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Abstract. It is known that, given a Banach space (X, ‖·‖), the modulus
of convexity associated to this space δX is a non-negative function, non-
decreasing, bounded above by the modulus of convexity of any Hilbert space

and satisfies the equation
δX (ε)

ε2 ≤ 4L
δX (µ)

µ2 for every 0 < ε ≤ µ ≤ 2, where

L > 0 is a constant. We show that, given a function f satisfying these proper-
ties then, there exists a Banach space in such a way its modulus of convexity
is equivalent to f , in Figiel’s sense. Moreover this Banach space can be taken
two-dimensional.

1. Introduction

In this paper we are concerned with the basic properties of the moduli of con-
vexity of Banach spaces. In relation with this properties it was shown by Figiel [?],
that given a Banach space (X, ‖·‖) and defining

Definition 1.1 (Modulus of convexity). The modulus of convexity of (X, ‖·‖) is
the function that for each ε ∈ [0, 2] takes the value

δX(ε) = inf{1− ‖x + y‖ /2 : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε}.
Then:

Proposition 1.2. δX satisfy the following properties
• δX(·) is non-decreasing
• If 0 < ε ≤ µ then, for a universal constant 0 < L < 3.18,

δX(ε)
ε2

≤ 4L
δX(µ)

µ2
.

Besides, due to some results by G. Nordlander [?], we can add another property
to the previous proposition, which is the following result:

Proposition 1.3. For every ε ∈ [0, 2] we have δX(ε) ≤ δE(ε).

Here, δE is the modulus of convexity of any Hilbert space. Obviously δE = δl2 ,
and from the parallelogram identity, it can be easily determined that

δE(ε) = 1−
√

1− ε2

4
.

In the following section we will show that these conditions are enough for a
function to be a modulus of convexity.
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2. Characterization of moduli of convexity

Following the article [?], we will consider the concept of equivalence between
functions; this is:

Definition 2.1. Given two non-negative functions f and g, each one defined on a
segment [0, a], let us write f ≺ g if there exist positive constants A, B, C such that
Af(Bt) ≤ g(t) for t ∈ [0, C]; we shall consider f and g as equivalent, denoted by
f ∼ g, iff f ≺ g ≺ f .

Now we can consider all those functions that satisfy the properties described in
the introduction. Indeed we state the following definition:

Definition 2.2. A “modulus function” is a non-negative real function f defined
on a segment [0, a] and satisfying the following conditions:

(1) f(ε) ≤ δE(ε).
(2) f(·) is non-decreasing
(3) If 0 < ε ≤ µ then, for a positive constant L,

f(ε)
ε2

≤ L
f(µ)
µ2

.

Our main result states that a function is a modulus function if and only if there
exists a Banach space, in fact we may choose X = l22, and a new norm in such a
way the modulus of convexity of the new norm is equivalent to the function. In
order to show that result we need to do previous work in relation with the general
construction of the norm.

2.1. Construction. Let (R2, ‖·‖) be the canonical two-dimensional real Banach
space where ‖·‖ is the Euclidean norm and let S = {x ∈ R2 : ‖x‖ = 1} be the unit
sphere, that is, the circumference of radius one and whose center is the origin.

Let us take any point in S, say a1, its symmetric −a1 and a positive value ε.
Starting in a1 and −a1, we will take in the clockwise direction on S points b1, a2,
−b1, −a2 such that the segments [a1, b1] and [b1, a2] have length ε. Now, we repeat
the same process starting at a2 but in such a way the length of the segments are ε2.
Let us suppose that we have already chosen {(ai, bi)}n

i=1 and an+1; then we take
points bn+1 and an+2 such that the segments [an+1, bn+1] and [bn+1, an+2] have
length εn+1.

It is a crucial fact that the family {(ai, bi)}i∈N lies just in one hemisphere of the
sphere S. Thus, in order to clarify the size that ε can take, we have the following
result.

Lemma 2.3. Given two points x and y of the unit sphere S, the angle α opposite
to the segment [x, y] of the triangle with extremes x, y, and the origin, takes the
value

α = 2arcsin
(‖x− y‖

2

)
.

Then, in the previous construction, we have that the segments we have chosen cover
an angle with arc length

4

(∑

n∈N
arcsin

(
εn

2

))
,

and if ε ≤ 1/2, it is less than π.
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Proof. All the results but the last are obvious. In order to show that for ε ≤ 1/2
we have

4

(∑

n∈N
arcsin

(
εn

2

))
≤ π,

let us note that the function x/ sin(x) when x ≤ 0.25 is bounded above by 1.02,
and then when εn

2 ≤ 1
41.02,

arcsin
(

εn

2

)
≤ arcsin

(
sin

(
εn

2
1.02

))
=

εn

2
1.02,

since arcsin is an increasing function. Then for ε ≤ 1/2 we have the above estima-
tion and

4

(∑

n∈N
arcsin

(
εn

2

))
≤ 4

(∑

n∈N

εn

2
1.02

)
≤ 2.04

∑

n∈N
εn = 2.04

ε

1− ε
≤ 2.04.

But, obviously this value is less than π. ¤
Now we can assure that our election of points is good in the sense that they do

not overlap each other and with their symmetric points.
We are going to define a new unit sphere for R2. In order to do it, we consider a

fixed i ∈ N, take the segment [ai, bi] and delete from S the points of the arc lying
between ai and bi. Instead of these points, we add a new set of points which are
defined using a new affine coordinate system.

Indeed, given a non-negative value ci, let us consider the system of coordinates
defined by the following equations:

xi =
−1√

1− ε2i

4

(
x
(a′′i + b′′i

2

)
+ y

(a′i + b′i
2

))
+


1 +

ci√
1− ε2i

4




(
a′i + b′i

2

)
,

yi =
1√

1− ε2i

4

(
x
(a′i + b′i

2

)
− y

(a′′i + b′′i
2

))
+


1 +

ci√
1− ε2i

4




(
a′′i + b′′i

2

)
,

where ai = (a′i, a
′′
i ) and bi = (b′i, b

′′
i ) are expressed in the canonical system of

coordinates. It happens to be that the yi-axis contains both the initial origin of
coordinates and the midpoint of the segment [ai, bi]. Therefore, the origin of the
new system will lie on the yi-axis, at distance ci from the segment [ai, bi] (see
figure 1).

ai bi

aj

bj

Figure 1
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Thus the old arc is replaced by the set {(t, yi(t)) : |2t| ≤ εi} (expressed in terms
of the system (xi, yi)), where yi is the function defined by yi(t) = (4ci/εi)t2.

For the symmetric segment [−ai,−bi] we repeat this process in order to obtain
a symmetric curve.

Let us suppose that we have done the same construction for each one of the
segments [ai, bi]. Thus we have defined a new sphere S′, which defines a new norm
in R2; we will denote this norm by ‖| · |‖{ε,{ci}}.

Remark 2.4. Let us note that, in order to assure that the sphere S′ defines a new
norm, the values ci must verify

ci ≤ δE(εi) = 1−
√

1− ε2i

4
,

where, let us recall, δE is the modulus of convexity of the Euclidean norm. Hence,
in particular, for every modulus function f and for every 0 < ε ≤ 1/2, we can take
in the previous construction ci = f(εi). In this case, we will denote the resulting
norm ‖| · |‖{ε,f}.

The next step is to show the main property of this new norm. In order to do it,
we need the following definition.

Definition 2.5. Given an arbitrary norm ‖| · |‖ in R2, we can define the function

η(t) = inf
{
ϕ(x, y) : ‖|x|‖ = ‖|y|‖ = 1, ‖x− y‖ ≥ t

}
,

where ϕ(x, y) =
∥∥x+y

2

∥∥
(

1

‖| x+y
2 |‖ − 1

)
.

Lemma 2.6. It holds η ∼ δ(R2,‖|·|‖).

Proof. Trivial. ¤

Proposition 2.7. For every 0 < ε ≤ 1/2, and for every modulus function δ, there
exists a positive constant L′(ε) such that

δ(εi) ≥ η(εi) ≥ L′(ε)δ(εi),

for every i ∈ N, where η is defined with the norm ‖| · |‖{ε,δ}.

Proof. Let us denote just by ‖| · |‖, the norm ‖| · |‖{ε,δ}. Let i ∈ N fixed, and let
us take two arbitrary points x and y such that ‖|x|‖ = ‖|y|‖ and ‖x− y‖ = εi. We
have to distinguish two cases:

(1) Let us suppose that ‖|x + y|‖ = ‖x + y‖. Obviously ‖x‖ , ‖y‖ ≤ 1. Then,
the parallelogram identity assures that

‖x + y‖2 = 2 ‖x‖2 + ‖y‖2 − ‖x− y‖2 ≤ 4− ε2i,

and thus,

ϕ(x, y) = 1−
∥∥∥∥

x + y

2

∥∥∥∥ ≥ 1−
√

1− ε2i

4
= δE(εi) ≥ δ(εi).
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(2) Let us suppose that ‖|x + y|‖ 6= ‖x + y‖. In this case there exists j ∈ N
such that the point x + y lies inside the cone with vertex the origin, and
determined by aj and bj . If j > i then εj < εi and then

ϕ(x, y) ≥
√

1− ε2j

4
−

√
1− ε2i

4
= δE(εi)− δE(εj)

≥ δE(εi)− δE(εi+1) ≥ (1− ε2)δE(εi) ≥ (1− ε2)δ(εi)

But if j ≤ i we have to be more careful. Let us consider the system of
coordinates corresponding to the interval [aj , bj ], in order to define the
norm ‖| · |‖. And let us take the first coordinates, say t and s, in this
system, of the points x and y, respectively. Now, we denote by D the
midpoint of the segment [x, y], by C the intersection point of the segment
[0, x + y] with the sphere S′, and by C ′ the orthogonal projection of D on
the graph of the function yj (see figure ??).

x

s

y

t

D

C
C

′

Figure 2

Then it holds ϕ(x, y) = |DC|. Clearly,

|DC ′| ≥ yj(s) + yj(t)
2

− yj

(
s + t

2

)
=

δ(εj)
ε2j

(s− t)2,

and we are going to prove that there exists a constant W (ε) such that
|DC| ≥ W (ε)|DC ′|. In order to show it, we consider the following right-
angled triangle: let us take the straight line passing through D, which is
perpendicular to the x-axis, and the orthogonal line to DC passing through
C; these two lines intersect in a point that we denote by G; then, we consider
the triangle with vertices D, C and G. Now, it is clear that |DC|

|DG| = cos α,
where α is the angle of our triangle corresponding to the point D. But this
angle satisfies |α| ≤ arcsin(ε/2), and then cos α ≥ cos

(
arcsin(ε/2)

)
. If we

denote by

W (ε) = cos
(
arcsin

ε

2

)
,

and noting that |DG| ≥ |DC ′|, we finally obtain that |DC| ≥ W (ε)|DC ′|.
On the other hand we have that the quotient |t − s|/ ‖x− y‖ = cos β,

where β is the angle determined by the segment [x, y] with respect to the
x-axis. Since ε ≤ 1/2 we have that the absolute value |β| is always strictly
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less than π/2. Therefore, we can assure that there exists a constant A(ε)
such that |t− s| ≥ A(ε) ‖x− y‖. Finally, we have that

ϕ(x, y) = |DC| ≥ W (ε)|DC ′| ≥ W (ε)
δ(εj)
ε2j

(s− t)2

≥ W (ε)A(ε)2
δ(εj)
ε2j

‖x− y‖2 = W (ε)A(ε)2δ(εj)ε2(i−j),

and since δ is a modulus function, we obtain that

δ(εi) = δ(εi−jεj) ≤ Lδ(εj)ε2(i−j)

for a certain positive constant L. Then

ϕ(x, y) ≥ W (ε)A(ε)2

L
δ(εi).

Now, if we take L′(ε) = min
{

(1− ε2), W (ε)A(ε)2

L

}
> 0 we have that

η(εi) ≥ L′(ε)δ(εi),

as we want to show.
The first part of the inequality in the theorem is obvious since

ϕ(ai, bi) = δ(εi). ¤

2.2. Main Theorem. The main theorem of this work is just a corollary of the
previous results. Indeed, we can deduce it from Proposition ??.

Theorem 2.8. A function δ is a modulus function as in definition 2.2 if and only
if it is equivalent, in the sense of definition 2.1, to the modulus of convexity of a
Banach space.

Proof. Let δ be a modulus function, that is, a non-negative function satisfying the
properties in definition 2.2, if we show that for some 0 < ε < 1/2 we have η ∼ δ,
by lemma ?? we have finished the proof. Thus, let us fix a certain 0 < ε < 1/2. By
proposition ??, it holds that

δ(εi) ≥ η(εi) ≥ L′δ(εi)

for every i ∈ N.
Let us take an arbitrary t ∈ (0, ε] and consider i in such a way t ∈ (εi+1, εi],

then we have

(2.1) η(t) ≥ η(εi+1) ≥ L′δ(εi+1) = L′δ(εεi) ≥ L′δ(εt).

Now, for every fixed t ∈ (0, ε2], there exists i such that t ∈ (εi+1, εi] and finally
we have

(2.2) η(t) ≤ η(εi) ≤ δ(εi) = δ(ε−1εi+1) ≤ δ(ε−1t).

Combining (??) and (??) we conclude that η ∼ δ. This finishes the proof. ¤
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3. Applications

An immediate consequence of our main theorem is that any given uniformly
convex Banach space can be renormed having any ”arbitrarily bad” modulus of
convexity.

This observation together with J. Borwein and J. Vanderwerff characterization of
spaces with a modulus of convexity of power type 2, allows us to answer a question of
Godefroy-Zizler described below, and also point out an error in Asplund’s work [?].

Recall an alternatively definition of uniform convexity.

Definition 3.1. Let ‖·‖ be a norm on a Banach space X, we say that ‖·‖ is
uniformly convex (UC) if for every pair of sequences {xn}n, {yn}n in BX satisfying

lim
n→∞

2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 = 0

we have that limn ‖xn − yn‖ = 0.

This definition is very useful in renorming theory due to its homogeneity, which
great simplifies the necessary calculations. However, this definition is not “com-
pletely homogeneous” since we assume that xn, yn ∈ BX (or more generally, we
need boundedness). Theorem 3 from [?] claims that the additional assumption
xn, yn ∈ BX is redundant. Godefroy and Zizler, in the course of writing their
book [?] have come across this problem and being unable to verify Asplund’s argu-
ment (which in fact, is sketched in the local setting, when it is true) asked if the
redundancy of boundedness of xn, yn is indeed true. We answer this question in
the negative.

Indeed, J. Borwein and J. Vanderwerff obtained the next theorem (whose proof
is included here with their kind permission).

Definition 3.2. A norm ‖·‖ on a Banach space Xis said to have power type p, for
p real and positive, if there exists a positive constant C such that δ(X,‖·‖)(ε) ≥ Cεp.

Theorem 3.3. Let (X, ‖·‖) be a Banach space, then the following conditions are
equivalent.

(i) ‖xn − yn‖ → 0 whenever 2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 → 0.
(ii) ‖·‖ is UC with modulus of convexity of power type 2.

Proof. (i)⇒(ii): Suppose ‖·‖ does not have modulus of convexity of power type 2.
Then there exist un, vn ∈ SX such that ‖un − vn‖ ≥ 1

n while ‖un + vn‖ ≥ 2 − εn

n2

where εn → 0+. Now let xn = nun, yn = nvn; then

‖xn − yn‖ ≥ 1, and ‖xn + yn‖ ≥ 2n− εn

n
.

Consequently,

2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 ≤ 4n2 − (2n− εn

n
)2

= 4εn − ε2
n

n2

and so 2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 → 0 which means (i) fails.
(ii)⇒(i): Suppose ‖·‖ has modulus of convexity of power type 2. Now suppose

that ‖xn − yn‖ ≥ δ but 2(‖xn‖2+‖yn‖2)−‖xn + yn‖2 → 0. Then (‖xn‖−‖yn‖)2 →
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0. Let ‖xn‖ = αn, because ‖·‖ is uniformly convex, we know αn → ∞. Thus, by
replacing yn with αn

yn

‖yn‖ , we have

lim inf ‖xn − yn‖ ≥ δ and ‖yn‖ = ‖xn‖ = αn.

Thus we may assume ‖xn − yn‖ > η for all n where η = δ
2 . Now let un = xn

αn
and

vn = yn

αn
. Then ‖un − vn‖ ≥ η

αn
, and because the modulus of convexity of ‖·‖ is

of power type 2, there is a C > 0 so that ‖un + vn‖ ≤ 2 − C( η
αn

)2. Therefore,

‖xn + yn‖ ≤ 2αn − Cη2

αn
. Consequently, we compute

2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 ≥ 4α2
n − (2αn − Cη2

αn
)2

= 4Cη2 − C2η4

α2
n

9 0

This contradiction completes the proof. ¤
Thus by our main theorem, l22 has an equivalent UC renorming with a modulus of

convexity not satisfying Borwein-Vanderwerff condition. However, being uniformly
convex it does satisfy the alternatively UC definition.
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