of spaces of integrable functions).

Lemma 2.14. For i = 1, 2, let (Ωi,Σi) be a measurable space, Xi a Banach space,

Λi ⊂ X∗
i a norming set and νi : Σi → Xi a countably additive measure. Suppose

Ω1 ∩Ω2 = ∅. Let us consider Ω := Ω1 ∪Ω2, the σ-algebra Σ := {A ⊂ Ω : A∩Ωi ∈

Σi for i = 1, 2} and the countably additive measure

ν : Σ → X1 ⊕X2, ν(A) := ν1(A ∩ Ω1)⊕ ν2(A ∩ Ω2).

The set Λ := Λ1 ⊕Λ2 ⊂ (X1 ⊕X2)∗ is norming. Let f : Ω → R be a function. The

following conditions are equivalent:

(i) f belongs to L1,s
Λ (ν) (resp. L1

Λ(ν)).

(ii) f |Ωi belongs to L1,s
Λi

(νi) (resp. L1
Λi

(νi)) for i = 1, 2.

Applying the previous lemma to Examples 2.12 (ii) and 2.13 (ii) (resp. Exam-

ples 2.12 (ii) and 2.13 (i)) we get:
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Example 2.15. There exist a countably additive c0 ⊕ `∞-valued measure ϑ and a

norming set Λ ⊂ (c0 ⊕ `∞)∗ such that

L1(ϑ) ( L1,s
Λ (ϑ) ( L1

w(ϑ) = L1
Λ(ϑ).

Example 2.16. There exist a countably additive c0 ⊕ `∞-valued measure ϑ and a

norming set Λ ⊂ (c0 ⊕ `∞)∗ such that

L1(ϑ) ( L1,s
Λ (ϑ) ( L1

w(ϑ) ( L1
Λ(ϑ).
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Valencia, Camino de Vera s/n, 46022 Valencia, Spain

E-mail address: jorodrui@mat.upv.es


