NORMING SETS AND INTEGRATION WITH RESPECT TO
VECTOR MEASURES
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ABSTRACT. Let v be a countably additive measure defined on a measurable
space (Q2,%) and taking values in a Banach space X. Let f : Q@ — R be a
measurable function. In order to check the integrability (respectively, weak
integrability) of f with respect to v it is sometimes enough to test on a norm-
ing set A C X™*. In this paper we show that this is the case when A is a
James boundary for Bx= (respectively, A is weak*-thick). Some examples

and applications are given as well.

1. INTRODUCTION

The modern theory of integration of scalar functions with respect to vector mea-
sures was introduced by Bartle, Dunford and Schwartz [2] in order to provide
an analogue of Riesz’s representation theorem for weakly compact operators de-
fined on Banach spaces of continuous functions. After the seminal contributions by
Lewis [10, 11] and Kluvanek and Knowles [9], many authors have worked on this
topic and recently the spaces of scalar functions integrable with respect to vector
measures have shown to play an important role within the theory of Banach lat-
tices, see e.g. [3], [4] and [7]. Whereas the original definition of the integral given
by Bartle, Dunford and Schwartz is based on approximation by simple functions,
Lewis’ equivalent approach uses scalar measures through a barycentric formula, as
follows.

Let (€, 3) be a measurable space, X a Banach space with dual X* andv : ¥ — X
a countably additive measure. A Y-measurable function f : © — R is called

integrable (with respect to v) if:
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o fis weakly integrable, i.e. f € L1({v,z*)) for every z* € X*, where (v, z*) :
Y — R is the countably additive measure given by (v, *)(A4) := (v(A), x*);
and

e for each A € ¥ there is a vector fA fdv € X such that

</ fdl/,sc*> :/ fd{v,x*) for every z* € X*.
A A

The set of all integrable (resp. weakly integrable) functions f :  — R is denoted
by £1(v) (vesp. LI (v)).

A typical situation in Functional Analysis is the absence of a “good” descrip-
tion for the dual of certain Banach spaces. Sometimes we can deal only with a
particular subset of the dual and it can be useful to obtain “global” information
from that smaller set of functionals. This idea can be nicely applied to the setting
of integration with respect to vector measures. Given a norming set A C X*, we

introduce the following terminology:

e L} (v) is the set of all X-measurable functions f : @ — R such that f €
LY((v, z*)) for every z* € A.

. E}\’S(l/) is the set of all f € £} (v) with the following property: for each
A € ¥ there is {5 4 (A) € X such that

(€ra(A), ) = /Afd<l/,x*> for every z* € A.

In this paper we discuss under which conditions the equalities £!(v) = E}\’S(u)
and L1 (v) = L} (v) hold. The last one is satisfied whenever A is weak*-thick (in
the sense of Fonf [8]), see Theorem 2.2. Nygaard [12, 13, 14], also together with
Abrahamsen and Poldvere [1], has extended recently Fonf’s ideas showing that
weak™ -thick sets can be used to test properties like boundedness, summability and
integrability (for vector functions with respect to non-negative finite measures).

As regards the equality £'(v) = L£}*(v), we prove that a function f € £}*(v)
belongs to £!(v) if and only if the mapping {4 : ¥ — X is countably additive, see
Theorem 2.5. This fact paves the way to deduce that £'(v) = £}*(v) whenever
X contains no isomorphic copy of £ or A is a James boundary for Bx~ (see the
comments after Proposition 2.8). Some results in this fashion were obtained by
Thomas [18] within his theory of integration of scalar functions with respect to a
Radon vector measure.

In general, for any norming set A C X™* we have

L) C Ly (v) C L,(v) C L),
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see Theorem 2.5. Our methods allow us to prove that £'(v) = £} (v) provided
that X contains no isomorphic copy of ¢y and A is a James boundary for Bx«
(Corollary 2.4). We also show that, if X is the dual of another Banach space Y,
then £y°(v) = LL(v) = L3 (v) (Theorem 2.10). We finish the paper with some
examples making clear that in the previous chain of inclusions all combinations of

“C” and “=" are possible.

All unexplained terminology can be found in our standard references [5] and [6].
The closed unit ball of X* is denoted by Bx~ and the symbol w* stands for the
weak™® topology on X*. The evaluation of a functional z* € X* at z € X is denoted

by (z,z*). The semivariation of v is the mapping ||v| : ¥ — [0, 00) defined by
[Vl (A) := sup {[(v,z%)[ (A) : =" € Bx-}, A€,

where |(v, 2*)| denotes the total variation measure of (v, z*). A set A C X* is called

norming if there is A > 1 such that
llz]| < A-sup{(z,z*): z* € span(A) N Bx~} forevery z € X

(we sometimes say that A is A\-norming). A set B C Bx- is called a James boundary
for Bx+ if for every x € X there is * € B such that ||z = (z,2*). The classical
example of James boundary is given by the set Ext(Bx=«) of extreme points of Bx=,
cf. [6, Fact 3.45]. A set T C X* is w*-thin if we can write T = |J;—, T,, where
T, C Th41 and

inf sup [{(z,z%)| =0.
llzll=1 z*eT,

A subset of X™* is w*-thick if it is not w*-thin. Clearly, every w*-thick set is
norming. A simple example of a norming set (even James boundary) which is not
w*-thick is given by the set {e}, : n € N} C ¢ = ¢! of all “coordinate projections”

on cyp.

2. THE RESULTS

We begin by discussing the relationship between the spaces £l (v) and £} (v) for
a norming set A C X*. Given f € L} (v), we define
fleywr = s [ 1fldlna)| € 0,
o+ €span(A)NBx= JO
It is known that |[f|lz1 o) = [[fllc . () < oo for every f € LL(v), see [10, p. 163]
(cf. [17, Proposition 2]). Clearly, || -

|21 (1) is a seminorm on L}, (v).

Our starting point is the following characterization.
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Theorem 2.1. Let f: Q) — R be a function. The following conditions are equiva-
lent:

(i) feLy)

(ii) There exists a norming set A C X* such that f € L} (v) and [ £llcy ) < o0

In this case, for any A-norming set A C X*, we have

£y oy < Iflley o) < 2Mf N2y )-

w

Proof. For the implication (i)=-(ii), just take A = X*.

The proof of (ii)=(i) is as follows. Assume that A is A-norming for some A > 1.
Fixn > 0. Since f is X-measurable, there is a function of the form g = >"°7 | anxa,
(where a,, € R for every n € N and the A,,’s belong to ¥ and are pairwise disjoint)
such that |f — g| < n pointwise. Clearly, we have f — g € L. (v). We claim that
g € LL(v) as well. Indeed, fix 23 € Bx+, N € Nand ¢ > 0. For each 1 <n < N
we can find D,, C A,, D, € 3, such that
(1) lan| - [{v, 20)[(An) < 2|an| - [(v,25)(Dn)] + %

On the other hand, since A is A-norming, the Hahn-Banach separation theorem
ensures that

Bx- C A-span(A) N Bx- .

Therefore, we can find z* € span(A) N Bx~ such that

3

(2) ol (Do) Aa") = (w(Dy), )| < = for every 1 <n < N,

Observe that g € £({v, \z*)) and

(3) /ngld|<l/,kw*>|S/Qlf—yldlk<l/,$*>|+/Q|f|d|A<V’w*>|
< AIIQ) + Al fll 3 )-

By putting together (1), (2) and (3) we obtain

N N

D lanl - [ 2g)|(An) < D 2lan] - (v, 25)(Da)| + ¢

n=1 n=1

N N
<Y 2an]| - A7) (Da)| + 38 <D 2lan| - My, @*)|(An) + 3¢
n=1 n=1

= 2/Q lgld[(v, Az™)| + 3¢ < 2nA[[v[[(€) + 2A[ 2y o) + 3¢

As N € N and ¢ > 0 are arbitrary, it follows that

/Q l9ld[(v, zg)| < 2nA|[w () + 2A[1 Fll 2y 1) < 00
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Therefore, g € L. (v) and ||g]

/1

cr ) < 20|V [[(2) +2A[| fl 21 (- Finally, notice that

w

1,0+ 19lles, ) < nlvII(2) + 20w 1) + 2M[1Fll 2y ) -

w

L (v) < ||f_g|

w

As 1 > 0 was arbitrary, the proof is over. O

The norming sets A C X* for which the equality £ (9) = £} () holds for
any countably additive X-valued measure ¢ can be characterized as those which
are w*-thick. To this end, we will apply a result of Abrahamsen, Nygaard and
Poldvere (see [1, Corollary 2.4]) saying that a set A C X* is w*-thick if and only if

every series Yy, T in X satisfying > o [(xn, x*)| < 0o for every z* € A is weakly

0o
n=1

unconditionally Cauchy (i.e. > .~ {xn,x*)| < 0o for every x* € X*).

Theorem 2.2. Let A C X* be a w*-thick set. Then L} (v) = L} (v).

Proof. Fix f € L} (v). Since f is ¥-measurable, there exists a function of the form
g=> 0" anxa, (where a, € R for every n € N and the A,’s belong to ¥ and are
pairwise disjoint) such that |f —g| < 1 pointwise. Of course, we have f—g € L. (v)
and we only have to check that g € L1 (v). To this end, fix 2 € Bx~ and for each
n € N choose D,, C A,, D,, € ¥, such that

* * 1
|an] - (v, 20)[(An) < 2fan| - |(v, 20)(Dn)| + 57

Since f — (f —g) = g € L} (), we have

> lanw(D),a) £ 3 lanl [0 (An) = [ lgldl{p.a)] < o0

n=1 n=1 Q
for every z* € A. Bearing in mind that A is w*-thick, an appeal to the result of
Abrahamsen, Nygaard and Poldvere ensures us that

/Q lgldl(v,a5)l = Y lan] - [(v,a5)](An) < 2- <Z <anV(Dn)7xE§>> +1 <00,

n=1

and the proof is over. O

Proposition 2.3. Let A C X* be a norming set such that the equality L1 (9) =
L} (9) holds for every countably additive X -valued measure . Then A is w*-thick.

Proof. Suppose if possible otherwise. By the aforementioned result of Abrahamsen,
Nygaard and Poldvere, there is a sequence (z,,) in X such that > °° | [{z,,,2*)| < 00
for every z* € A, but Y7, [(zy,, z§)| = oo for some zf € X*. Define

1
=———— .2, € X foreveryn & N.
P (e ) Y
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Since the series ), yn is unconditionally convergent, the mapping

9:P(N) > X, 9(A):=> yn,
neA

is a countably additive measure. It is now clear that the function f: N — R given

by f(n):=2"(||z,|| + 1) satisfies

J 1ridltn ) = 3 o)
N n=1
for every z* € X*. It follows that f € L} (9) but f & L1 (9). O

The proof of the previous proposition, together with Theorems 2.1 and 2.2, make
clear that a norming set A C X* is w*-thick if and only if every series Y, x, in X

satisfying Y ooy [(xn, )| < oo for every a* € A has the property that

oo
sup Z (@, )] < 0.
z*€span(A)NBxx ,

A deep result of Fonf [8] (cf. [13, Theorem 6.2] or [14, Theorem 2.3]) states that
if X does not contain subspaces isomorphic to cy, then every James boundary B C
Bx~ is w*-thick. On the other hand, Lewis [11] (cf. [9, Theorem 1, p. 31]) showed
that the absence of isomorphic copies of ¢y implies the equality £!(v) = L1 (v). As

a consequence we get:

Corollary 2.4. Suppose X does not contain subspaces isomorphic to cy and let

B C Bx~ be a James boundary. Then L'(v) = LL(v).

We now focus on /.3/1\’8(1/) for a norming set A C X*. We start by showing that
this space lies between £!(v) and L1 (v). Recall that, given f € L1 (v), for each
A € ¥ there is v (A) € X** such that

(™, v¢(A)) :/ fd{v,z*) for every z* € X*,
A

see [10, p. 163] (cf. [17, Corollary 3]).

Theorem 2.5. Let A C X™* be a norming set and f € /311\’5(1/). Then:
(1) The mapping &4 : & — X is a bounded finitely additive measure.
(i) f e LL(v).
(iii) The following conditions are equivalent:

(a) feLl(v);
(b) &5a(A) =vp(A) for every A€ X;
(c) &f,a is countably additive.
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Proof. (i) follows directly from a result of Dieudonné and Grothendieck (cf. [5,
Corollary 3, p. 16]), because the composition (£ a,z*) is bounded and finitely
additive (in fact, it is countably additive) for every z* € A, and A separates the
points of X. Moreover, we have

1flley ) = sup (€0, 27)I(Q) < [1€7,4[1(2) < o0,

z* Espan(A)NBx =

hence Theorem 2.1 can be applied to conclude that f € L} (v).

Let us turn to the proof of (iii). Assume that A is A-norming for some A > 1.

(a)=(b) If f is integrable then v, takes its values in X and, since A separates
the points of X, it follows from the very definitions that vy = &5 a.

(b)=(c) Since vy = &y a takes its values in X, the Orlicz-Pettis theorem (cf. [5,
Corollary 4, p. 22]) ensures that it is countably additive.

(¢)=(a) Given A € X, we can apply Theorem 2.1 to the restriction f|4 obtaining

@) @)= sup (&% ws(A)= sup /A fd{v,a")

T*EBx* T*EBx *

<2X- ( sup /A|f|d|<1/,l’*>|> < 2X - [[€5.4l1(A).

z*€span(A)NBx =

Let o be a non-negative finite measure on ¥ such that v < u (i.e. lim,ay_ov(A4) =
0), cf. [5, Corollary 6, p. 14]. Since s 4 is countably additive and vanishes on all
p-null sets, we have {5 < p (cf. [5, Theorem 1, p. 10]) and we can use (4) to
deduce that lim,,(4y_o vf(A) = 0. It follows that f € £'(v), see [10, Theorem 2.6].
The proof is finished. O

Given a norming set A C X*, the linear space Ly*(v) (obtained from £°(v)
by identifying functions which coincide ||v|-a.e.) is a normed space when endowed
with any of the two equivalent norms || - [|11 () and | - ||z1 () (Theorem 2.1). In

fact, we have:
Proposition 2.6. Let A C X* be a norming set. Then Ly*(v) is a Banach space.

Proof. Since (Ly,(v), | - 21 1)) is complete (see [17, Theorem 9]), it suffices to
check that Ly*(v) is a closed subspace of L% (). To this end, take a sequence (f,)
in £)°(v) that || - || 21 (y-converges to some f € L (v). In order to check that

fe Ly (v), fix A€ ¥ and observe that for every n,m € N we have

1508 (A) = & A <A ([ fn = finlley ) S A M1Fn = Flley 0
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where A > 1 is a constant such that A is A-norming. Therefore, there exists
lim,, &5, A(A) = z4 € X for the norm topology. Finally, given =* € span(A) N Bx-
we have

(€ a().0%) = [ fdlat] <1 = Tlesr =0
hence (z4,2*) = [, fd{(v,a*). It follows that f € L (v). O

The following proposition shows that Lll\’s(z/) is an ideal of the lattice of all

Y-measurable real-valued functions on €2 (with the ||v|-a.e. order).

Proposition 2.7. Let A C X* be a norming set. Let f € ,C}\’S(V) and g: Q2 —Ra

S-measurable function such that |g| < |f| ||v||-a.e. Then g € Ly*(v).

Proof. We can assume without loss of generality that |g(¢)| < |f(¢)| for every ¢ € Q.
Define h : @ — R by h(t) := % if f(t) # 0, h(t) := 0 otherwise. Since h is
bounded and Y-measurable, there is a sequence of simple functions s, : 2 — R

such that lim,, ||s,, — h||eec = 0. Clearly, s, f € Ly*(v) for every n € N. Since

snf = gllcy ) = lIsnf — hf]

L3, )

w

= sup /lenf = hfld{v,2)] < llsn = hlloo - [ fllc1,0) = 0,

r*EBx*

an appeal to Proposition 2.6 establishes that g € E}\’s(y). O

We next provide some conditions ensuring that £!(v) = ﬁ}\’s(u) for a norming
set A C X*. As usual, we write (X, A) to denote the topology on X of point-
wise convergence on A. Following [18, Appendice II], we say that a norming set
A C X* has the Orlicz property if, for every sequence (z,,) in X, the series > xy, is
unconditionally convergent whenever all subseries are o (X, A)-unconditionally con-
vergent. Clearly, A has the Orlicz property if and only if every X-valued mapping
9 defined on a o-algebra such that the composition (¢, z*) is countably additive for

all * € A is a countably additive vector measure.

Proposition 2.8. Let A C X* be a norming set having the Orlicz property. Then
LYv) =Ly (v).

Proof. Fix f € E}\’S(u) and consider the finitely additive measure £y 5. Since
(€r.A,x*) is countably additive for every z* € A and A has the Orlicz property,
we deduce that £f 4 is countably additive. In view of Theorem 2.5, this means that

ferlv). 0

Some examples of norming sets having the Orlicz property are:
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e Norming sets A C X* when X does not contain subspaces isomorphic to £,
see [5, Corollary 7, p. 23].

e James boundaries, as we show in the following proposition.

Proposition 2.9. Let B C Bx+ be a James boundary. Then B has the Orlicz

property.

Proof. Let £ be an X-valued mapping defined on a g-algebra ¥ such that (£, z*) is
a countably additive measure for every z* € B.

Note first that £ is finitely additive and bounded, by the Dieudonné-Grothendieck
criterion already mentioned in the proof of Theorem 2.5.

Let (A,) be a disjoint sequence in 3. We claim that ) §(A,) converges un-
conditionally to £(lJ,, An). Indeed, fix an increasing sequence n; < ng < ... in N
and define x, = Zle E(An,) = §(Uf:1 Ap,) € X for every k € N. Then (zy) is
bounded and o(X, B)-converges to £(|J; An,). Since B is a James boundary, Si-
mons’ [16] extension of Rainwater’s theorem [15] ensures that () converges weakly
to £(UU; An,). An appeal to the Orlicz-Pettis theorem (cf. [5, Corollary 4, p. 22])
now establishes that ) &(A,) is unconditionally convergent (with sum £(1J,, An)),

as claimed. It follows that £ is a countably additive measure. O

We now deal with a particular case of special interest.

Theorem 2.10. Suppose X = Y™ for another Banach space Y. Then E%}s(y) =
Ly(v) =Ly (V).

Proof. Fix f € L1 (v). Since f is X-measurable, there is a sequence of simple
functions s, : @ — R such that |s,| < |f| for every n € N and lim, s, = f
pointwise. For each n € N the vector measure v : ¥ — X is countably additive

and satisfies
(vs, (A),y) = /Asnd@, y) forevery A€ ¥ andevery y €Y.
Fix A € 3. The dominated convergence theorem yields
’/Afd@, )~ (e, (4),9)] < /Q 1 = suldl{v,y)] — 0

for every y € Y. From the Banach-Steinhaus theorem (applied to the sequence
(vs, (A)) in X =Y™) it follows that the linear mapping

za:Y >R, wa(y) ::/Afd(y,y)7

is continuous, that is, z4 € X. As A € X is arbitrary, f € £3°(v). O
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We finish the paper with some examples. We write M to denote the o-algebra
of all Lebesgue measurable subsets of [0, 1] and u stands for the Lebesgue measure
on M. We fix a countable partition (A4,) of [0,1] in M such that p(A,) > 0 for

every n € N. Define
9:M—=RY 9(A) = (W(ANA,)),
and consider the function f : [0,1] — R given by f:=3 >, AT XA

Example 2.11. Consider ¢ as a countably additive ¢;-valued measure. Then there

is a norming set A C ¢} = {, such that
£H9) = LY*(9) = L3,(V) & L)
Thus, the conclusion of Corollary 2.4 is not valid for arbitrary norming sets.

Proof. Take the norming set
A:={(cp) € b : there is N € N such that ¢, =0 for every n > N}.

As we mentioned just before Corollary 2.4, the fact that ¢; contains no isomorphic
copy of ¢ ensures that £1(9) = L1 (9). On the other hand, the function f belongs
to £} () and fulfills [fllc1 () =00, 80 f & Ll (9) (by Theorem 2.1). O

Example 2.12. Consider 9 as a countably additive cg-valued measure. Then:

(i) There is a James boundary B C B.; = By, such that

LY0) =Ly (W) C LLO) C LE0).

(ii) Taking A = ¢} = ¢1, we have
L) = £°(9) G £4,(9) = LL().

Proof. Consider the James boundary B := {e : n € N} C By,, where €(m) =
On.m (the Kronecker symbol) for every n,m € N. In view of the comments after
Proposition 2.8, we have the equality £'(¢) = L5*(¢). On the other hand, it is
clear that f belongs to £} (1) but not to £1,(9) (bear in mind that £z, o) = 00)-
Finally, the function g : [0,1] — R given by

o0

1
9= Z mXAn

n=1
belongs to Lj;(9) and ||| 1, (9) < 00, so we have g € L;,(9) (by Theorem 2.1). An

easy computation shows that ¥, : M — £ = cf* is given by ¥4(A) = (%),

hence 9,(M) ¢ ¢y and, therefore, g & L (V). O
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Example 2.13. Consider ¥ as a countably additive £..,-valued measure.

(i) There is a norming set A C £ such that

LY9) € Ly (W) = L3, () € LL).
(ii) There is a norming set A’ C £% such that

LY9) Ly () = L3,(0) = L (9).

Proof. Take A := {e} : n € N} C ¢5 and A’ = ¢;. By Theorem 2.10 we have
LyF(9) = LL (W) = L1, (9). Since LY*(¥) € LL(9¥) and A C A, it follows that

LyF (W) = LY*(0) = L3,(9) = L1, (9).

As in the previous example, f € L} (9) but f ¢ L1 (9). We claim that the function
g defined in the previous example belongs to E}\’S(ﬂ) but not to £(99). Indeed, it
is not difficult to check that g belongs to £}, (¥) = £°(9) and that

Egn(A) = (W) for every A € M.

Since the series ), €, A (Ax) is not convergent in lo, &4 A is not countably additive

and so g & £1(9) (by Theorem 2.5). O

Our last examples are based on the following standard construction (cf. [9, IL.7]

for the case of spaces of integrable functions).

Lemma 2.14. Fori=1,2, let (;,%;) be a measurable space, X; a Banach space,
A, C X/ a norming set and v; : ¥; — X; a countably additive measure. Suppose
Q1 NQe = . Let us consider Q2 := Q1 UQo, the o-algebra ¥ :={ACQ: ANQ,; €

%, fori=1,2} and the countably additive measure
v: Y= X8 Xe, v(A):=1v1(ANQ) Bra(ANN,).

The set A := Ay & Ay C (X1 @ X2)* is norming. Let f : Q@ — R be a function. The
following conditions are equivalent:

(i) f belongs to L}*(v) (resp. LX(V)).
(i1) fla, belongs to E}\f(uz) (resp. L} (vi)) fori=1,2.

Applying the previous lemma to Examples 2.12 (ii) and 2.13 (ii) (resp. Exam-
ples 2.12 (ii) and 2.13 (i)) we get:
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Example 2.15. There exist a countably additive ¢y ® £~-valued measure ¥ and a

norming set A C (¢o @ £oo)* such that

L£Y0) C Ly (9) € L1

- Tw

(9) = L5().

Example 2.16. There exist a countably additive ¢y @ £o-valued measure ¥ and a

norming set A C (co @ £og)* such that
£10) € L") € £3,(9) € LAW).
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