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ABSTRACT. In this paper we study the property of having a countable cover by sets of
small local diameter (SLD for short). We show that in the context of Banach spaces (JNR
property) it implies that the Banach space isČech-analytic. We also prove that to have
the JNR property, to beσ-fragmentable and to have the same Borel sets for the weak and
the norm topologies, they all are topological invariants ofthe weak topology. Finally, by
means of “good” injections intoc0(Γ), we give a great class of Banach spaces with the
JNR property.

INTRODUCTION

Let us begin with two definitions from [12].

Definition 0.1. Let (X, τ) be a topological space and letd be a metric onX. The space
X is said to beσ-fragmented by the metricd if, for eachε > 0, it is possible to write

X =

∞
⋃

i=1

Xε
i ,

where each setXε
i has the property that each non-empty subset ofXε

i has a non-empty
relatively open subset ofd-diameter less thanε.

When X is a Banach space,τ is the weak topology andd is the‖ · ‖, we shall say that X
is σ-fragmentable.

Definition 0.2. Let (X, τ) be a topological space and letd be a metric onX. It is said
thatX has a countable cover by set of small local diameter (SLD) if for everyε > 0 there
exists a decomposition

X =

∞
⋃

n=1

Xε
n

such that for eachn ∈ N every point ofXε
n has a relativelyτ -neighbourhood ofd-diameter

less thanε.
When X is a Banach space,τ is the weak topology andd is the‖ · ‖, we shall say that X

has the JNR property.

The notion ofσ-fragmentabletopological spaces, was introduced and studied by Jayne,
Namioka and Rogers, in a series of papers [12, 13, 14], arriving at the concept of spaces
having a countable cover by sets of small local diameter, what we callSLDproperty, which
has been studied in [12, 17, 18, 21, 22].

A norm on a Banach space is said to be aKadecnorm if the weak and the norm topolo-
gies agree on the unit sphere. In [3, 4], Edgar shows that in a Banach space that admits an
equivalent Kadec norm the following hold:

(1) Borel(X, ‖ · ‖) = Borel(X,weak).
(2) X ∈ Borel(X∗∗, w∗).

In [7], Hansell introduced the concept ofdescriptiveBanach spaces as those that the
norm has anetworkwhich isσ-relatively discrete with respect to the weak topology. He

1



2

shows tha spaces with an equivalent Kadec norm are descriptive and that in descriptive
Banach spaces 1) and 2) above hold, hence improving Edgar’s results.

In [12], Jayne, Namioka and Rogers show that a Banach space with an equivalent Kadec
norm has the JNR property.

In this paper we present as following results the following:

Theorem A: LetX be a Banach space with the JNR property, then properties 1) and 2)
above hold.

Theorem B: On a Banach space X, the following properties are topological invariants of
the weak topology: to beσ-fragmentable, to have the JNR property, to have the same Borel
sets for the weak and the norm topologies.

For the invariance of theσ-fragmentability see [7, 19].
As a result of our Proposition 1.9, it is easy to show that for aBanach space having the

JNR property and being descriptive turn out to be equivalent[18]. It must be said that all
knownσ-fragmentable Banach spaces have the JNR property [7, 2].

For recent results on the relationship between the JNR property and renormability of
the space see [9, 17, 18, 22].

1. THE JNR PROPERTY

Let X be a topological space. As usual, we shall denote byF the family of closed
subsets ofX andG the open sets, and byFσ countable unions of sets fromF . Our first
result shows that for two metrics,σ-fragmentability and SLD are equivalent.

Proposition 1.1. Let (X, d) be a metric space and̺be another metric defined onX. The
following conditions are equivalent:

i) (X, d) is σ-fragmented by̺ ;
ii) (X, d) has̺-SLD.

When the sets in i) can be taken to be differences ofd-closed sets (or more generallyd-Fσ-
sets), then the sets in ii) can be taken to bed-Fσ-sets.

Proof. ii)⇒ i) Is clear by definition.
i)⇒ ii) Given ε > 0, let {Cε

i }i∈N be a cover ofX given by theσ-fragmentability of the
space.

Fix i ∈ N. Because of theσ-fragmentability, there exists a family ofd-open sets,
{U i

α : 0 ≤ α < µ}, coveringCε
i such that for0 ≤ α < µ we have

Cε
i ∩ U i

α \
⋃

0≤β<α

U i
β 6= ∅, and̺-diam(Cε

i ∩ U i
α \

⋃

0≤β<α

U i
β) < ε.

For eachn, i ∈ N andα ∈ [0, µ), let Fn
α,i = {x ∈ X : d(x,X \ U i

α) ≥ 1
n
} and

Hn
α,i = (Cε

i ∩ Fn
α,i \

⋃

0≤β<α U
i
β). It is clear that̺ -diam(Hn

α,i) < ε. Now for α 6= β the
setsHn

α,i andHn
β,i, when non-empty, are separated by ad-distance at least1

n
. So for each

n ∈ N the family{Hn
α,i : 0 ≤ α < µ} is discrete in(X, d).

SetHn
i = ∪{Hn

α,i : 0 ≤ α < µ}. We have
∞
⋃

n=1

Hn
i =

∞
⋃

n=1

⋃

0≤α<µ

Hn
α,i =

∞
⋃

n=1

⋃

0≤α<µ

(Cε
i ∩ Fn

α,i \
⋃

0≤β<α

U i
β) =

=
⋃

0≤α<µ

(Cε
i ∩ U i

α \
⋃

0≤β<α

U i
β) = Cε

i ,

and therefore

X =
∞
⋃

i=1

∞
⋃

n=1

Hn
i .
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Let us see that for eachn, i ∈ N the setHn
i has local̺ -diameter less thanε. Takex ∈ Hn

i .
So for someα ∈ [0, µ) x ∈ Hn

α,i.
Since the family{Hn

α,i : 0 ≤ α < µ} is discrete in(X, d) there must be ad-open
neighbourhoodV of x such thatV ∩Hn

β,i = ∅ for β 6= α. So

̺-diam(V ∩Hn
i ) = ̺-diam(V ∩Hn

α,i) < ε.

Now if theCi are differences ofd-closed sets, and since theFn
α,i ared-closed, we have

that theHn
α,i are differences ofd-closed sets. So eachHn

i is the discrete union of sets
which are differences ofd-closed sets. Sinced-open sets areFσ-sets, it follows that the
Hn

i ’s are alsoFσ-sets.

Our first example of a Banach space with the JNR property can beused to prove the
JNR property in several cases.

Proposition 1.2. Let (Xγ , ‖ · ‖γ) be a family of normed spaces (not necessarily complete)
andτγ topologies defined on them. If for eachγ ∈ Γ the space(Xγ , τγ) is ‖ ·‖γ-SLD, then
(Σc0

{Xγ : γ ∈ Γ}, τpro) is ‖ · ‖∞-SLD.

Proof. SetX = Σc0
{Xγ : γ ∈ Γ}.

Givenε > 0, let (An,p
γ )∞n=1 be countable covers ofXγ by sets of local‖ · ‖γ-diameter

less than1
p
< ε.

For eachm, k ∈ N with 1
m
< ε

4 , let us define

Xm
k = {x ∈ X : |γ ∈ Γ : ‖xγ‖γ >

1

m
| = k}.

Givenx ∈ Xm
k defineAm,k(x) = {γ ∈ Γ; ‖xγ‖γ > 1

m
}. Now for all p ∈ N with

1
p
< ε, set

Xm,p
k = {x ∈ Xm

k ; ‖xγi
‖γi

−
1

p
>

1

m
, for γi ∈ Am,k(x)}.

Am,k,p
n1,...,nk

= {x ∈ Xm,p
k ;xγi

∈ Ani,p
γi

, for all γi ∈ Am,k(x)}.

By the definition ofX, it is easy to see that

X =
⋃

m,p; 1
m

, 1
p

< ε
2

∞
⋃

k=1

⋃

(n1,...,nk)∈N[N]

Am,k,p
n1,...,nk

Let us see now that it is a cover by sets of localτpro-diameter less thanε.
So, take anym, k, p, n1, . . . , nk, with 1

m
, 1

p
< ε, andx ∈ Am,k,p

n1,...,nk
. By definition,

there existγ1, . . . , γk ∈ Am,k(x) andτγi
-open neighbourhoods ofxγi

, sayUγi
⊂ Xγi

with ‖ · ‖-diam(Uγi
∩An,p

γi
) < 1

p
.

If we denote byPγ the canonical projection onto the spaceXγ , the setV = P−1
γ1

(Uγ1
)∩

. . . P−1
γk

(Uγk
) is τpro-open and‖ · ‖-diameter(V ∩Am,k,p

n1,...,nk
) < ε.

To show the last claim takex, y ∈ V ∩Am,k,p
n1,...,nk

. Forγ ∈ Am,k(x) we have

‖yγ‖γ > |‖xγ‖γ − ‖xγ − yγ‖γ | >
1

m

which implies thatAm,k(y) = Am,k(x). So forγ ∈ Am,k(x) we have

‖xγ − yγ‖γ <
1

p
<
ε

2

and ifγ /∈ Am,k(x) we obtain

‖xγ − yγ‖γ ≤ ‖xγ‖γ + ‖yγ‖γ ≤
1

m
+

1

m
≤
ε

2
as we wanted.
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In [12], the authors showed that if a Banach space has an equivalent Kadec norm, then
it has the JNR property by sets that are differences of weaklyclosed sets. As a corollary of
our next result we can see that it always happens whenever thespace has the JNR property.

Theorem 1.3. Let (X, τ) be a topological space and̺be a lower semi-continuous metric
onX. If (X, τ) has the̺ -SLD property, then(X, τ) has the̺ -SLD property by differences
of τ -closed sets. Moreover, if the̺-topology is finer thanτ , then the sets can be taken to
be̺-closed.

Proof. Givenε > 0, there exists a sequence of setsXε
n covering the space, having local

̺-diameter less thanε. Let us define the following sets

Y ε
n = {x ∈ Xε

n

τ
: existsU ∈ τ, x ∈ U with ̺− diam(Xε

n

τ
∩ U) ≤ ε}

We claim that the sequence(Y ε
n )∞n=1 is a countable cover ofX by differences ofτ -

closed sets of local diameter less thanε.
To show that they coverX, takex ∈ X. There existsn ∈ N andU ∈ τ , open

neighbourhood ofx such thatx ∈ Xε
n ∩ U having this set diameter less thanε. Since

̺ is τ -lower semi-continuous we have̺− diam(Xε
n ∩ U

τ
) ≤ ε and sinceU is τ -open,

Xε
n

τ
∩ U ⊂ Xε

n ∩ U
τ
. Therefore̺ − diam(Xε

n

τ
∩ U) ≤ ε which impliesx ∈ Y ε

n . So
X = ∪nY

ε
n .

If x ∈ Y ε
n there existsU such that

̺− diam(Y ε
n ∩ U) ≤ ̺− diam(Xε

n ∩ U
τ
) ≤ ε.

Now for eachx ∈ Y ε
n call Ux the open set given by the definition ofY ε

n . It is easy to
see that

Y ε
n = Xε

n

τ
∩

⋃

x∈Y ε
n

Ux

which shows thatY ε
n is the difference ofτ -closed sets.

If τ � ̺, sinceY ε
n = F ε

n ∩ Gε
n with F ε

n τ -closed (hence̺ -closed) andGε
n τ -open

(hence̺ -open), and since in a metric space open sets areFσ sets,Y ε
n = F ε

n∩(∪mF
ε
m,n) =

∪m(F ε
n ∩ F ε

m,n).
SoX = ∪m,n(F ε

n ∩ F ε
m,n) being these̺ -closed and of local diameter less thanε.

In the next proof we will need some definitions on families of sets. So, recall that
a family of subsetsA = {Aγ}γ∈Γ, of a topological space: is calleddiscreteif every
point of the space, has an open neighbourhood that meets, at most, one element of the
family; isolatedif it is discrete in its union;σ-discretely (isolatedly) decomposableif each
Aγ = ∪n{A

n
γ} so that each{An

γ}γ∈Γ is discrete (isolated).

Theorem 1.4. LetX be a Banach space with the JNR property. ThenX is a (F ∩ G)σδ

in (X∗∗, weak∗) and thereforeX ∈ Borel(X∗∗, w∗). Moreover, any‖ · ‖-closed subset
ofX is of the same type.

Proof. For eachp ∈ N, let{Up
α,n : α ∈ Γn,p, n ∈ N} be aσ-discrete refinement of a cover

of X by balls of diameter less than1
p
. We may suppose that each{Up

α,n : α ∈ Γn,p} is a
metrically discrete family with separating distancesδn,p > 0.

Forn, p ∈ N, let {Cp
n,m : m ∈ N} be a countable cover ofX with the local diameter of

eachCp
n,m < δn,p. Then for eachn,m, p ∈ N the family{Up

α,n ∩ Cp
n,m}α∈Γn,p

is weakly
isolated, in fact it is weakly discrete inCp

n,m. So if we look atX as a subset of(X∗∗, w∗),
the family{Up

α,n ∩ Cp
n,m}α∈Γn,p

is w∗-isolated. Thus, for eachx ∈ Up
α,n ∩ Cp

n,m there
exists aw∗-open neighbourhood ofx in X∗∗, sayUn,m,p

x,α , such that

Un,m,p
x,α ∩ (Up

α,n ∩ Cp
n,m) 6= ∅, and

Un,m,p
x,α ∩ (Up

β,n ∩ Cp
n,m) = ∅, for β 6= α.
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Set

Gm,p
α,n =

⋃

x∈U
p
α,n∩C

p
n,m

Un,m,p
x,α .

Gm,p
α,n is clearly aw∗-open set withGm,p

α,n ⊃ (Up
α,n∩C

p
n,m) and forβ 6= α,Gm,p

α,n ∩ (Up
β,n∩

Cp
n,m) = ∅. Set

Mα,n,m,p = (Up
α,n ∩ Cp

n,m)
w∗

∩Gm,p
α,n .

We show that

X =
⋂

p

⋃

m

⋃

n

{
⋃

α∈Γn,p

Mα,n,m,p}.

Notice that, since diam(Up
α,n ∩ Cp

n,m) ≤ 1
p
, we have

diam(Up
α,n ∩ Cp

n,m

w∗

) ≤
1

p
.

Let

x∗∗ ∈ X∗∗ ∩
⋂

p

⋃

m

⋃

n

(
⋃

α∈Γn,p

Mα,n,m,p).

For eachp ∈ N there existn,m ∈ N andα ∈ Γn,p such that

x∗∗ ∈ (Up
α,n ∩ Cp

n,m)
w∗

∩Gp
α,n,m,

so there existsxp ∈ Up
α,n ∩ Cp

n,m such that‖x∗∗ − xp‖ ≤ 1
p
. Thus we have

‖ · ‖- lim
p→∞

xp = x∗∗

and thereforex∗∗ ∈ X.
Now since the family{Mα,n,m,p : α ∈ Γn,p} is isolated and it consists ofF ∩ G sets,

∪{Mα,n,m,p : α ∈ Γn,p} is also aF ∩ G set ([7, Lemma 3.3]).
If F is a norm closed subset ofX, consider the families

{F ∩ Up
α,n ∩ Cp

n,m}α∈Γn,p

and follow the proof. In this case the vectorsxp’s belong toF and, sinceF is closed, the
limit also belongs toF .

Proof of Theorem A. It follows from Theorem 1.4. Let us prove 1).
Let A be a norm-closed subset ofX. By Theorem 1.4,A ∈ Borel(X∗∗, weak∗), i.e.

there existsB ⊂ X∗∗,B ∈ Borel(X∗∗, weak∗) andA = B ∩X. But the weak topology
onX coincides with the restriction toX of the weak* topology onX∗∗ and thereforeA is
a weak-Borel subset ofX.

In fact 1) in Theorem A follows also from the following result, and we will be able to
specify the class of any norm open set.

Proposition 1.5. Let (X, τ) be topological space with the̺-SLD property by differences
of τ -closed sets, for some metric̺. Then every̺ -open set is a(F ∩G)σ set in(X, τ), that
is, a countable union of differences ofτ -closed sets.

Proof. For everyn ∈ N, let (Xn,m)m∈N a countable cover ofX by sets of̺ -diameter
less than1

n
, and with eachXn,m being the difference of twoτ -closed sets. Reorder-

ing the indexes, call them(Xr)r∈N. Now for eachn ∈ N, define Γ(n) = {r ∈
N;Xr has local̺ -diameter less than1

n
}. It is easy to see that for eachn ∈ N, the set

∪{Xr; r ∈ Γ(n)} coversX.
Now, letG be a norm open set. SetGn = {x ∈ X;B̺(x;

1
n
) ⊂ G}.
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Fix n ∈ N. For eachr ∈ Γ(n), and everyx ∈ Gn ∩ Xr, since the setXr has local
̺-diameter less than1

n
, there exists aτ relatively open subsetU(x) of Xr containingx,

such that,̺ -diam(U(x)) < 1
n

. Thusx ∈ U(x) ⊂ G. Hence, forr ∈ Γ(n), the set

Un,r = ∪{U(x) : x ∈ Gn ∩Xr}

is a relatively open subset ofXr. SoUn,r is a(F ∩ G) set inτ . It containsGn ∩Xr and
is contained inG. Now the set∪{Un,r;n ∈ N, r ∈ Γ(n)} coincides withG and it is a
(F ∩ G)σ set inτ .

Corollary 1.6. Let X be a Banach space with the JNR property. Then any‖ · ‖ open
subset of X is a(F ∩ G)σ set in the weak topolgy. In particular,Borel(X, ‖ · ‖) =
Borel(X,weak).

Problem 1.7. Let X be a Banach space such that any norm open set is a(F ∩ G)σ set for
the weak topology. Does it have the JNR property?

The proof of Proposition 1.5 can be adapted to give the following:

Proposition 1.8. Let (X, τ) be a topological space such that any open set is anFσ-set.
Let̺ be a metric onX and suppose thatX has the SLD property by sets of additive class
α, then each̺ -open subset ofX is of additive classα.

One way to characterize the SLD property is through discretefamilies.

Proposition 1.9. Let (X, τ) be a topological space and d a metric on it. Then,(X, τ) has
d-SLD if, and only if, any d-discrete family of subsets of X isσ-isolatedly decomposable
for τ .

Proof. Let us assume that(X, τ) hasd-SLD. For eachn ∈ N, considerX = ∪{Cn
i ; i ∈

N}, where the setsCn
i have locald-diameter less than1

n
.

Let A= {As}s∈S be a discrete family in(X, d). Then there exist1
m

-discrete families
{Am

s }s∈S such thatAs = ∪{Am
s ;m ∈ N}, for s ∈ S.

Write {Ai,m
s } = Am

s ∩ Cm
i , for m, i ∈ N ands ∈ S and fix i,m ∈ N. Takex ∈

Cm
i . There exists aτ -open neighbourhood ofx, sayU , such that diam(U ∩ Cm

i ) < 1
m

.
ThereforeU meets at most one element of the family{Ai,m

s }s∈S . So{Ai,m
s }s∈S is discrete

in (Cm
i , τ) and we have

As =
∞
⋃

m=1

Am
s =

∞
⋃

m=1

∞
⋃

i=1

As
m ∩ Cm

i =
⋃

i,m

Ai,m
s .

HenceA is σ-isolatedly decomposable.
Let us show the converse. Givenε > 0, let {Un

α : α ∈ Γ} be aσ-discrete open
refinement of an open cover ofX by balls of radius less thanε2 . By hypothesis, for each
n ∈ N, Un

α = ∪{Bn,m
α : m ∈ N}, where for eachn,m ∈ N the family{Bn,m

α }α∈Γ is
τ -isolated.

WriteFn
m = ∪{Bn,m

α : α ∈ Γ}; obviously,X = ∪{Fn
m : n,m ∈ N}.

We now show that for eachn,m ∈ N, the setFn
m has local diameter less thanε.

Takex ∈ Fn
m. Thenx ∈ Bn,m

α0
and therefore there exists aτ -open neighbourhoodU

of x such thatU ∩ Bn,m
α = ∅ for α 6= α0. So diam(U ∩ Fn

m) = diam(U ∩ Bn,m
α0

) ≤
diam(Bn,m

α0
) < ε.

This characterization leads us to the following concept introduced by Hansell [7].

Definition 1.10. LetX be a Banach space. We shall say that X is descriptive if the norm
topology admits a network which isσ-isolated for the weak topology.

By a network of the norm topology we mean a family of subsets ofX such that any
norm open set is a union of sets from the family.
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Remark 1.11. It is not difficult to show after Proposition 1.9 that on a Banach space,
the JNR property and being descriptive are equivalent notions [18]. Hansell showed in
[7], that a Banach space is descriptive if, and only if, the weak topology has aσ-isolated
network. Thus showing that being descriptive depends only on the weak topology of the
space.

2. SLD MAPS

That characterization of SLD property in terms of discrete decompositions of families
leads us to the study the following class of maps.

Definition 2.1. Let (X, ̺) and (Y, d) be metric spaces. We shall say that a one-to-one
mapT : X → Y is a (̺, d)-SLD map if it maps̺ -discrete families of subsets ofX into
d-σ-discretely decomposable families of subsets ofY .

Under the conditions of Definition 2.1, if we denote byTd the topology (metric) onX
generated by the setsT−1(U) with U ⊂ Y d-open, we can prove:

Proposition 2.2. LetT : (X, ̺) → (Y, d) be a one-to-one map between metric spaces. T
is SLD if, and only if(X,Td) has̺-SLD.

Proof. The proof follows the same line as in Proposition 1.9.

Theorem 2.3. LetX,Y be two Banach spaces andf : X −→ Y be a continuous linear
injection. Defineϕ = f−1 : f(X) −→ X. Then the following conditions are equivalent:

i) ϕ is of Borel classα andf is SLD;
ii) (X, f‖·‖Y

) has the‖ · ‖X -SLD by sets of additive classα (for the topologyf‖·‖Y
).

Proof. ii)⇒ i) By Proposition 2.2 we have thatf is SLD.
Now letG be a norm open subset ofX. Since the topologyf‖·‖Y

in X verifies that any
open set is anFσ set, we apply Proposition 1.8 and obtain thatG is of additive classα in
(X, f‖·‖Y

). Hence the setϕ−1(G) is of additive classα in (f(X), ‖ · ‖Y ) and thereforeϕ
is of Borel classα.

i)⇒ ii) For n ∈ N let {Un
α : α ∈ A} be an openσ-discrete refinement of an open cover

of X by balls of radius less than1
n

. ConsiderBn
α = f(Un

α ). Then for eachn ∈ N the
family {Bn

α}α∈A is σ-discretely decomposable, so for everyn, i ∈ N there exist discrete
families{Bi,n

α }α∈A such that

Bn
α =

∞
⋃

i=1

Bi,n
α .

Note that since the setsUn
α are open inX andϕ is of Borel classα, the setsBn

α =
ϕ−1(Un

α ) are of additive classα.

Now fix i, n ∈ N. The family{Bi,n
α ∩ Bn

α}α∈A is discrete inf(X) and its sets are of
additive classα.

Set

Ξi,n =
⋃

α∈A

(Bi,n
α ∩Bn

α).

ThenΞi,n is a discrete union of sets of additive classα and therefore is itself of additive
classα. (For a proof of this fact see [16], page 358, Theorem 1). It isobvious that

f(X) =
⋃

i,n

Ξi,n.

DefineCi,n = f−1(Ξi,n). The setsCi,n’s are of additive classα and they form a
countable cover of(X, f‖·‖Y

).
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Now takex ∈ Ci,n andf(x) = y ∈ Ξi,n. Soy ∈ Bi,n
α0 ∩ Bn

α0
for only oneα0 ∈ A.

Thus there exists an open neighbourhoodU of y in Y such thatU ∩ (Bi,n
α ∩ Bn

α) = ∅ for
α 6= α0.

Write V = f−1(U). V is af‖·‖Y
-open neighbourhood ofx and

diam(V ∩ Ci,n) = diam(f−1(U ∩ Ξi,n)) = diam(f−1(U ∩Bi,n
α0 ∩Bn

α0
)) ≤

≤ diam(f−1(Bn
α)) = diam(Un

α ) < ε.

ThereforeCi,n has local diameter less thanε.

Let us see that SLD maps are what we need to transfer the SLD property.

Theorem 2.4. Let (X, τ1) and (Y, τ2) be topological spaces and let̺1, ̺2 be metrics
defined onX andY , respectively, withτ2 � ̺2. Suppose that there exists a one-to-one
mapT : X −→ Y and that(Y, τ2) has the̺ 2-SLD property. Then the following conditions
are equivalent:

i) T is (̺1, ̺2)-SLD;
ii) (X,Tτ2

) has the̺ 1-SLD property;
iii) (X,Tτ2

) is σ-fragmented by̺ 1.

When(Y, τ2) is σ-fragmented by̺ 2, then we only can get i)⇔iii) above.

Proof. i)⇒ ii) Given ε > 0, let A= {An} = {An
γ ; γ ∈ Γ(n)} be aσ-discrete open

refinement of an open cover by balls of radius less thanε
2 . SinceT is a SLD map, for each

n ∈ N, the familyT (An) is ̺2-σ-discretely decomposable, i.e., for eachBn
γ = T (An

γ ),
Bn

γ = ∪mB
n,m
γ , and for fixedn,m ∈ N, {Bn,m

γ }γ∈Γ(n) is ̺2-discrete. Now, since(Y, τ2)
has̺2-SLD, by Proposition 1.9, each{Bn,m

γ }γ∈Γ(n) is σ-isolatedly decomposable (for
τ2), henceBn,m

γ = ∪p{B
n,m,p
γ }, with {Bn,m,p

γ }γ∈Γ(n) τ2-isolated.
Now for eachn,m, p ∈ N, setAn,m,p

γ = T−1(Bn,m,p
γ ). It is easy to see that the family

{An,m,p
γ }γ∈Γ(n) is Tτ2

-isolated.
DefineXn,m,p = ∪{An,m,p

γ ; γ ∈ Γ(n)}. Since it is a isolated union and eachAn,m,p
γ

is contained in an open ball of radius less thanε
2 , it is clear that eachXn,m,p has local̺ 1-

diameter less thanε. It is also easy to see by construction thatX = ∪{Xn,m,p : n,m, p ∈
N}. Since this can be done for everyε > 0, we conclude with(X,Tτ2

) has̺1-SLD.
ii)⇒ iii) It is Obvious.
iii)⇒ i) Sinceτ2 � ̺2, the hypothesis implies that(X,T̺2

) is ̺1-σ-fragmented, and
that, by Theorem 1.9, is equivalent toT being(̺1, ̺2)-SLD.

In the case(Y, τ2) is ̺2-σ-fragmented, iii)⇒i) follows the same line as above.
Now let us show that i)⇒ iii). Given ε > 0, let {Un

α ;α ∈ Γ} a σ-discrete open
refinement of an open cover ofX by balls of̺1-radius less thanε2 .

For eachn ∈ N, T (Un
α ) = ∪{Bn,m

α ;n,m ∈ N}, with {Bn,m
α }α∈Γ being̺2-discrete.

Then there exist1
k

-discrete families{Bn,m,k
α }α∈Γ with Bn,m

α = ∪{Bn,m,k
α ; k ∈ N}.

Now for eachk ∈ N there is a cover ofX = ∪{Ck
r ; r ∈ N} given by theσ-

fragmentability such that each setCk
r is fragmented down to1

k
.

SetDn,m,k
α,r = Ck

r ∩ Bn,m,k
α and takeAn,m,k

α,r = T−1(Dn,m,k
α,r ) ⊂ Un

α . If we define
Cn,m,k

r = ∪{An,m,k
α,r ;α ∈ Γ} thenX = ∪{Cn,m,k

r ;n,m, r, k ∈ N}. We are going to
show that ifn,m, r, k ∈ N are fixed, any nonempty subset ofCn,m,k

r has a nonempty
relativelyTτ2

-open subset of̺1-diameter less thanε.
So take any∅ 6= A ⊂ Cn,m,k

r . We have

∅ 6= T (A) ⊂
⋃

α∈Γ

{Dn,m,k
α,r } ⊂ Ck

r .
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By theσ-fragmentability there exists aτ2-open setU , such that̺ 2-diam(T (A) ∩U) ≤
1
k

. SoT (A)∩U ⊂ Bn,m,k
α for only oneα ∈ Γ. Hence,T (A)∩U ⊂ Dn,m,k

α,r for only one
α ∈ Γ. Therefore,A ∩ T−1(U) ⊂ Un

α and that makes̺1-diam(A ∩ T−1(U)) ≤ ε.

As a corollary of Theorem 2.4 we can obtain the following result:

Proposition 2.5. Let X and Y be Banach spaces. LetT : X → Y be a weakly continuous
SLD map. Then:

i) If Y has the JNR property, then so has X.
ii) If Y isσ-fragmentable, then so is X.

The following result is from [17] and it is very useful when trying to construct SLD
maps.

Proposition 2.6. Let (X, ‖ · ‖X) be a Banach space and(Y, ̺) a metric space. Let
T : X −→ Y be a one-to-one map. If, for everyx ∈ X there exists a separable subspace

Zx of X with x ∈ span{Zxn
;n ∈ N}

‖·‖X

, whenever(xn) is a bounded sequence in X
with T (xn) converging to T(x) in̺ (in particular when(xn) converges weakly to x, or
pointwise when X=C(K)), then T is a(‖ · ‖X , ̺)-SLD map.

The part i) in the following result is due to Kenderov and Moors [15].

Corollary 2.7. Let X be a Banach space.

i) X is σ-fragmentable if, and only if, there exists a metric̺ finer than the weak
topology such that(X,weak) is σ-fragmented by̺ .

ii) X has the JNR property if, and only if, there exists a metric̺ finer than the weak
topology such that(X,weak) has̺-SLD.

Proof. We only have to prove the if part. Let us consider the identitymapId : (X, ‖
· ‖X) → (X, ̺). If xn converges tox in the ̺ metric, xn must converge tox in the
weak topology. Proposition 2.6 says,Id is an SLD map, therefore Theorem 2.4 gives the
conclusion.

These maps have been used by several authors: Spahn in [23] constructed a SLD map
from a WCG Banach space into ac0(Γ), Hansell [6] called them co-σ-discrete maps, and
Moltó, Orihuela and Troyanski [17] gave as a definition the equivalence in Proposition 2.2.

Proof of Theorem B:
Let (xn) be a bounded sequence inX andx ∈ X such thatφ(xn) → φ(x) in ‖ · ‖Y ,

henceφ(xn) → φ(x) weakly. Thus,xn → x weakly and Proposition 2.6 applies. So
our mapφ and its inverse are SLD. Moreover, since there is weak to weakcontinuity, by
Proposition 2.5, i) and ii) hold. To prove iii) assume thatBorel(Y,weak) = Borel(Y, ‖
· ‖Y ).

Denote byB(X,‖·‖X) the closed unit ball of(X, ‖ · ‖X). B(X,‖·‖X) is aw-closed subset
of X and, sinceφ is a homeomorphism,φ(B(X,‖·‖X)) is aw-closed subset ofY . Thus
the norm‖ · ‖X is lower semi-continuous on(X,φ‖·‖Y

). Sinceφ is SLD, (X,φ‖·‖Y
) has

the ‖ · ‖X -JNR property by differences ofφ‖·‖Y
-closed sets. So ifG is a ‖ · ‖X -open

subset ofX, then, by Proposition 1.5,G = ∪{Ci; i ∈ N}, whereCi is the difference of
two φ‖·‖Y

-closed sets for everyi ∈ N.
SetBi = φ(Ci). Then theBi’s are differences of‖ · ‖Y -closed sets and therefore

they arew-Borel sets. Thusφ−1(Bi) = Ci arew-Borel inX. We conclude thatG is a
countable union ofweak-Borel sets and therefore is itself aweak-Borel subset ofX.

The σ-fragmentability counterpart of our next result is due to Kenderov and Moors,
[15]. For the JNR property it answers a question of Haydon in [10]. See [20].
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Corollary 2.8. Let (Kn)∞n=1 be a sequence of closed subsets of a compact Hausdorff
spaceK such thatK = ∪Kn. Then: if for eachn ∈ N the space(C(Kn), ptwise),
(resp. (C(Kn), weak)) has the JNR property, then so has the space(C(K), ptwise),
(resp.(C(K), weak)).

Proof. Define the map

T : C(K) −→ Σc0
(C(Kn), ‖ · ‖∞)

by the formula

T (f) = (
1

n
f |Kn

)∞n=1.

SinceT is clearly pointwise to pointwise continuous, we only have to show thatT SLD.
So take a bounded sequence(fm)∞m=1 ∈ C(K), andf ∈ C(K) and suppose that

(T (fm)) converges toT (f) in the norm ofΣc0
. We need to show thatfm converges

pointwise tof .
So takex ∈ K. There must ben0 ∈ N such thatx ∈ Kn0

. Givenε > 0 there exists
m ∈ N such that for allk ≥ m we have

‖T (fk) − T (f)‖∞ ≤
ε

n0
, i.e.,‖

1

n
fm|Kn

−
1

n
f |Kn

‖∞ ≤
ε

n0
for all n ∈ N.

Therefore,

|
1

n0
fk(x) −

1

n0
f(x)| ≤

ε

n0
for all k ≥ m.

Thusfm converges tof in the pointwise topology and by Proposition 2.6 we concludethat
T is SLD.

Let us present now some examples of constructions of SLD maps. The following propo-
sition is almost clear by the definitions.

Proposition 2.9. Let X, Y and Z be metric spaces and let f, g be SLD maps,f : X → Y ,
g : Y → Z. Then the maph = g ◦ f is SLD.

Let us give the definition of a projectional resolution of theidentity and some basic
properties we shall need in our following result. They can befound in [1].

Definition 2.10. LetX be a Banach Space. We denote byµ the smallest ordinal such that
its cardinality |µ| = dens(X). A projectional resolution of identity, PRI for short, onX
is a collection{Pα : ω0 ≤ α ≤ µ} of projections fromX intoX that satisfy, for everyα
with ω0 ≤ α ≤ µ, the following conditions:

i) ‖Pα‖ = 1;
ii) Pα◦Pβ = Pβ◦Pα = Pα if ω0 ≤ α ≤ β ≤ µ;

iii) dens(Pα(X)) ≤ |α|;
iv)

⋃

{Pβ+1(X) : ω0 ≤ β < α} is norm dense inPα(X);
v) Pµ = IdX .

Lemma 2.11. LetX be a Banach space and{Pα : ω0 ≤ α ≤ µ} be a PRI onX. We put
Pα+1 − Pα = Tα, for ω0 ≤ α < µ. Then the following results hold.

i) For everyx ∈ X, if α is a limit ordinal,ω0 ≤ α ≤ µ, we havePα(x) = ‖ · ‖ −
limβ<α Pβ(x).

ii) For everyx ∈ X, {‖Tα(x)‖ : α ∈ [ω0, µ)} belongs toc0([ω0, µ)).
iii) For everyx ∈ X andα ∈ [ω0, µ), Pα(x) belongs to norm closed linear span of

{Tβ(x) : β < α} ∪ {Pω0
(x)}.

We shall need the following:

Lemma 2.12. Let(X, ‖ ·‖) be a normed space and(Tγ)γ∈Γ be a family of bounded linear
maps,Tγ : X −→ X, satisfying:
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i) ∀x ∈ X, (‖Tγ(x)‖)γ∈Γ ∈ c0(Γ).

ii) ∀x ∈ X, x ∈ span{Tγ(x); γ ∈ Γ}
‖·‖

.

Then there exists a SLD mapΦ : X −→ Σc0
(Tγ(X), ‖ · ‖∞).

Proof. DefineΦ : X −→ Σc0
(Tγ(X), ‖ · ‖∞) by Φ(x) = (Tγ(x))γ∈Γ. It is clear thatΦ is

a one-to-one linear map.
From i) we obtain that the set{γ ∈ Γ;Tγ(x) 6= 0} is countable. So for everyx ∈ X we

define a separable subspace ofX, Zx as

Zx = span{Tγ(x); γ ∈ Γ}
‖·‖
.

Let us show thatΦ is a SLD map. Let(xn) be a bounded sequence inX such that
Φ(xn) converges toΦ(x) in Σc0

for somex ∈ X.
By ii), given ε > 0 there existsΓ1 finite subset ofΓ and real numbersαi such that

‖x −
∑

αiTγi
(x)‖ < ε

2 for γi ∈ Γ1. Now sincelimTγ(xn) = Tγ(x) for any γ ∈ Γ,
it follows that limn ‖x −

∑

αiTγi
(xn)‖ ≤ ε

2 . Thus there must ben0 ∈ N such that
‖x−

∑

αiTγi
(xn0

)‖ < ε,which means thatx ∈ ∪Zxn
. We only have to apply Proposition

2.6.

Theorem 2.13. Let℘ be a class of Banach spaces such that the following results hold:

i) For everyX ∈ ℘ there exists a PRI onX, {Pα : ω0 ≤ α ≤ µ}.
ii) (Pα+1 − Pα)(X) ∈ ℘.

Then for everyX ∈ ℘ there exists a setΓ and a bounded linear SLD mapT : X −→
c0(Γ).

Proof. LetX ∈ ℘. We proceed by induction ondens(X).
WhenX is separable, we have that(BX∗ , w∗) is metrizable and separable. So let

{fn : n ≥ 1} be a dense subset of(BX∗ , w∗) and define

T : X −→ c0(N) by T (x) =

(

1

n
fn(x)

)∞

n=1

.

T is clearly a linear map, and it is one-to-one because(fn)
∞
n=1 is dense inBX∗ .

In order to show thatT is SLD, we notice that discrete families in separable Banach
spaces are countable. And it is clear that the image of any countable family isσ-discretely
decomposable.

Let χ be an uncountable cardinal andX ∈ ℘ such thatdens(X) = χ. Suppose that
the result is true for everyY ∈ ℘ with dens(Y ) < χ. Let µ be the smallest ordinal with
cardinality|µ| = χ.

Let {Pα : ω0 ≤ α ≤ µ} be aPRI onX. For anyα ∈ [ω0, µ), we setTα = Pα+1 − Pα

andXα = Tα(X). ThenXα ∈ ℘ anddens(Xα) ≤ |α| < dens(X). Thus there exist sets
Γα and bounded linear SLD mapsJα : Xα −→ c0(Γα).

SincePω0
(X) is separable, there is alsoJ0 : Pω0

(X) −→ c0(N) sharing these proper-
ties. Set

Γ = N ∪
⋃

ω0≤α<µ

Γα disjoint union

and defineT : X −→ ℓ∞(Γ) by

T (x)(n) = J0(Pω0
(x))(n) for n ∈ N, and

T (x)(γ) =
1

2
Jα(Tα(x))(γ) for γ ∈ Γα.

T is clearly a linear map and is continuous and indeedT (X) ⊂ c0(Γ). Also, by the
properties of the PRI and the induction hypothesisT is an injection.

Let us define

Φ : X −→ Σc0
(Xα, ‖ · ‖∞) by Φ(x) = (Tα(x))α<µ
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and

ψ : Σc0
(Xα, ‖ · ‖∞) −→ c0(Γ) byψ((xα)α<µ)(γ) = (Jα(xα))(γ) for γ ∈ Γ

By Lemma 2.12,Φ is a SLD map. By the induction hypothesis and Theorem 2.4, the
spaces(Xα, Jα,ptwise) have the SLD property and that implies, by Proposition 1.2, that
Σc0

(Xα, τpro) has the SLD property as well.
On the other hand, it is easy to see that the topologiesψptwise andτpro coincide on

Σc0
(Xα), which means that the spaceΣc0

(Xα, ψptwise) has the SLD property and there-
fore, by Theorem 2.4 and the fact that(c0(Γ), ptwise) has‖ · ‖∞-SLd (Proposition 1.2),
ψ is SLD.

We only have to apply Proposition 2.9 to the mapsΦ andψ to obtain the desired result.

Theorem 2.13 can be applied to several classes of Banach spaces, for example WCD
spaces, duals to Asplund spaces (we would obtain the SLD property for the weak topology,
not for the weak∗-topology in general) andC(K) spaces withK being a Valdivia compact
space. See either [1, 5] for the construction of PRI on these spaces. We can summarize as
follows:

Corollary 2.14. LetX be a Banach space of one of the following types: weakly countably
determined, the dual of an Asplund space or a C(K) space with Kbeing a Valdivia compact
space. Then there exists a bounded SLD linear mapT : X −→ c0(Γ), pointwise to
pointwise continuous when X=C(K), and therefore (X,weak),also (C(K), pointwise), has
the JNR property.
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