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ABSTRACT. In this paper we give a sufficient and necessary conditiorafBanach space to
be Weakly Compactly Generated and Asplund. This conditiokslithe weak and the norm
topologies of its dual .

1. INTRODUCTION

Weakly compactly generated (WCG) Asplund spaces are the eygarable counterpart for
Banach spaces with separable duals. They have been erlgnsiidied in connection with
smoothness, renorming and topological properties of weabmpact subsets such as Corson
compactness [2, 4]. In particular they coincide with Asplspaces with Corson compact weak-
* dual unit ball [12] and they have an equivalent locally anifily rotund and Fechet differen-
tiable norm [2, 3]. The main tool for proving these propertias been the so-called projectional
resolutions of the identity (PRI), a method to decompose maBla space by means of well or-
dered collections (“long sequences”) of projections wigoles back to Amir and Lindenstrauss
[1]. For X a WCG Asplund space the PRI will be shrinking and Troyanskirsrming technique
can be applied to obtain locally uniformly rotund norms inth& and X *, [14]. This method for
renorming has been recently rebuilt in [6] with a transfehtéque that works even in the non-
linear case [8]. A main ingredient for that is a descriptieamection between approximations in
two different metrics through a separable fibre. It is our hire to study this linking property
in full generality, even in the non-metric case and in patéicin a Banach space with its norm
and weak topologies and in a dual Banach space with its nothwaak-* topologies. It turns
out that this property characterizes the WCG Asplund spadoéke course of the proof we shall
use PRI and it will be shown how the linking property is a tagital device, gluing separable
pieces, an alternative to the “long sequences” of a PRI. Rhamopological point of view, the
linking property goes back to Srivatsa’s selection theofEs, [6].

The linking property we are going to deal with was introdubgdvioltd, Orihuela and Troy-
anski in [6] and it corresponds with the following:

Definition 1.1. Let X be a set and,, 7 be two topologies on it. We shall say that X &3, 72)
if for any z € X there exists a countable sétz) containing x so that ifd ¢ X then4A™ c

U{S(x);x € A}Tl.

Definition 1.2. Let A be a set in a topological vector space X apdr,; two topologies on X (the
second may only be defined on A). We shall say that A has&gans,) if for any z € A there
exists a countable sét(x) containing x so that iB ¢ AthenB™* C spanU {S(z);x € B} .

We shall also need the following definition.

Definition 1.3. Let (X, 7) be a topological space. We shall say that X has the Linkingu&ep
bility Property (LSP, for short) if there exists a metric dfided on X, with the metric topology
finer thanr, such that X ha€(d, 7).
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In the second section of the paper we shall study some piep@iftLSP spaces. In the third
section we will focus on propertg (]| - ||, weak) for a Banach space an{]| - ||, weak™) in the
dual and we obtain our Main Theorem below. The study of conngeces K, 7) with property
L(d, ) for a metricd is done in [9, 10].

Main Theorem: Let X be a Banach space. Then the following conditions aré/abpnt:
i) Xis WCG and Asplund;
i) Bx~ has.(|| - ||, w*);
i) X*hasC(|| - ||, w*);
iv) X* hasL(w,w*).

2. LSP TOPOLOGICAL SPACES

Ouir first result provides us with a slight change in the definibf property£ which will be
convenient in many proofs.

Lemma 2.1. Let (X, 7) be a topological space and a metric on X. Suppose that for every
x € X, there exists a-separable setZ(z) such that ifA ¢ X then, A" ¢ U{Z(z);z € A}g.
Then X ha<(g, 7).

Proof. Forz € X, let {y,(x)} be ap-dense subset df (z) and defineS(x) = {y,(z)}. This
selection ofS(x) gives us property (o, 7). [ |

Now we will study some stability properties of LSP spaces.

Proposition 2.2. (transitivity) Let X be a sets;, 72, 75 three topologies on X. If X ha&(ry, 72)
and L(z, t3) then it also hasC (7, 73).

Proof. Forz € X, let S; o(z) be the countable set given i, 72), andSs 3 (x) the one given
by E(’I’g7 Tg).

DefineS(z) = U{S1,2(y);y € S2.3(x)}. Itis not difficult to show thatS(z) is the countable
set we are looking for. ]

Proposition 2.3. Let f : (X,7) — (Y, d) be a homeomorphism of topological spaces. If X has
LSP then so does Y.

Proof. Let d be the metric onX given by the LSP. Let us define an the metric: o(y1,y2) =
d(f~1(y1), f*(y=2)). First notice that the topology is finer tham.

For anyz € X let S(z) be the countable set given by tiig¢d, 7) of X. Fory € Y, define
Z(y) = f(S(f~1(y))). Itis easy to see that the countable 8¢y) gives property(o,d) in Y.
[

Proposition 2.4. Let (X, 7) be a LSP topological space, then any subspace of X is alsolL.SP.
fact if d is a metric on X such that X ha&(d, 7) and H C X then H hasC(d, 7).

Proof. Let H ¢ X andd be the metric given by the LSP. Fore H there exists a countable set
S(z) = {«"(x) }nen given by theL(d, 7) of X.

Fix n € N. We denote byB,(z, ) the closedi-ball centered at and of radius-. Form € N
setA, m(z) = Bq(z"(x), %) N H. For thosen,m € N such that4,, ,,(z) is non-empty fix
Yn,m(z) € Apm(x). Recall thate € S(x) and therefore some of these sets must be non-empty.
Let us defineS’(z) = {yn,m (x)} for those values of,, m such thaty,, ,,(z) is defined.

One shows that ift ¢ H thenAd™" ¢ U{S"(z);z € A}d. [ ]

In order to give further properties of these spaces we needdall the following notions
introduced by Jayne, Namioka and Rogers. (&t 7) be a topological space and Ilétbe a
metric onX.

The spaceX is said to ber-fragmentedby the metricd if, for eache > 0, it is possible to
write X = |J;2, X5, where each seX¢ has the property that each non-empty subset phas
a non-empty relatively open subsetdtliameter less than
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We say thatX has acountable cover by sets of small locatliameter(d-SLD, for short) if for
everye > 0 there exists a decompositiofi = | J;-_; X3 such that for each € N every point of
X¢ has arelativelyr-neighbourhood ofl-diameter less than

The equivalence betweer) andb) in our next result is in [9, 11]¢) impliesd) is in [6] and
that proof extends to proving) impliesb).

Theorem 2.5. Let X be a setp and d be metrics defined aXi. Then the following conditions
are equivalent:

a) (X, d) is o-fragmented by;

b) (X, d) hase-SLD;

c) X hasL(p, d).

Moreover, if( X, ¢) is a topological vector space then any of the properties ab®equivalent
to

d) X has span£(o, d).

Proof. We need only to prove b}c). Assume thatX, d) haso-SLD. Givene > 0, let X, .
be subsets ok covering it, such that for every € X,, . there is &, , > 0 for which the ball
Bgi(z, 05 ,,) meetsX,, . in a set ofp-diameter less than

For a given positive integen, we defineX,, . = {z € X, ;000 > %}, and we have
Xn,e = Ume,n,s andX = Um,nXm,n,s-

Letus fixz € X, m,n € Nandé > 0. If By4(x,d) meetsX,, ,, . we will choose an element
y(x,m,n,¢e,0) € By(x,0) N Xy, n,.. We claim that

1 ¢
S {y(:z:,m,n, 55 a);man7p7q € N} .

Indeed, for a given positive integger let m,, andn,, be so that
reX 1 (%).

Mp,Np,—
pslpsp

Sincex € By(z, mLp) N X1 this set is non-void witho-diameter less thar and
py

it makes sense to considef(z, m,, n,, Ilj, %) that belongs to this set, hence we have
P
g(:c,y(x,mp,np, %7 mLp)) < %
. o
For everyz we define the sef(z) = {y(z, m,n, %, %); m,n,p,q € N} .
Let us now take a sequen¢e,,) in X which isd-convergent tac. Given a positive integer
p let m,, andn, such that £) holds. For a fixed positive integerthere is an-, such that if

k > r, we haved(xy, z) < ﬁ Thusz belongs toB,(z, ﬁ) N X,,, n,,1 Which must be a

Mpsp
non-empty set fok > r,. Now according to the definition af(z, my, np, %, ﬁ) we have
1 1 B 1 X
Y(@k, Myp, N, 1_77 %) € Ba(zy, %) N Mp,Np, 2 °

Since this set is contained iy(z, =-) N X,
» ;

we have, fork > r,, o(z, y(zk, mp, np, L, 51

p’ 2mp

1 and the latter hag-diameter less thar%;,
'p

Np

) < %. Thenz € US(zy,)° and (c) is proved.m

A one-to-one map : (X, d) — (Y, o) is called aSLDmap (see [11]) if X, ,) has property
d-SLD, wherey, denotes the topology (metric) given by the famfly='(U); U is o — open}.
Our next result shows that SLD maps transfer the propérty

Proposition 2.6. Letp : (X,7) — (Y,d) be a continuous one-to-one map. Let d ante
metrics defined on X and Y respectively, witfiner thanr and p finer thand. Assume that
p:(X,d) — (Y,0)isaSLD map. If Y hag(p,0), then X hasC(d, 7).

Proof. First of all, let us show thak has theL(y,, ¢s). By Proposition 2.4¢(X) hasL(o, J).
So for anyy € ¢(X) there exists a countable s&ty) C »(X) satisfying theC condition.

For anyz € X defineZ(z) = ¢~ 1(S(¢(z))). Let us see that the countable g&tr) does
the job. To do that, takéx., ), converging taz in (X, ¢s), i.e. p(x,) — ¢(z) in 6. So we have
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p(x) € {U, S(p(z,))* N o(X)}, hencer € U, ¢~ (S(p(z,))™" = U, <5 Z(z)"™ Onthe
other hand, by the-§ continuity of the mapy, @5 is coarser tham, so for anyA C X,
—r — %o
AcA” c | z@)
T€EA
ThereforeX hasL(p,, ) (althoughy, may not be finer tham).
Since the may is SLD, we have X, ¢,) is d-SLD which is equivalent t& has£(d, ¢,).
We just have to apply the transitivity @f to obtainX has£(d, 7). ]

Transitivity of the propertyC and its coincidence, for metric topologies, with the SL D@y
ando-fragmentability yield several results

Proposition 2.7. Let (X, 7) have LSP and lep be any metric on X finer than. If (X, 1) is
o-fragmented by, then X hasC(p, 7).

Proof. Let d a metric onX such thatX hasC(d, 7). Since(X, 1) is g-o-fragmented and is
finer thanr, (X, d) is o-fragmented by. Then Theorem 2.5 yield¥ hasL(g, d). Now applying
transitivity we obtainC (o, 7). [ |

Proposition 2.8. Let (X, 7) be o-fragmented by a metric d finer than(resp. d-SLD). Ifp is
another metric such thaX’ has£(p, 7), then(X, 7) is o-fragmented by (resp. o-SLD.)

Proof. Since X hasL(o,7) andd is finer thanr, for any A ¢ X we haved” ¢ 47 ¢
U{S(z);z € A}",i. e. X hasL(p, d). Theorem 2.5 giveéX, d) hasp-SLD and that implies by
Theorem 2.4 in [11] thatX, 7) is o-fragmented by (respo-SLD). ]

When we have a vector space, Theorem 2.5 and transitivityalldlv us to give some results.

Proposition 2.9. Let (X, 7) be a LSP vector space and letbe a metric, with they topology
being a vector topology finer than such that X has spai{g, 7). Then X has(p, 7).

Proof. Let d a metric onX with £(d, 7). Sinced is finer thanr and we have spaf{p, ),
we obtain spart (o, d). Hence Theorem 2.5 give&(p, d) on X. L(p, ) on X follows now by
transitivity. ]

Proposition 2.10. Let (X, 7) a vector space-fragmented by a metric d (resp. d-SLD) finer
than 7. If p is another metric, with the topology being a vector topology, such th#thas
spanL(p, 7), then(X, ) is o-fragmented by (resp. o-SLD).

Proof. Sinced is finer thanr, as in the previous proof, we have spéfp, d), hencel(p, d). As
in the proof of Proposition 2.8 we obtaftX, 7) is o-fragmented by (resp. hag-SLD.) ]

3. BANACH SPACES

We turn now our attention to the class of Banach spaces. Wesslyathat a Banach space
X has the LSRvhen (X, weak) does. In this case we will give the precise metric for the LSP;
indeed it must be the norm metric.

Theorem 3.1. Let X be a Banach space. Then X has the LSP if, and only if Xfas||, weak).
Proof. By the Theorem of Hahn-Banach, for aryc X, 4"“** < span4'"'. Hence X has
spanL (|| - ||, weak) with S(x) = {z}. So if X has the LSP, applying Proposition 2.9 we get
L - I, weak). u

Let us now give some examples of Banach spaces with the LSP.

Theorem 3.2. Let E be a Banach space of density character at mgsfThen E has the LSP.
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Proof. Let {z,;0 < v < w;} be a| - ||-dense subset af. For anyy, 0 < v < wy, set
E, =Q - spafzg; 3 < 7}

Givenz € E we can find a countable s¢t., },ey C E with v, < wq, such thatr €
— Il
{x’vn Fnen
space and containsand gives us the LSP iA.

Let A c X andz € A", due to the countable tightness of the weak topology of a Ba-
nach space (Kaplansky), we can find a sequepngg in A such thatz € {xn}w. Hence

I _ U"S(xn)H.H

. Sety(z) = sup,, v». Now defineS(z) = E

~(z) ~ Which is a separable vector

x € spanU, S(z,) , since the set,,S(z,,) is actually a vector space. =

We will make use of the so-calléerojectional Resolutions of the Identitifor properties we
refer the reader to [2, 4].

Definition 3.3. Let X be a Banach space. We denote;byhe smallest ordinal such that its
cardinality || coincides with the density character &f (dens(X)). A projectional resolution of
the identity, PRI for short, is a collectiofP,, : wy < o < u} of projections fromX into X that
satisfy:
for everya withwy < a < p

i) [ Pall = 15

i) PooPg = PgoP, =Py ifwy <a<pg<y

i) dens(Pn (X)) < |al;

V) U{Pp+1(X) : wo < 8 < a} is norm dense itP, (X);

V) PM =Idx.

Let us show that any Banach space with “good” PRI has the L&BoTs0 we shall need the
following Lemma from [2] (Lemma VI.1.3).

Lemma 3.4. Assume that every member X of a given clBssf Banach spaces admits a PRI
{P,} such that all(P,+; — P,)(X) belong toP. Then, givenX € P with den$X) = |u],
there is a collection{@.;wy < v < p} of projections of X into X such that, if we I1&, =

(Qw+1_Qw) 1 .
[([eeyER DS we have th.e following:

I) Q’yQéZQ(SQ'y:Q’y if wo S’Yﬁégﬂ;

i) Qu, and(Q+1 — @Q~)(X) is separable for every, < v < p;

i) Q, = Id,

iv) for everyz € X, {||Ra(z)[; a € [wo, )} € co[wo, p));

iv) for everyz € X andy € [wo, ], Q,(z) belongs to the norm-closed linear span of

{Ra(2); 0 <7} U{Quy (2)}-

Proposition 3.5. Let P be a class of Banach spaces such that conditions of LemmaRi41h
X € P, thenX has LSP, that i (|| - ||, weak).

Proof. Givenz € X let us definesupp(z) = {a € [wo, p); Ra(x) # 0} and setS(x) =
span(U{Quw, (X) U Ro(X); a € supp(z)}. S(z) is|| - ||-separable sinceupp(z) is countable.

—weak —weak

We want to see that il C X thenA C U{S(z);z € A}M. So taker € A and

{z : v € T, >} weak-convergent ta:. Givene > 0, sincex € span{Q.,(z)U Ra(x)}a@"'”,

there existvy, ..., ax € supp(z) such that

k
2 = > AiRa, (2)|| <.
i=1
(Where one of th&?,,, could actually be&).,,.) On the other han®, (x,) — R.(x) weakly for

a € [wo, ). Soforl < i < k there existsy; € I such thatR,,, (z-) # 0fory >> ;. Letus
takey > ~; for 1 <4 < k. Itis clear thaty; € supp(x.). Therefore

k
Z AiRq, (z) € span(U{Qu, (X) U Ra(X); o € supp(z4)}) = S(x,).



Thusz € U{S(z,);y €T} = as we wanted. [ |

Corollary 3.6. Let X be a Banach space:
i) If X is WCD (Weakly Countably Determined), then X has LSP.
ii) If X is Asplund, thenX™* has LSP.

Proof. i) The fact that the class of WCD Banach spaces admits a PRIthatiproperties as in
Lemma 3.4 can be found in [2], Theorem VI1.2.5.

i) The construction of a PRI satisfying the properties inrirea 3.4 in the dual of an Asplund
space can also be found in [2], Theorem V1.3.4. and Remar& ¥ ]

Remark 3.7. The projections{P,} built in a dual of an Asplund space are not in general
w* — w*-continuous. In the case where they can be defie— w*-continuous, Lemma 3.4
and Proposition 3.5 can be easily modified to obtain tNdthasL(]| - ||, weak*).

An example of a Banach space without PRI but having LSP caoudredfin [2], p. 260. Itis
aC(K) space that embeds inta:g(I") space by means of a SLD map.
Let us turn now our attention to duals of Banach spaces.

Definition 3.8. Let X* is a dual Banach space, we shall say that a subséf‘ohas*LSP when
ithasL(] - ||, weak*).
We shall say thaK ™ has spantLSP, if it has spant(]| - ||, weak*).

We have seen that PRI on a Banach space enables us to provBRhA ktarting point for a
construction of a PRI will be the so-called Projectional &wsitor.

Definition 3.9. Let X be a Banach space, W a one-norming subset fthat is, for every
r € X we have||z|| = sup{|f(z)]; f € Bx- N W}, and let us assume that is linear. Let
® : W — 2% be an at most countable valued mapping such that: forBny W with B linear
we have .
®(B)*nBx-nB" ={0}.
Then we call the paifW, ®) a projectional generator on X.

In fact (see Proposition 6.1.7 in [4]), any non-separabled@h space with a projectional
generator admits a PRI. The construction of projectionakgators can be found in [4].
In order to give the proof of the Main Theorem in the introdoictwe shall need some results.

Lemma 3.10. Let X be a Banach space such that any weak*-separable subsetafatsunit
ballis| - ||-separable, then X is Asplund.

Proof. Let A C X be separable subspace. Let us show t#ais || - ||*-separable. Indeed, let us

consider the restriction ma4 : X* — A*, which is onto and wedkand|| - ||* continuous.
Let ' C Bx~ be acountable set such thag (F') is w*-dense in( B 4-, w*) (since(Ba«, w*)

is metrizable).

SetW = co(F)w*. By hypothesis\V is || - ||*-separable and therefoi@, (V) is also
|| - ||*-separable. Now by compactness it is easy to showkhgiV) = B4-. HenceA* is
| - ||*-separable. [ |

Lemma 3.11. Let X be a Banach space such thiat - has*LSP. Then there exists a projectional
generator on X defined in all of *.

Proof. Let us defined : Bx- — 2X as follows. Giverz* € X*, let S(z*) be the countable set
given by the*LSP. Now for anyy* € Bx-, let{z,(y*)} C Bx be such thaljy*|| = sup{| <
y*, za(y*) > | : n € N} Set¥(y*) = {z,(y*)} and finally defined(z*) = ¥(S(x*)). For
x* ¢ Bx«, ®(z*) =0.

It is clear that® is countably valued. We shall show that for any subdedf X*, then
®(A)- NANBx- ={0}. Soletz* € ®(A)- NANBx- . Sincez* € ANBx- and
Bx has*LSP,




Hence there exists a sequengec S(A N Bx-) with ¥ — «* in the norm topology.
Now givenes > 0 there existsn € N such that|y;, —z*|| < 5. But, since®(A) normsS(A)
andz/y 4, = 0, we should have

[yl = sup{| < wp, 2n(ym) > [} = sup{| <yp, — 2", 2n(y;) > |} <
neN neN

<sup{] <y, — e > |2 € Bx} = Iyl — 2”].

Solz*|| < |lz* — yill + Nyl < 2||z* — v, || < e. The former reasoning being valid for
everye > 0, thereforer* = 0 and the proof is done. [ ]

Now, using the previous results we are ready to prove the Miagorem in the introduction.

Proof. i)=-iii) Take P the class of Banach spaces consisting of duals of WCG Asploackes.
By a result in [4] (Proposition 6.1.10), iX is a Banach space with a projectional generator
defined in all ofX* (actually in all Bx-) and X* admits a projectional generator definedXn
(i.e. X is Asplund [4] (Proposition 8.2.1)), thel admits ashrinking PR} i.e., a PRI such that
the adjoint maps form a PRI oK*. Now Remark 3.7 allows us to apply Proposition 3.5 to
X* € P and to obtain thaK * has*LSP.

iii) =ii) Obvious.

if) =) Since Bx~ has*LSP, by Lemma 3.10X is Asplund and together with Lemma 3.11
(see comments in4}iii) above), they provide us with the existence ofvé-weak continuous
injection from X* into ¢y(T"), and by a result of Amir and Lindenstrauss, (see [2], Corplla
VI.5.2), X must be Weakly Compactly Generated.

iii) =-iv) Obvious.

iv)=-iii) By transitivity X has span-{.SP. Hence Lemma 3.10 can be applied to get és
Asplund. So by Proposition 3.8* has the LSP, i.e£(]| - ||, weak). By transitivity, X* has
*LSP. [ |
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