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ABSTRACT. In this paper we give a sufficient and necessary condition for a Banach space to
be Weakly Compactly Generated and Asplund. This condition links the weak∗ and the norm
topologies of its dual .

1. INTRODUCTION

Weakly compactly generated (WCG) Asplund spaces are the non separable counterpart for
Banach spaces with separable duals. They have been extensively studied in connection with
smoothness, renorming and topological properties of weak-* compact subsets such as Corson
compactness [2, 4]. In particular they coincide with Asplund spaces with Corson compact weak-
* dual unit ball [12] and they have an equivalent locally uniformly rotund and Fŕechet differen-
tiable norm [2, 3]. The main tool for proving these properties has been the so-called projectional
resolutions of the identity (PRI), a method to decompose a Banach space by means of well or-
dered collections (“long sequences”) of projections whichgoes back to Amir and Lindenstrauss
[1]. ForX a WCG Asplund space the PRI will be shrinking and Troyanski’s renorming technique
can be applied to obtain locally uniformly rotund norms in both X andX∗, [14]. This method for
renorming has been recently rebuilt in [6] with a transfer technique that works even in the non-
linear case [8]. A main ingredient for that is a descriptive connection between approximations in
two different metrics through a separable fibre. It is our aimhere to study this linking property
in full generality, even in the non-metric case and in particular in a Banach space with its norm
and weak topologies and in a dual Banach space with its norm and weak-* topologies. It turns
out that this property characterizes the WCG Asplund spaces.In the course of the proof we shall
use PRI and it will be shown how the linking property is a topological device, gluing separable
pieces, an alternative to the “long sequences” of a PRI. Fromthe topological point of view, the
linking property goes back to Srivatsa’s selection theorem[13], [6].

The linking property we are going to deal with was introducedby Moltó, Orihuela and Troy-
anski in [6] and it corresponds with the following:

Definition 1.1. Let X be a set andτ1, τ2 be two topologies on it. We shall say that X hasL(τ1, τ2)

if for any x ∈ X there exists a countable setS(x) containing x so that ifA ⊂ X thenA
τ2

⊂

∪{S(x);x ∈ A}
τ1

.

Definition 1.2. Let A be a set in a topological vector space X andτ1, τ2 two topologies on X (the
second may only be defined on A). We shall say that A has span-L(τ1, τ2) if for anyx ∈ A there
exists a countable setS(x) containing x so that ifB ⊂ A thenB

τ2

⊂ span∪ {S(x);x ∈ B}
τ1

.

We shall also need the following definition.

Definition 1.3. Let (X, τ) be a topological space. We shall say that X has the Linking Separa-
bility Property (LSP, for short) if there exists a metric d defined on X, with the metric topology
finer thanτ , such that X hasL(d, τ).
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In the second section of the paper we shall study some properties of LSP spaces. In the third
section we will focus on propertyL(‖ · ‖, weak) for a Banach space andL(‖ · ‖, weak∗) in the
dual and we obtain our Main Theorem below. The study of compact spaces(K, τ) with property
L(d, τ) for a metricd is done in [9, 10].

Main Theorem: Let X be a Banach space. Then the following conditions are equivalent:
i) X is WCG and Asplund;
ii) BX∗ hasL(‖ · ‖, w∗);
iii) X∗ hasL(‖ · ‖, w∗);
iv) X∗ hasL(w,w∗).

2. LSP TOPOLOGICAL SPACES.

Our first result provides us with a slight change in the definition of propertyL which will be
convenient in many proofs.

Lemma 2.1. Let (X, τ) be a topological space and̺ a metric on X. Suppose that for every
x ∈ X, there exists a̺ -separable set,Z(x) such that ifA ⊂ X then,A

τ
⊂ ∪{Z(x);x ∈ A}

̺
.

Then X hasL(̺, τ).

Proof. For x ∈ X, let {yn(x)} be a̺-dense subset ofZ(x) and defineS(x) = {yn(x)}. This
selection ofS(x) gives us propertyL(̺, τ).

Now we will study some stability properties of LSP spaces.

Proposition 2.2. (transitivity) Let X be a set,τ1, τ2, τ3 three topologies on X. If X hasL(τ1, τ2)
andL(τ2, τ3) then it also hasL(τ1, τ3).

Proof. Forx ∈ X, let S1,2(x) be the countable set given byL(τ1, τ2), andS2,3(x) the one given
byL(τ2, τ3).

DefineS(x) = ∪{S1,2(y); y ∈ S2,3(x)}. It is not difficult to show thatS(x) is the countable
set we are looking for.

Proposition 2.3. Let f : (X, τ) → (Y, δ) be a homeomorphism of topological spaces. If X has
LSP then so does Y.

Proof. Let d be the metric onX given by the LSP. Let us define onY the metric:̺(y1, y2) =
d(f−1(y1), f

−1(y2)). First notice that the̺ topology is finer thanδ.
For anyx ∈ X let S(x) be the countable set given by theL(d, τ) of X. For y ∈ Y , define

Z(y) = f(S(f−1(y))). It is easy to see that the countable setZ(y) gives propertyL(̺, δ) in Y .

Proposition 2.4. Let (X, τ) be a LSP topological space, then any subspace of X is also LSP.In
fact if d is a metric on X such that X hasL(d, τ) andH ⊂ X then H hasL(d, τ).

Proof. Let H ⊂ X andd be the metric given by the LSP. Forx ∈ H there exists a countable set
S(x) = {xn(x)}n∈N given by theL(d, τ) of X.

Fix n ∈ N. We denote byBd(x, r) the closedd-ball centered atx and of radiusr. Form ∈ N

setAn,m(x) = Bd(x
n(x), 1

m
) ∩ H. For thosen,m ∈ N such thatAn,m(x) is non-empty fix

yn,m(x) ∈ An,m(x). Recall thatx ∈ S(x) and therefore some of these sets must be non-empty.
Let us defineS′(x) = {yn,m(x)} for those values ofn,m such thatyn,m(x) is defined.

One shows that ifA ⊂ H thenA
τH

⊂ ∪{S′(x);x ∈ A}
d
.

In order to give further properties of these spaces we need torecall the following notions
introduced by Jayne, Namioka and Rogers. Let(X, τ) be a topological space and letd be a
metric onX.

The spaceX is said to beσ-fragmentedby the metricd if, for eachε > 0, it is possible to
write X =

⋃∞
i=1 Xε

i , where each setXε
i has the property that each non-empty subset ofXε

i has
a non-empty relatively open subset ofd-diameter less thanε.
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We say thatX has acountable cover by sets of small locald-diameter(d-SLD, for short) if for
everyε > 0 there exists a decompositionX =

⋃∞
n=1 Xε

n such that for eachn ∈ N every point of
Xε

n has a relativelyτ -neighbourhood ofd-diameter less thanε.
The equivalence betweena) andb) in our next result is in [9, 11];c) impliesb) is in [6] and

that proof extends to provingd) impliesb).

Theorem 2.5. Let X be a set,̺ and d be metrics defined onX. Then the following conditions
are equivalent:

a) (X, d) is σ-fragmented by̺ ;
b) (X, d) has̺-SLD;
c) X hasL(̺, d).
Moreover, if(X, ̺) is a topological vector space then any of the properties above is equivalent

to
d) X has span-L(̺, d).

Proof. We need only to prove b)⇒c). Assume that(X, d) has̺-SLD. Givenε > 0, let Xn,ε

be subsets ofX covering it, such that for everyx ∈ Xn,ε there is aδx,n > 0 for which the ball
Bd(x, δx,n) meetsXn,ε in a set of̺ -diameter less thanε.

For a given positive integerm, we defineXm,n,ε = {x ∈ Xn,ε; δx,n ≥ 1
m
}, and we have

Xn,ε = ∪mXm,n,ε andX = ∪m,nXm,n,ε.
Let us fixx ∈ X, m,n ∈ N andδ > 0. If Bd(x, δ) meetsXm,n,ε we will choose an element

y(x,m, n, ε, δ) ∈ Bd(x, δ) ∩ Xm,n,ε. We claim that

x ∈ {y(x,m, n,
1

p
,
1

q
);m,n, p, q ∈ N}

̺

.

Indeed, for a given positive integerp, let mp andnp be so that

x ∈ Xmp,np, 1
p

(∗).

Since x ∈ Bd(x, 1
mp

) ∩ Xmp,np, 1
p

this set is non-void with̺ -diameter less than1
p

and

it makes sense to considery(x,mp, np,
1
p
, 1

mp
) that belongs to this set, hence we have

̺(x, y(x,mp, np,
1
p
, 1

mp
)) < 1

p
.

For everyx we define the setS(x) = {y(x,m, n, 1
p
, 1

q
);m,n, p, q ∈ N}

̺
.

Let us now take a sequence(xn) in X which isd-convergent tox. Given a positive integer
p let mp andnp such that (∗) holds. For a fixed positive integerp there is anrp such that if
k ≥ rp we haved(xk, x) < 1

2mp
. Thusx belongs toBd(xk, 1

2mp
) ∩ Xmp,np, 1

p
which must be a

non-empty set fork ≥ rp. Now according to the definition ofy(xk,mp, np,
1
p
, 1

2mp
) we have

y(xk,mp, np,
1

p
,

1

2mp

) ∈ Bd(xk,
1

2mp

) ∩ Xmp,np, 1
p
.

Since this set is contained inBd(x, 1
mp

) ∩ Xmp,np, 1
p

and the latter has̺-diameter less than1
p
,

we have, fork ≥ rp, ̺(x, y(xk,mp, np,
1
p
, 1

2mp
)) < 1

p
. Thenx ∈ ∪S(xk)

̺
and (c) is proved.

A one-to-one mapϕ : (X, d) → (Y, ̺) is called aSLDmap (see [11]) if(X,ϕ̺) has property
d-SLD, whereϕ̺ denotes the topology (metric) given by the family{ϕ−1(U);U is ̺ − open}.
Our next result shows that SLD maps transfer the propertyL.

Proposition 2.6. Let ϕ : (X, τ) → (Y, δ) be a continuous one-to-one map. Let d and̺ be
metrics defined on X and Y respectively, withd finer thanτ and ̺ finer thanδ. Assume that
ϕ : (X, d) → (Y, ̺) is a SLD map. If Y hasL(̺, δ), then X hasL(d, τ).

Proof. First of all, let us show thatX has theL(ϕ̺, ϕδ). By Proposition 2.4,ϕ(X) hasL(̺, δ).
So for anyy ∈ ϕ(X) there exists a countable setS(y) ⊂ ϕ(X) satisfying theL condition.

For anyx ∈ X defineZ(x) = ϕ−1(S(ϕ(x))). Let us see that the countable setZ(x) does
the job. To do that, take(xγ)γ converging tox in (X,ϕδ), i.e. ϕ(xγ) → ϕ(x) in δ. So we have
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ϕ(x) ∈ {
⋃

γ S(ϕ(xγ))
̺
∩ ϕ(X)}, hencex ∈

⋃
γ ϕ−1(S(ϕ(xγ)))

ϕ̺

=
⋃

γ<β Z(xγ)
ϕ̺

On the
other hand, by theτ -δ continuity of the mapϕ, ϕδ is coarser thanτ , so for anyA ⊂ X,

A
τ
⊂ A

ϕδ
⊂

⋃

x∈A

Z(x)
ϕ̺

.

ThereforeX hasL(ϕ̺, τ) (althoughϕ̺ may not be finer thanτ ).
Since the mapϕ is SLD, we have(X,ϕ̺) is d-SLD which is equivalent toX hasL(d, ϕ̺).

We just have to apply the transitivity ofL to obtainX hasL(d, τ).

Transitivity of the propertyL and its coincidence, for metric topologies, with the SLD property
andσ-fragmentability yield several results

Proposition 2.7. Let (X, τ) have LSP and let̺ be any metric on X finer thanτ . If (X, τ) is
σ-fragmented by̺ , then X hasL(̺, τ).

Proof. Let d a metric onX such thatX hasL(d, τ). Since(X, τ) is ̺-σ-fragmented andd is
finer thanτ , (X, d) isσ-fragmented by̺ . Then Theorem 2.5 yieldsX hasL(̺, d). Now applying
transitivity we obtainL(̺, τ).

Proposition 2.8. Let (X, τ) beσ-fragmented by a metric d finer thanτ (resp. d-SLD). If̺ is
another metric such thatX hasL(̺, τ), then(X, τ) is σ-fragmented by̺ (resp.̺-SLD.)

Proof. SinceX hasL(̺, τ) and d is finer thanτ , for any A ⊂ X we haveA
d

⊂ A
τ

⊂

∪{S(x);x ∈ A}
̺
, i. e. X hasL(̺, d). Theorem 2.5 gives(X, d) has̺-SLD and that implies by

Theorem 2.4 in [11] that(X, τ) is σ-fragmented by̺ (resp̺-SLD).

When we have a vector space, Theorem 2.5 and transitivity willallow us to give some results.

Proposition 2.9. Let (X, τ) be a LSP vector space and let̺ be a metric, with the̺ topology
being a vector topology finer thanτ , such that X has span-L(̺, τ). Then X hasL(̺, τ).

Proof. Let d a metric onX with L(d, τ). Sinced is finer thanτ and we have span-L(̺, τ),
we obtain span-L(̺, d). Hence Theorem 2.5 givesL(̺, d) on X. L(̺, τ) on X follows now by
transitivity.

Proposition 2.10. Let (X, τ) a vector spaceσ-fragmented by a metric d (resp. d-SLD) finer
than τ . If ̺ is another metric, with the̺ topology being a vector topology, such thatX has
span-L(̺, τ), then(X, τ) is σ-fragmented by̺ (resp.̺-SLD).

Proof. Sinced is finer thanτ , as in the previous proof, we have span-L(̺, d), henceL(̺, d). As
in the proof of Proposition 2.8 we obtain(X, τ) is σ-fragmented by̺ (resp. has̺ -SLD.)

3. BANACH SPACES

We turn now our attention to the class of Banach spaces. We shall say that a Banach space
X has the LSPwhen(X,weak) does. In this case we will give the precise metric for the LSP;
indeed it must be the norm metric.

Theorem 3.1. Let X be a Banach space. Then X has the LSP if, and only if X hasL(‖ · ‖, weak).

Proof. By the Theorem of Hahn-Banach, for anyA ⊂ X, A
weak

⊂ spanA
‖·‖

. Hence X has
span-L(‖ · ‖, weak) with S(x) = {x}. So if X has the LSP, applying Proposition 2.9 we get
L(‖ · ‖, weak).

Let us now give some examples of Banach spaces with the LSP.

Theorem 3.2. Let E be a Banach space of density character at mostω1. Then E has the LSP.
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Proof. Let {xγ ; 0 ≤ γ < ω1} be a‖ · ‖-dense subset ofE. For anyγ, 0 ≤ γ < ω1, set
Eγ = Q − span{xβ ;β < γ}.

Given x ∈ E we can find a countable set{xγn
}n∈N ⊂ E with γn < ω1, such thatx ∈

{xγn
}n∈N

‖·‖
. Setγ(x) = supn γn. Now defineS(x) = Eγ(x)

‖·‖
which is a separable vector

space and containsx and gives us the LSP inE.
Let A ⊂ X and x ∈ A

w
, due to the countable tightness of the weak topology of a Ba-

nach space (Kaplansky), we can find a sequence(xn) in A such thatx ∈ {xn}
w

. Hence

x ∈ span∪n S(xn)
‖·‖

= ∪nS(xn)
‖·‖

, since the set∪nS(xn) is actually a vector space.

We will make use of the so-calledProjectional Resolutions of the Identity. For properties we
refer the reader to [2, 4].

Definition 3.3. Let X be a Banach space. We denote byµ the smallest ordinal such that its
cardinality |µ| coincides with the density character ofX (dens(X)). A projectional resolution of
the identity, PRI for short, is a collection{Pα : ω0 ≤ α ≤ µ} of projections fromX into X that
satisfy:
for everyα with ω0 ≤ α ≤ µ

i) ‖Pα‖ = 1;
ii) Pα◦Pβ = Pβ◦Pα = Pα if ω0 ≤ α ≤ β ≤ µ;
iii) dens(Pα(X)) ≤ |α|;
iv)

⋃
{Pβ+1(X) : ω0 ≤ β < α} is norm dense inPα(X);

v) Pµ = IdX .

Let us show that any Banach space with “good” PRI has the LSP. To do so we shall need the
following Lemma from [2] (Lemma VI.1.3).

Lemma 3.4. Assume that every member X of a given classP of Banach spaces admits a PRI
{Pα} such that all(Pα+1 − Pα)(X) belong toP. Then, givenX ∈ P with dens(X) = |µ|,
there is a collection{Qγ ;ω0 ≤ γ ≤ µ} of projections of X into X such that, if we letRγ =

(Qγ+1−Qγ)
(‖Qγ+1‖+‖Qγ‖)

, we have the following:
i) QγQδ = QδQγ = Qγ if ω0 ≤ γ ≤ δ ≤ µ;
ii) Qω0

and(Qγ+1 − Qγ)(X) is separable for everyω0 ≤ γ ≤ µ;
iii) Qµ = Id;
iv) for everyx ∈ X, {‖Rα(x)‖;α ∈ [ω0, µ)} ∈ c0([ω0, µ));
iv) for everyx ∈ X and γ ∈ [ω0, µ], Qγ(x) belongs to the norm-closed linear span of

{Rα(x);α < γ} ∪ {Qω0
(x)}.

Proposition 3.5. LetP be a class of Banach spaces such that conditions of Lemma 3.4 hold. If
X ∈ P, thenX has LSP, that isL(‖ · ‖, weak).

Proof. Given x ∈ X let us definesupp(x) = {α ∈ [ω0, µ);Rα(x) 6= 0} and setS(x) =
span(∪{Qω0

(X) ∪ Rα(X);α ∈ supp(x)}. S(x) is ‖ · ‖-separable sincesupp(x) is countable.

We want to see that ifA ⊂ X thenA
weak

⊂ ∪{S(x);x ∈ A}
‖·‖

. So takex ∈ A
weak

and

{xγ : γ ∈ Γ,≥}weak-convergent tox. Givenε > 0, sincex ∈ span{Qω0
(x) ∪ Rα(x)}α<µ

‖·‖
,

there existα1, . . . , αk ∈ supp(x) such that

‖x −

k∑

i=1

λiRαi
(x)‖ < ε.

(Where one of theRαi
could actually beQω0

.) On the other handRα(xγ) → Rα(x) weakly for
α ∈ [ω0, µ). So for1 ≤ i ≤ k there existsγi ∈ Γ such thatRαi

(xγ) 6= 0 for γ >> γi. Let us
takeγ ≥ γi for 1 ≤ i ≤ k. It is clear thatαi ∈ supp(xγ). Therefore

k∑

i=1

λiRαi
(x) ∈ span(∪{Qω0

(X) ∪ Rα(X);α ∈ supp(xγ)}) = S(xγ).
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Thusx ∈ ∪{S(xγ); γ ∈ Γ}
‖·‖

as we wanted.

Corollary 3.6. LetX be a Banach space:
i) If X is WCD (Weakly Countably Determined), then X has LSP.
ii) If X is Asplund, thenX∗ has LSP.

Proof. i) The fact that the class of WCD Banach spaces admits a PRI withthe properties as in
Lemma 3.4 can be found in [2], Theorem VI.2.5.

ii) The construction of a PRI satisfying the properties in Lemma 3.4 in the dual of an Asplund
space can also be found in [2], Theorem VI.3.4. and Remark VI.3.5.

Remark 3.7. The projections{Pα} built in a dual of an Asplund space are not in general
w∗ − w∗-continuous. In the case where they can be donew∗ − w∗-continuous, Lemma 3.4
and Proposition 3.5 can be easily modified to obtain thatX∗ hasL(‖ · ‖, weak∗).

An example of a Banach space without PRI but having LSP can be found in [2], p. 260. It is
aC(K) space that embeds into ac0(Γ) space by means of a SLD map.

Let us turn now our attention to duals of Banach spaces.

Definition 3.8. LetX∗ is a dual Banach space, we shall say that a subset ofX∗ has∗LSP when
it hasL(‖ · ‖, weak∗).

We shall say thatX∗ has span-∗LSP, if it has span-L(‖ · ‖, weak∗).

We have seen that PRI on a Banach space enables us to prove the LSP. A starting point for a
construction of a PRI will be the so-called Projectional Generator.

Definition 3.9. Let X be a Banach space, W a one-norming subset ofX∗, that is, for every
x ∈ X we have‖x‖ = sup{|f(x)|; f ∈ BX∗ ∩ W}, and let us assume thatW is linear. Let
Φ : W → 2X be an at most countable valued mapping such that: for anyB ⊂ W with B linear
we have

Φ(B)⊥ ∩ BX∗ ∩ B
w∗

= {0}.

Then we call the pair(W,Φ) a projectional generator on X.

In fact (see Proposition 6.1.7 in [4]), any non-separable Banach space with a projectional
generator admits a PRI. The construction of projectional generators can be found in [4].

In order to give the proof of the Main Theorem in the introduction we shall need some results.

Lemma 3.10. Let X be a Banach space such that any weak*-separable subset of itsdual unit
ball is ‖ · ‖-separable, then X is Asplund.

Proof. Let A ⊂ X be separable subspace. Let us show thatA∗ is ‖ · ‖∗-separable. Indeed, let us
consider the restriction mapRA : X∗ → A∗, which is onto and weak∗ and‖ · ‖∗ continuous.

Let F ⊂ BX∗ be a countable set such thatRA(F ) is w∗-dense in(BA∗ , w∗) (since(BA∗ , w∗)
is metrizable).

SetW = co (F )
w∗

. By hypothesis,W is ‖ · ‖∗-separable and thereforeRA(W ) is also
‖ · ‖∗-separable. Now by compactness it is easy to show thatRA(W ) = BA∗ . HenceA∗ is
‖ · ‖∗-separable.

Lemma 3.11. Let X be a Banach space such thatBX∗ has∗LSP. Then there exists a projectional
generator on X defined in all ofX∗.

Proof. Let us defineΦ : BX∗ → 2X as follows. Givenx∗ ∈ X∗, let S(x∗) be the countable set
given by the∗LSP. Now for anyy∗ ∈ BX∗ , let {xn(y∗)} ⊂ BX be such that‖y∗‖ = sup{| <
y∗, xn(y∗) > | : n ∈ N}. SetΨ(y∗) = {xn(y∗)} and finally defineΦ(x∗) = Ψ(S(x∗)). For
x∗ /∈ BX∗ , Φ(x∗) = 0.

It is clear thatΦ is countably valued. We shall show that for any subsetA of X∗, then

Φ(A)⊥ ∩ A ∩ BX∗

w∗

= {0}. So letx∗ ∈ Φ(A)⊥ ∩ A ∩ BX∗

w∗

. Sincex∗ ∈ A ∩ BX∗

w∗

and
BX∗ has∗LSP,

x∗ ∈ ∪{S(y∗) : y∗ ∈ A ∩ BX∗}
‖·‖

≡ S(A ∩ BX∗)
‖·‖

.
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Hence there exists a sequencey∗
n ∈ S(A ∩ BX∗) with y∗

n → x∗ in the norm topology.
Now givenε > 0 there existsm ∈ N such that‖y∗

m − x∗‖ ≤ ε
2 . But, sinceΦ(A) normsS(A)

andx∗
|Φ(A) ≡ 0, we should have

‖y∗
m‖ = sup

n∈N

{| < y∗
m, xn(y∗

m) > |} = sup
n∈N

{| < y∗
m − x∗, xn(y∗

m) > |} ≤

≤ sup{| < y∗
m − x∗, x > | : x ∈ BX} = ‖y∗

m − x∗‖.

So‖x∗‖ ≤ ‖x∗ − y∗
m‖ + ‖y∗

m‖ ≤ 2‖x∗ − y∗
m‖ ≤ ε. The former reasoning being valid for

everyε > 0, thereforex∗ = 0 and the proof is done.

Now, using the previous results we are ready to prove the MainTheorem in the introduction.

Proof. i)⇒iii) Take P the class of Banach spaces consisting of duals of WCG Asplund spaces.
By a result in [4] (Proposition 6.1.10), ifX is a Banach space with a projectional generator
defined in all ofX∗ (actually in allBX∗ ) andX∗ admits a projectional generator defined inX
(i.e. X is Asplund [4] (Proposition 8.2.1)), thenX admits ashrinking PRI, i.e., a PRI such that
the adjoint maps form a PRI onX∗. Now Remark 3.7 allows us to apply Proposition 3.5 to
X∗ ∈ P and to obtain thatX∗ has∗LSP.

iii)⇒ii) Obvious.
ii)⇒i) SinceBX∗ has∗LSP, by Lemma 3.10X is Asplund and together with Lemma 3.11

(see comments in i)⇒iii) above), they provide us with the existence of aw∗-weak continuous
injection fromX∗ into c0(Γ), and by a result of Amir and Lindenstrauss, (see [2], Corollary
VI.5.2), X must be Weakly Compactly Generated.

iii)⇒iv) Obvious.
iv)⇒iii) By transitivity X has span-∗LSP. Hence Lemma 3.10 can be applied to get thatX is

Asplund. So by Proposition 3.6X∗ has the LSP, i.e.,L(‖ · ‖, weak). By transitivity, X∗ has
∗LSP.
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