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Abstract. We show that McShane and Pettis integrability coincide for func-

tions f : [0, 1] → L1(µ), where µ is any finite measure. On the other hand,

assuming the Continuum Hypothesis, we prove that there exist a weakly Lin-
delöf determined Banach space X, a scalarly null (hence Pettis integrable)

function h : [0, 1] → X and an absolutely summing operator u from X to

another Banach space Y such that the composition u ◦ h : [0, 1] → Y is not
Bochner integrable; in particular, h is not McShane integrable.

1. Introduction

Several methods of integration for functions taking values in Banach spaces have
been studied over the years. Among these methods, those developed by Bochner [7]
and Pettis [24, 25, 30] have been the most popular ones. McShane’s [23] alterna-
tive approach to Lebesgue’s integration theory has also been extended to the case
of vector-valued functions, see e.g., [13], [17] and [18]. In general, the McShane
integral lies strictly between the Bochner and Pettis integrals [13, 17], although for
some classes of Banach spaces McShane and Pettis integrability coincide: this hap-
pens for separable spaces [13, 17, 18], super-reflexive (e.g., Hilbert) spaces [4] and
c0(Γ) (where Γ is any non-empty set) [4]. The relationship between the McShane
integral and others which are less known (e.g., the Henstock-Kurzweil, Birkhoff and
Talagrand integrals) has been discussed in [11], [12], [27] and [29].

The following question was attributed to K. Musial in [4]: Is every scalarly
null Banach space-valued function McShane integrable? Under the Continuum Hy-
pothesis (CH), L. Di Piazza and D. Preiss [4] answered in the negative Musial’s
question by means of an `∞(ω1)-valued function. Recall that a Banach space X is
weakly measure compact if and only if every X-valued scalarly measurable function
is scalarly equivalent to a strongly measurable one [8]. This property holds true
for any weakly Lindelöf Banach space (e.g., weakly compactly generated –WCG–
or, more generally, weakly Lindelöf determined –WLD–). In view of the comments
above, an affirmative answer to Musial’s question for functions taking values in a
particular weakly measure compact Banach space X would imply automatically
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that McShane and Pettis integrability coincide for X-valued functions. This ap-
proach was used by Di Piazza and Preiss to obtain the aforementioned results on
the equivalence of both integrals in super-reflexive spaces and c0(Γ) for any non-
empty set Γ. An important part of their argument relies on the existence of suitable
projectional resolutions of the identity (PRI) in those spaces. The fact that every
WCG space is weakly measure compact and admits a PRI led them to ask whether
McShane and Pettis integrability are still equivalent for functions with values in
arbitrary WCG spaces [4, p. 1178]. It is also natural to think about the same ques-
tion within the more general class of WLD Banach spaces, since all of these are
weakly measure compact and admit a PRI as well.

In this paper (summarized below) we discuss the coincidence of McShane and
Pettis integrability in certain non-separable WLD Banach spaces.

In Section 2 we introduce the terminology and notation used throughout the
paper. A few known lemmas on PRIs and the McShane integral are stated there
for the convenience of the reader.

Section 3 is devoted to show that, for an arbitrary finite measure µ, a func-
tion f : [0, 1] → L1(µ) is McShane integrable if and only if it is Pettis integrable
(Theorem 3.5). Recall that L1(µ) is always WCG for finite µ, while it may be
non-separable. Besides the aforementioned reduction to the case of scalarly null
functions, our proof of Theorem 3.5 makes use of Maharam’s classification of mea-
sure algebras, a special type of separable projectional resolutions of the identity
(SPRI) on L1(µ)-spaces and the already known equivalence of McShane and Pet-
tis integrability for Hilbert space-valued functions (a proof is included here, see
Corollary 3.2).

In Section 4 we present another example (also under CH) of a scalarly null func-
tion which is not McShane integrable (Example 4.1). The novelty of this example
relies on the fact that the Banach space in the range is WLD, so we cannot expect
a general result on the coincidence of McShane and Pettis integrability in WLD
spaces. In Example 4.1, the key to distinguish Pettis integrability from McShane
integrability has to do with the behavior of the composition of a vector-valued
function with an absolutely summing operator, as we next explain.

Recall that an operator (i.e., linear and continuous map) u : X → Y between
Banach spaces is absolutely summing if it takes unconditionally convergent series to
absolutely convergent ones. As one may expect, absolutely summing operators also
improve the integrability properties of vector-valued functions. This topic has been
studied by several authors, see [3], [5], [19], [21], [22] and [28]. Given an X-valued
Pettis integrable function f , the Y -valued composition u ◦ f is Bochner integrable
in many cases (but not always): this happens whenever f is McShane, Birkhoff
or Talagrand integrable, as well as whenever X is a subspace of a weakly Lindelöf
C(K) space, see [28]. The latter is the case if X is WCG or, more generally, if X is
WLD and (BX∗ , w∗) has the so-called property (M) (i.e., every Radon probability
on it has separable support). The results in [28] left open the question whether u◦f
is Bochner integrable provided that f is scalarly null or X is WLD. It turns out that
this is not true in general, since the composition of the function of Example 4.1 with
certain absolutely summing operator is not Bochner integrable. Our construction
is based on an example (under CH) of a WLD Banach space whose dual unit ball
fails property (M), due to G. Plebanek and O. Kalenda [26].
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2. Preliminaries

All unexplained notation and terminology can be found in our standard refer-
ences [7], [9], [10] and [30]. The cardinality of a set A is denoted by card(A) and ω1

stands for the first uncountable ordinal. Our Banach spaces X are assumed to be
real. We write ‖·‖X (or simply ‖·‖) to denote the norm of X. The density character
of X, denoted by dens(X), is the smallest cardinality of a dense subset of X. As
usual, BX = {x ∈ X : ‖x‖X ≤ 1} and X∗ stands for the (topological) dual of X.
We denote by w∗ the weak∗ topology on X∗. Given a compact Hausdorff topolog-
ical space K, we denote by C(K) the Banach space of all real-valued continuous
functions on K, equipped with the supremum norm. Given a finite measure space
(Ω,Σ, µ), we write L1(µ) to denote the Banach space of all (equivalence classes of)
Σ-measurable and µ-integrable real-valued functions on Ω, equipped with the usual
norm ‖f‖L1(µ) =

∫
Ω
|f | dµ.

A Banach space X is WCG if there is a weakly compact set K ⊂ X such that
span(K) = X. Standard examples of WCG spaces are the separable or reflexive
ones, c0(Γ) (for any non-empty set Γ) and L1(µ) (for any finite measure µ). The
well known Amir-Lindenstrauss theorem [1] (cf. [10, Theorem 11.6]) asserts that
every non-separable WCG Banach space X admits a PRI, i.e., a collection

{Pα : ω ≤ α ≤ dens(X)}
of bounded linear projections on X such that Pω ≡ 0, Pdens(X) is the identity on X
and for every ω < α ≤ dens(X) the following hold:

• ‖Pα‖ = 1.
• dens(Pα(X)) ≤ card(α).
• Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω ≤ β ≤ α.
•

⋃
ω≤β<α Pβ+1(X) is dense in Pα(X).

As in [9, Definition 6.2.6], we say that a collection {Pα : ω ≤ α ≤ dens(X)}
of bounded linear projections on a non-separable Banach space X is a SPRI if
Pω ≡ 0, Pdens(X) is the identity on X and for every ω ≤ α < dens(X) we have:

• (Pα+1 − Pα)(X) is separable.
• Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω ≤ β ≤ α.
• x ∈ span{(Pα+1 − Pα)(x) : ω ≤ α < dens(X)} for every x ∈ X.

The last property also holds true for any PRI, see e.g., [9, Proposition 6.2.1]. In
particular, if dens(X) = ω1, then every PRI on X is also a SPRI.

A Banach space X is WLD if (BX∗ , w∗) is a Corson compactum, i.e., it is home-
omorphic to some set S ⊂ [−1, 1]Γ (endowed with the product topology) such that
for each s ∈ S the set {γ ∈ Γ : s(γ) 6= 0} is countable. The class of WLD spaces is
strictly bigger than that of WCG spaces and is made up of weakly Lindelöf spaces,
see e.g., [9, Chapter 7] and [10, Chapters 11 and 12]. Every non-separable WLD
space admits a PRI as well as a SPRI, see e.g., [9, Chapters 6 and 8]. The follow-
ing folk lemma (which we did not find in print as stated below) will be useful in
Section 3. The proof given here imitates that of [10, Proposition 12.51].

Lemma 2.1. Let {Pα : ω ≤ α ≤ dens(X)} be either a PRI or a SPRI on a
non-separable WLD Banach space X. Then for each x∗ ∈ X∗ the set

{ω ≤ α < dens(X) : x∗|(Pα+1−Pα)(X) 6≡ 0}
is countable.
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Proof. Let S be the set of all x∗ ∈ X∗ for which

Γ(x∗) := {ω ≤ α < dens(X) : x∗|(Pα+1−Pα)(X) 6≡ 0}
is countable. It is clear that S is a linear subspace of X∗. We claim that S is
w∗-closed. Indeed, by the Banach-Dieudonné theorem (cf. [10, Theorem 4.44]) it
suffices to show that mBX∗∩S is w∗-closed for every m ∈ N. To this end, fix m ∈ N
and take x∗ ∈ mBX∗ ∩ S

w∗

. Since mBX∗ is angelic (cf. [10, Exercise 12.55]), there
is a sequence (x∗n) in mBX∗ ∩ S which w∗-converges to x∗, so Γ(x∗) ⊂

⋃∞
n=1 Γ(x∗n)

and therefore x∗ ∈ mBX∗ ∩ S. This shows that S is w∗-closed.
Now take any x0 ∈ X satisfying x∗(x0) = 0 for every x∗ ∈ S. Since

x0 ∈ span{(Pα+1 − Pα)(x0) : ω ≤ α < dens(X)}
and y∗ ◦ (Pα+1 − Pα) ∈ S for every y∗ ∈ (Pα+1 − Pα)(X)∗ and ω ≤ α < card(X),
we conclude that x0 = 0. An appeal to the Hahn-Banach theorem ensures that
S = X∗ and the proof is over. �

The statement “every Corson compactum has property (M)” is undecidable in
ZFC: it is true under Martin’s Axiom and the negation of CH, whereas it is false
under CH, see e.g., [26] and the references therein. It is known that for a Banach
space X the following implications hold:

WCG ⇒ WLD and (BX∗ , w∗) has property (M) ⇒ WLD

m
C(BX∗) WLD

and no reverse arrow is true in general, see [2], [9, Chapter 7] and [26].
Throughout this paper we denote by λ the Lebesgue measure on the σ-algebra L

of all Lebesgue measurable subsets of [0, 1]. Let X be a Banach space and consider
a function f : [0, 1] → X. Given A ⊂ [0, 1], we write fχA to denote the X-valued
function defined on [0, 1] which agrees with f on A and vanishes outside A. Recall
that f is said to be

(i) scalarly null if for each x∗ ∈ X∗ the composition x∗ ◦ f vanishes a.e. (the
exceptional set depends on x∗);

(ii) scalarly measurable if x∗ ◦ f is measurable for every x∗ ∈ X∗;
(iii) strongly measurable if it is scalarly measurable and there is E ∈ L with

λ(E) = 1 such that f(E) is separable; equivalently, f is the a.e. limit of a
sequence of simple functions, cf. [7, Theorem 2, p. 42];

(iv) Bochner integrable if it is strongly measurable and
∫ 1

0
‖f‖ dλ < ∞;

(v) Pettis integrable if x∗ ◦f is integrable for every x∗ ∈ X∗ and for each E ∈ L
there is xE ∈ X (the Pettis integral of f over E) such that∫

E

(x∗ ◦ f) dλ = x∗(xE) for every x∗ ∈ X∗.

Clearly, every scalarly null function is Pettis integrable. Recall also that a function
g : [0, 1] → X is scalarly equivalent to f if f − g is scalarly null.

In order to introduce the McShane integral we need some extra terminology. A
gauge on [0, 1] is a function δ : [0, 1] → R+. A McShane partition of [0, 1] is a finite
collection {(Ei, ti)}1≤i≤p, where the Ei’s are non-overlapping closed subintervals
such that

⋃p
i=1 Ei = [0, 1] and ti ∈ [0, 1] for every 1 ≤ i ≤ p. If the condition

“
⋃p

i=1 Ei = [0, 1]” is dropped, then {(Ei, ti)}1≤i≤p is called a partial McShane
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partition of [0, 1]. We say that {(Ei, ti)}1≤i≤p is subordinate to δ provided that
Ei ⊂ (ti − δ(ti), ti + δ(ti)) for every 1 ≤ i ≤ p. It is an easy exercise to show that
for every gauge δ on [0, 1] there is a McShane partition of [0, 1] subordinate to δ.

The function f : [0, 1] → X is McShane integrable, with McShane integral x ∈ X,
if for every ε > 0 there is a gauge δ on [0, 1] such that∥∥∥ p∑

i=1

λ(Ei)f(ti)− x
∥∥∥

X
≤ ε

for every McShane partition {(Ei, ti)}1≤i≤p of [0, 1] subordinate to δ. As we have
already mentioned in the introduction, in this case f is also Pettis integrable (and
the respective integrals coincide), see [17, Theorem 2C].

The following two auxiliary results (Lemmas 1 and 2 in [4]) will be helpful when
dealing with scalarly null McShane integrable functions.

Lemma 2.2. Let X be a Banach space and f : [0, 1] → X a function. Then f is
scalarly null and McShane integrable if and only if for every ε > 0 there is a gauge
δ on [0, 1] such that ∥∥∥ p∑

i=1

λ(Ei)f(ti)
∥∥∥

X
≤ ε

for every partial McShane partition {(Ei, ti)}1≤i≤p of [0, 1] subordinate to δ.

Lemma 2.3. Let X be a Banach space and fn : [0, 1] → X a sequence of scalarly
null McShane integrable functions converging pointwise to a function f : [0, 1] → X.
Then f is scalarly null and McShane integrable.

We stress that the McShane integral can also be set up in the more general case
of functions defined on σ-finite outer regular quasi-Radon measure spaces, see [13].
It is worth pointing out that our results in Section 3 are valid in this setting as well.
However, as in [4], we only work with functions defined on [0, 1] in order to avoid
some non-interesting technicalities arising in the general case which would obscure
the main ideas.

3. McShane and Pettis integrability for L1(µ)-valued functions

Recall that the `p-sum (1 ≤ p < ∞) of a family (Xi)i∈I of Banach spaces is the
linear space( ⊕

i∈I

Xi

)
p
:=

{
(xi)i∈I ∈

∏
i∈I

Xi : ‖(xi)i∈I‖(⊕i∈I Xi)p
:=

(∑
i∈I

‖xi‖p
Xi

)1/p

< ∞
}

,

which becomes a Banach space when equipped with the norm ‖ · ‖(⊕i∈I Xi)p
.

Following [4, Corollary 1], we denote by P the class of all Banach spaces X
for which every scalarly null function f : [0, 1] → X is McShane integrable. The
stability of this class under `p-sums is discussed in Proposition 3.1 below. Although
part (i) can be deduced from Corollary 1 (b) and Lemma 5 in [4], we prefer to give
here a more direct proof which advances some of the ideas used later when dealing
with L1(µ)-valued functions.

Proposition 3.1. Let (Xi)i∈I be a family of Banach spaces belonging to P.
(i) (

⊕
i∈I Xi)p belongs to P for every 2 ≤ p < ∞.

(ii) If I is countable, then (
⊕

i∈I Xi)p belongs to P for every 1 ≤ p < ∞.
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Proof. (i) Set X := (
⊕

i∈I Xi)p. Let f : [0, 1] → X be a scalarly null function. We
will check that f is McShane integrable. Note first that we can assume without loss
of generality that f is bounded. Indeed, it suffices to bear in mind Lemma 2.3 and
the fact that there is a sequence (fn) of bounded scalarly null functions converging
pointwise to f (take An := {t ∈ [0, 1] : ‖f(t)‖X ≤ n} and fn := fχAn

for every
n ∈ N). Fix M > 0 such that ‖f(t)‖X ≤ M for every t ∈ [0, 1]. We will show that
f is the uniform limit of a sequence of scalarly null McShane integrable functions
(an appeal to Lemma 2.3 will then finish the proof).

For each i ∈ I, write πi : X → Xi to denote the canonical projection and set
gi := πi ◦ f . Since gi is scalarly null and Xi belongs to P, we infer that gi is
McShane integrable.

Fix ε > 0. For each t ∈ [0, 1] there is a finite set I(t) = {i1(t), . . . , in(t)(t)} ⊂ I
such that ∑

i∈I\I(t)

‖gi(t)‖p
Xi
≤ εp.

Then the function ϕ : [0, 1] → X given by

πi(ϕ(t)) =

{
gi(t) if i ∈ I(t),
0 if i 6∈ I(t),

satisfies ‖f(t) − ϕ(t)‖X ≤ ε for every t ∈ [0, 1]. We claim that ϕ is scalarly null
and McShane integrable.

For each n ∈ N we define a function ϕn : [0, 1] → X by

πi(ϕn(t)) =

{
gi(t) if n ≤ n(t) and i = in(t),
0 otherwise.

It is clear that ϕ =
∑∞

n=1 ϕn pointwise. By Lemma 2.3, in order to check that ϕ
is scalarly null and McShane integrable it suffices to show that the same holds for
each ϕn.

To this end, fix n ∈ N and η > 0. For each i ∈ I, Lemma 2.2 applied to gi

ensures the existence of a gauge δi on [0, 1] such that

∥∥∥ J∑
j=1

λ(Fj)gi(sj)
∥∥∥

Xi

≤ ηp

for every partial McShane partition {(Fj , sj)}1≤j≤J of [0, 1] subordinate to δi. De-
fine a gauge δ on [0, 1] by δ(t) := min{δi(t) : i ∈ I(t)} for every t ∈ [0, 1].

Now let {(Ek, tk)}1≤k≤K be a partial McShane partition of [0, 1] subordinate
to δ. Given i ∈ I, set

A(i) := {1 ≤ k ≤ K : n ≤ n(tk), i = in(tk)}

and observe that the collection {(Ek, tk)}k∈A(i) is a partial McShane partition
of [0, 1] subordinate to δi, hence∥∥∥ ∑

k∈A(i)

λ(Ek)gi(tk)
∥∥∥

Xi

≤ ηp.
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Therefore,

(1)
∥∥∥ K∑

k=1

λ(Ek)ϕn(tk)
∥∥∥

X
=

(∑
i∈I

∥∥∥ K∑
k=1

λ(Ek)πi(ϕn(tk))
∥∥∥p

Xi

)1/p

=
(∑

i∈I

∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)
∥∥∥p

Xi

)1/p

≤ η ·
(∑

i∈I

∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)
∥∥∥p−1

Xi

)1/p

.

Since p ≥ 2 and A(i) ∩A(i′) = ∅ whenever i 6= i′, we have∑
i∈I

∥∥∥ ∑
k∈A(i)

λ(Ek)gi(tk)
∥∥∥p−1

Xi

≤ Mp−1 ·
(∑

i∈I

λ
( ⋃

k∈A(i)

Ek

)p−1)
≤ Mp−1 ·

(∑
i∈I

λ
( ⋃

k∈A(i)

Ek

))
≤ Mp−1,

which combined with (1) yields∥∥∥ K∑
k=1

λ(Ek)ϕn(tk)
∥∥∥

X
≤ η ·M (p−1)/p.

As η > 0 is arbitrary, ϕn is scalarly null and McShane integrable (by Lemma 2.2).
This completes the proof of (i).

(ii) We use the notations X, πi and gi as in the proof of part (i). Enumerate
I = {i1, i2, . . . }. For each n ∈ N, the function fn : [0, 1] → X defined by

πi(fn(t)) =

{
gi(t) if i ∈ {i1, . . . , in},
0 otherwise,

is scalarly null and McShane integrable, as can be easily seen (use Lemma 2.2 and
the fact that each gi is scalarly null and McShane integrable). Since fn(t) → f(t)
as n → ∞ for every t ∈ [0, 1], an appeal to Lemma 2.3 ensures that f is McShane
integrable. The proof is over. �

As an immediate consequence of Proposition 3.1 (i) (and the weak measure
compactness of Hilbert spaces) we get the following:

Corollary 3.2 (Di Piazza-Preiss). Let X be a Hilbert space. Then a function
f : [0, 1] → X is McShane integrable if and only if it is Pettis integrable.

The previous corollary will be helpful when proving that L1(µ) belongs to P
for any finite measure µ (Theorem 3.5 below). Roughly speaking, we will do that
by “approximating” L1(µ)-valued scalarly null functions by i(L2(µ))-valued ones,
where i : L2(µ) → L1(µ) is the “inclusion” operator. Every L1(µ)-valued scalarly
null function whose range is contained in i(L2(µ)) is McShane integrable, as a
consequence of the following lemma.

Lemma 3.3. Let X be a Banach space and f : [0, 1] → X a scalarly null function.
Suppose there exist a Banach space Y belonging to P and an operator T : Y → X
such that T ∗(X∗) is sequentially w∗-dense in Y ∗ and f([0, 1]) ⊂ T (Y ). Then f is
McShane integrable.
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Proof. Let g : [0, 1] → Y be a function such that T ◦ g = f . It suffices to check
that g is McShane integrable. To this end, we will show that g is scalarly null. Fix
y∗ ∈ Y ∗. There is a sequence (x∗n) in X∗ such that (x∗n ◦T ) is w∗-convergent to y∗.
Since each x∗n ◦ f = (x∗n ◦T ) ◦ g vanishes a.e., the same holds for y∗ ◦ g. As y∗ ∈ Y ∗

is arbitrary, g is scalarly null and the proof is finished. �

Given an infinite ordinal α, we denote by Σα the product σ-algebra on {0, 1}α,
i.e., the σ-algebra generated by all the sets of the form

∏
β<α Aβ , where Aβ ⊂ {0, 1}

and Aβ = {0, 1} for all but finitely many β < α. We write λα to denote the
usual product probability on Σα. It is well known that card(α) = dens(L1(λα)) =
smallest cardinal κ for which there is a family C ⊂ Σα with card(C) = κ such
that inf{λα(A4C) : C ∈ C} = 0 for every A ∈ Σα. For basic information on the
probability space ({0, 1}α,Σα, λα) we refer the reader to [14, §254].

Recall that a Schauder basis in a (necessarily separable) Banach space X is
a sequence (xn) in X such that every x ∈ X can be written in a unique way as
x =

∑∞
n=1 an(x)xn for some sequence (an(x)) in R. In this case, for each m ∈ N the

mapping x 7→
∑m

n=1 an(x)xn is a bounded linear projection, cf. [10, Lemma 6.4].

Lemma 3.4. Let κ be an uncountable cardinal. Then L1(λκ) admits a SPRI

{Pα : ω ≤ α ≤ κ}

such that, for each ω ≤ α < κ, the subspace (Pα+1 − Pα)(L1(λκ)) has a Schauder
basis made up of Σκ-simple functions.

Proof. We divide the proof into several steps. The first one is an easy observation.
Step 1. Let α and β be infinite ordinals with card(α) = card(β). Then there is an

isometric isomorphism from L1(λα) onto L1(λβ) which maps Σα-simple functions
to Σβ-simple ones.

Step 2. Construction of a PRI on L1(λκ). For each ordinal ω < α ≤ κ, let
Fα be the σ-algebra on {0, 1}κ generated by the family {πβ : β < α}, where
πβ : {0, 1}κ → R stands for the β-th coordinate projection. It is clear that Fα is
exactly the family of all subsets of the form A × {0, 1}κ\α, where A ∈ Σα. Let
Qα : L1(λκ) → L1(λκ) be the norm 1 linear projection that maps each f ∈ L1(λκ)
to its conditional expectation with respect to Fα, usually denoted by E(f |Fα), cf.
[7, Lemma 3, p. 122]. In particular, Qκ is the identity on L1(λκ). Set Qω ≡ 0.
The basic properties of conditional expectations and martingales ensure that the
collection {Qα : ω ≤ α ≤ κ} is a PRI on L1(λκ). Indeed:

• From the definitions it follows that Qα ◦ Qβ = Qβ ◦ Qα = Qα whenever
ω ≤ α ≤ β ≤ κ.

• dens(Qα(L1(λκ))) ≤ card(α) for every ω < α ≤ κ. To check this, take
C ⊂ Σα with card(C) = card(α) such that inf{λα(A4C) : C ∈ C} = 0 for
every A ∈ Σα. Since span{χC×{0,1}κ\α : C ∈ C} is dense in Qα(L1(λκ)),
we get the desired inequality.

• For each ω < α ≤ κ, the set
⋃

ω≤β<α Qβ+1(L1(λκ)) is dense in Qα(L1(λκ)).
To prove this, fix f ∈ Qα(L1(λκ)) and note that

Qβ+1(f) = E(Qβ′+1(f)|Fβ+1) for every ω ≤ β ≤ β′ < α.

So (Qβ+1(f),Fβ+1)β∈T is a martingale, where T is the directed set [ω, α).
Since f ∈ L1(λκ) satisfies E(f |Fβ+1) = Qβ+1(f) for every β ∈ T and the
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σ-algebra generated by
⋃

β∈T Fβ+1 is Fα, we can apply [7, Corollary 2,
p. 126] to conclude that Qβ+1(f) → E(f |Fα) = f in L1(λκ).

Step 3. Fix ω ≤ α < κ. We claim that

(2) (Qα+1 −Qα)(L1(λκ)) = {(χEα − 1/2)f : f ∈ Qα(L1(λκ))},

where Eα = π−1
α ({1}). Indeed, since Fα+1 is exactly the σ-algebra generated by

Fα ∪ {Eα}, it is easy to see that

Fα+1 = {(B ∩ Eα) ∪ (B′ \ Eα) : B,B′ ∈ Fα}.

The previous equality, the fact that Fα+1-simple (resp. Fα-simple) functions are
dense in Qα+1(L1(λκ)) (resp. Qα(L1(λκ))) and the equality Qα(χEα) = 1/2 allow
us to deduce that (2) holds.

Notice that there is an isometric isomorphism

φα : L1(λα) → Qα(L1(λκ))

such that φα(χC) = χC×{0,1}κ\α for every C ∈ Σα. Thus, in view of (2), we can
define an isomorphism

ϕα : L1(λα) → (Qα+1 −Qα)(L1(λκ)), ϕα(f) := (χEα − 1/2)φα(f).

Step 4. The case κ = ω1. Then {Qα : ω ≤ α ≤ ω1} is a SPRI on L1(λω1). Let
us check that it satisfies the required property. Let f ∈ L1(λω) be the function
defined by f(z) := 1 if π0(z) = 0, f(z) := −1 if π0(z) = 1. For each n ∈ N and
each z0, . . . , zn−1 ∈ {0, 1}, define f(z0,...,zn−1) ∈ L1(λω) by

f(z0,...,zn−1)(z) :=


1 if πk(z) = zk for every 0 ≤ k < n and πn(z) = 0,

−1 if πk(z) = zk for every 0 ≤ k < n and πn(z) = 1,

0 otherwise.

It is well known that the sequence of Σω-simple functions

1, f, f(0), f(1), f(0,0), f(0,1), f(1,0), f(1,1), . . .

(with this order!) is a Schauder basis of L1(λω): it is just the Haar basis of L1[0, 1]
(cf. [10, p. 164]) viewed through the usual measure space isomorphism between
([0, 1],L, λ) and ({0, 1}ω,Σω, λω) (cf. [14, 254K]).

Fix ω ≤ α < ω1. In view of the preceding paragraph and the observation isolated
in Step 1, L1(λα) has a Schauder basis made up of Σα-simple functions. Since
the isomorphism ϕα of Step 3 maps Σα-simple functions to Σω1-simple ones, we
conclude that (Qα+1 −Qα)(L1(λω1)) has a Schauder basis made up of Σω1-simple
functions. This finishes the proof of the case κ = ω1.

Step 5. We prove the statement of the lemma by transfinite induction on κ. The
case κ = ω1 has already been considered in Step 4. So assume that κ > ω1 and that
for every cardinal ω1 ≤ κ′ < κ the space L1(λκ′) admits a SPRI {Qκ′

β : ω ≤ β ≤ κ′}
such that all the subspaces (Qκ′

β+1 −Qκ′

β )(L1(λκ′)) have a Schauder basis made up
of Σκ′ -simple functions. It is now clear (by Steps 1 and 3) that for every ω1 ≤ α < κ
the space (Qα+1 −Qα)(L1(λκ)) admits a SPRI {Pα

β : ω ≤ β ≤ card(α)} such that,
for each ω ≤ β < card(α), the subspace

(3) (Pα
β+1 − Pα

β )
(
(Qα+1 −Qα)(L1(λκ))

)
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has a Schauder basis made up of Σκ-simple functions. By [9, Proposition 6.2.7],
the whole space L1(λκ) admits a SPRI {Pα : ω ≤ α ≤ κ}. Moreover, a glance at
the proof of [9, Proposition 6.2.7] reveals that for each ω ≤ α < κ the subspace
(Pα+1−Pα)(L1(λκ)) coincides with a space of the form (3) and so it has the required
property. The proof of the lemma is now complete. �

As a consequence of Maharam’s theorem on the classification of measure alge-
bras, for any finite measure µ the space L1(µ) is isometrically isomorphic to(

`1(Γ)⊕
(⊕

i∈I

L1(λκi
)
)

1

)
1

where Γ and I are countable (maybe empty) sets, each κi is an infinite cardinal and
κi 6= κi′ whenever i 6= i′, cf. [20, Theorem 9, p. 127]. Bearing in mind this fact, we
are now ready to prove the main result of this section.

Theorem 3.5. Let µ be a finite measure. Then a function f : [0, 1] → L1(µ) is
McShane integrable if and only if it is Pettis integrable.

Proof. Since L1(µ) is WCG, it is weakly measure compact and so it suffices to show
that L1(µ) belongs to P. Moreover, in view of the comments preceding the theorem
and Proposition 3.1 (ii), we can suppose without loss of generality that µ = λκ for
some uncountable cardinal κ (recall that all separable Banach spaces belong to P).

Fix a scalarly null function f : [0, 1] → L1(λκ). By Lemma 2.3, in order to prove
that f is McShane integrable we only have to check that f is the pointwise limit of a
sequence of scalarly null McShane integrable functions. In fact, we will show that for
each ε > 0 there is a scalarly null McShane integrable function g : [0, 1] → L1(λκ)
such that ‖f(t)− g(t)‖L1(λκ) ≤ ε for every t ∈ [0, 1].

According to Lemma 3.4, L1(λκ) admits a SPRI {Pα : ω ≤ α ≤ κ} such that,
for each ω ≤ α < κ, the subspace (Pα+1 − Pα)(L1(λκ)) has a Schauder basis (xα

n)
made up of elements of i(L2(λκ)), where i : L2(λκ) → L1(λκ) is the “inclusion”
operator. Write Rα := Pα+1 − Pα and let

Rα,m : Rα(L1(λκ)) → L1(λκ)

be the canonical projection onto span{xα
1 , . . . , xα

m} for every m ∈ N.
Fix ε > 0. For each t ∈ [0, 1] there exist a finite set {α1(t), . . . , αn(t)(t)} ⊂ κ and

real numbers a1(t), . . . , an(t)(t) such that∥∥∥f(t)−
n(t)∑
i=1

ai(t)Rαi(t)(f(t))
∥∥∥

L1(λκ)
≤ ε.

Set g(t) :=
∑n(t)

i=1 ai(t)Rαi(t)(f(t)) for every t ∈ [0, 1]. We will see that the function
g : [0, 1] → L1(λκ) is scalarly null and McShane integrable.

Fix n ∈ N and consider the function fn : [0, 1] → L1(λκ) given by

fn(t) =

{
an(t)Rαn(t)(f(t)) if n(t) ≥ n,

0 if n(t) < n.

Claim. fn is scalarly null and McShane integrable. Indeed, fix m ∈ N and define
a function fn,m : [0, 1] → L1(λκ) by

fn,m(t) =

{
an(t)(Rαn(t),m ◦Rαn(t))(f(t)) if n(t) ≥ n,

0 if n(t) < n.
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We next prove that fn,m is scalarly null. To this end, fix x∗ ∈ L1(λκ)∗. According
to Lemma 2.1, the set {ω ≤ α < κ : x∗|Rα(L1(λκ)) 6≡ 0} is countable, so we can
enumerate it as {α1, α2, . . . }. For each l ∈ N, set

Bl := {t ∈ [0, 1] : n(t) ≥ n, αn(t) = αl}.

Then (x∗ ◦ fn,m)χBl
vanishes a.e., because f is scalarly null and

(x∗ ◦ fn,m)(t) = an(t)(x∗ ◦Rαl,m ◦Rαl
◦ f)(t) for every t ∈ Bl.

Writing B :=
⋃∞

l=1 Bl, we infer that (x∗ ◦ fn,m)χB vanishes a.e. Since x∗ ◦ fn,m

vanishes on [0, 1] \B, we conclude that x∗ ◦ fn,m vanishes a.e., as required.
Since fn,m is scalarly null and fn,m([0, 1]) ⊂ i(L2(λκ)), an appeal to Lemma 3.3

establishes that fn,m is McShane integrable (bear in mind that i∗ has norm dense
range and that L2(λκ) belongs to P, by Corollary 3.2). Finally, the fact that
fn,m → fn pointwise as m → ∞ allows us to apply Lemma 2.3 to infer that fn is
scalarly null and McShane integrable, as claimed.

Since g(t) =
∑∞

n=1 fn(t) for every t ∈ [0, 1], another appeal to Lemma 2.3 ensures
us that g is scalarly null and McShane integrable. The proof is over. �

Theorem 3.5 can be seen as an strengthening of the equivalence of McShane and
Pettis integrability in Hilbert spaces (Corollary 3.2), because `2(κ) is isomorphic to
a closed subspace of L1(λκ) for any infinite cardinal κ, see e.g., [10, Theorem 6.28]
(case κ = ω) and [20, Theorem 12, p. 128] (general case).

Observe that the conclusion of Theorem 3.5 is also valid when µ is σ-finite, since
in this case L1(µ) is isometrically isomorphic to L1(µ′) for some finite measure µ′.

4. Another example of a scalarly null function which is not
McShane integrable

As we mentioned in the introduction, the following example involves the WLD
Banach space whose dual unit ball fails property (M) constructed (under CH) by
G. Plebanek and O. Kalenda [26].

Recall (see e.g., [15, §311]) that the Stone space of a Boolean algebra A is the
set Ult(A) of all ultrafilters on A, equipped with the compact Hausdorff topology
generated by the sets of the form Â = {U ∈ Ult(A) : A ∈ U}, where A ∈ A.

Example 4.1 (Under CH). There exist a WLD Banach space X, a scalarly null
function h : [0, 1] → X and an absolutely summing operator u from X to another
Banach space Y such that u◦h : [0, 1] → Y is not Bochner integrable. In particular,
h is not McShane integrable.

Proof. Let A ⊂ Σω1 be the sub-algebra constructed in the proof of [26, Theo-
rem 3.1]. It is shown there that A satisfies the following properties:

(a) K := Ult(A) is a Corson compactum.
(b) λω1(A) > 0 for every non-empty A ∈ A.
(c) A =

⋃
α<ω1

Aα, where each Aα is a sub-algebra and Aα ⊂ Aξ whenever
α < ξ < ω1.

(d) For each ξ < ω1 there exist H0
ξ ,H1

ξ ∈ Aξ non-empty and disjoint such that

λω1(C ∩H0
ξ ) = λω1(C ∩H1

ξ ) for every C ∈
⋃
α<ξ

Aα.
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(e) Define gξ := χ
Ĥ0

ξ

− χ
Ĥ1

ξ

∈ C(K) for every ξ < ω1. Then for each Radon

probability ν on K the set {ξ < ω1 :
∫

K
gξ dν 6= 0} is countable.

Let µ be the unique Radon probability on K satisfying µ(Â) = λω1(A) for every
A ∈ A, cf. [16, Proposition 416Q]. As shown in the proof of [26, Theorem 3.1],
property (d) ensures that L1(µ) is non-separable. In fact, a similar computation
yields the following property:

(f) No uncountable subset of {gξ : ξ < ω1} is ‖ · ‖L1(µ)-separable.

Indeed, observe first that for each α < ξ < ω1 we have |gα − gξ| ≥ 1 on Ĥ0
α4Ĥ0

ξ ,
hence (d) can be applied to get

(4)
∫

K

|gα − gξ| dµ ≥ µ(Ĥ0
α4Ĥ0

ξ ) = µ(Ĥ0
α \ Ĥ0

ξ ) + µ(Ĥ0
ξ \ Ĥ0

α)

≥ µ(Ĥ0
α ∩ Ĥ1

ξ ) + µ(Ĥ0
ξ \ Ĥ0

α) = µ(Ĥ0
α ∩ Ĥ0

ξ ) + µ(Ĥ0
ξ \ Ĥ0

α) = µ(Ĥ0
ξ ).

In order to prove (f), fix I ⊂ ω1 such that {gα : α ∈ I} is ‖ · ‖L1(µ)-separable. Take
J ⊂ I countable such that {gα : α ∈ J} is ‖ · ‖L1(µ)-dense in {gα : α ∈ I}. Since J
is countable, there is ξ′ < ω1 such that α < ξ′ for every α ∈ J . In view of (4), we
have

inf
α∈J

∫
K

|gα − gξ| dµ ≥ µ(Ĥ0
ξ ) > 0 for every ξ′ ≤ ξ < ω1,

thus gξ 6∈ {gα : α ∈ J}
‖·‖L1(µ) for every ξ′ ≤ ξ < ω1. It follows that I ⊂ ξ′, so I is

countable and the proof of (f) is finished.

Let X := span{gξ : ξ < ω1} ⊂ C(K). Kalenda proved in [26, Corollary 4.4] that
X is a WLD Banach space such that (BX∗ , w∗) fails property (M).

Fix any bijection ϕ : [0, 1] → ω1 and set

h : [0, 1] → X, h(t) := gϕ(t).

Let i : X → C(K) be the inclusion operator and j : C(K) → L1(µ) the “identity”
operator (that sends each function to its equivalence class). It is well known that j
is absolutely summing (see e.g., [6, 2.9]), hence the same holds for the composition
u = j ◦ i : X → L1(µ). We claim that h and u satisfy the required properties.

Clearly, in order to check that h is scalarly null we only have to show that for
each Radon probability ν on K we have

∫
K

h(t) dν = 0 for a.e. t ∈ [0, 1]. Given
such a ν, property (e) ensures that the set {t ∈ [0, 1] :

∫
K

gϕ(t) dν 6= 0} is countable
(bear in mind that ϕ is a bijection) and so it has Lebesgue measure 0, as required.

On the other hand, u ◦h : [0, 1] → L1(µ) is not Bochner integrable. Indeed, take
any Ω ∈ L with λ(Ω) = 1. Since Ω is uncountable and ϕ is a bijection, the set
(u ◦ h)(Ω) = {gϕ(t) : t ∈ Ω} is not ‖ · ‖L1(µ)-separable, by property (f). It follows
that u ◦ h is not strongly measurable and, therefore, it is not Bochner integrable.

Finally, since the composition of a McShane integrable function with an abso-
lutely summing operator is always Bochner integrable (see [22, Theorem 5] or [28,
Theorem 3.13]), h cannot be McShane integrable. The proof is complete. �
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