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Abstract. Let X be a weakly Lindelöf determined Banach space. We prove
that if X is non-separable, then there exist a complete probability space

(Ω, Σ, µ) and a bounded Pettis integrable function f : Ω −→ X which is

not Birkhoff integrable; when the density character of X is greater than or
equal to the continuum, then f is defined on [0, 1] with the Lebesgue measure.

Moreover, in the particular case X = c0(I) (the cardinality of I being greater

than or equal to the continuum) the function f can be taken as the pointwise
limit of a uniformly bounded sequence of Birkhoff integrable functions, show-

ing that the analogue of Lebesgue’s dominated convergence theorem for the

Birkhoff integral does not hold in general.

1. Introduction

There are several extensions of the theory of Lebesgue integration to the case of
functions with values in Banach spaces, being widely known those due to Bochner [5]
and Pettis [13, 14, 18]. The Birkhoff integral [1] and the (generalized) McShane
integral [8] lie strictly between the Bochner and Pettis integrals and have caught
the attention of many authors pretty recently, see [2, 4, 8, 9, 10] and the references
therein.

It is well known that if the range Banach space is separable, then Pettis, Birkhoff
and McShane integrability coincide, see [15, Corollary 5.11] and [8, Corollary 4C].
The differences arise in the non-separable case, and the situation becomes more
complicated: every Birkhoff integrable function is McShane integrable, [9, Proposi-
tion 4], and every McShane integrable function is Pettis integrable, [8, Theorem 1Q],
but none of the reverse implications hold in general, as shown in [9, Example 8] and
[10, Example 3C], respectively (more examples can be found in [12, 16] and [4]).
However, for certain classes of non-separable Banach spaces some equivalences re-
main valid: Birkhoff and McShane integrability coincide for functions with values in
spaces with weak∗ separable dual unit ball (equivalently, spaces which are isometric
to subspaces of `∞), see [9, Theorem 10], and McShane and Pettis integrability co-
incide for functions defined on [0, 1] with values in c0(I) (I any set) or superreflexive
spaces, see [4].

In this paper we try to go a bit further when studying the differences between
Birkhoff and Pettis integrability in non-separable Banach spaces. We show that
for the wide class of weakly Lindelöf determined Banach spaces (WLD for short,
see below for the definition) there is not hope of obtaining a general result on the
equivalence of the Pettis and Birkhoff integrals. More precisely, our Theorem 2.1
states that for a non-separable WLD Banach space X there always exist a complete
probability space (Ω,Σ, µ) and a bounded Pettis integrable function f : Ω −→ X
which is not Birkhoff integrable. For “bigger” spaces this result can be refined
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in the following way (Theorem 2.3): for a WLD Banach space X with density
character greater than or equal to the continuum, there always exists a bounded
Pettis integrable function f : [0, 1] −→ X which is not Birkhoff integrable.

In addition, if I is a set of cardinality greater than or equal to the continuum, a
particular case of the constructions in Theorem 2.3 gives a uniformly bounded se-
quence of Birkhoff integrable functions fn : [0, 1] −→ c0(I) that converges pointwise
to a function f : [0, 1] −→ c0(I) which is not Birkhoff integrable (Theorem 2.5).
This means that the analogue of Lebesgue’s dominated convergence theorem for the
Birkhoff integral does not hold in general. This negative feature is not shared by
the Bochner, McShane and Pettis integrals, for which there are limit theorems that
ensure the validity of Lebesgue’s theorem (for norm and/or weak convergence), see
[5], [8, 10] and [14], respectively.

Our standard references are [7] and [18]. Throughout this paper c is the cardi-
nality of the continuum and λ stands for the Lebesgue measure on the σ-algebra
L of Lebesgue measurable subsets of [0, 1]. The cardinality of an arbitrary set A
will be denoted by |A|. We write X∗ to denote the dual of our Banach spaces X
(all of them are assumed to be real). BX is the unit ball of X. The density char-
acter of X, denoted by dens(X), is the minimal cardinality of a norm dense set
in X. A Markushevich basis of X is a family {(xi, x∗i )}i∈I ⊂ X × X∗ such that
(i) x∗i (xj) = δi,j (the Kronecker symbol) for every i, j ∈ I; (ii) span{xi}i∈I = X
and (iii) for each x ∈ X \ {0} there exists i ∈ I such that x∗i (x) 6= 0.

Recall that a Banach spaceX is said to be WLD if (BX∗ ,weak∗) is homeomorphic
to some subset S of a cube [−1, 1]I , endowed with the product topology, such that
for each s ∈ S the set {i ∈ I : s(i) 6= 0} is countable. The class of WLD Banach
spaces contains all weakly compactly generated spaces (Amir-Lindenstrauss, see [7,
Theorem 11.16]) and, more generally, all weakly countably determined ones (see
[6, Theorem 7.2.7]). In particular, the spaces considered in [4] for which Pettis
and McShane integrability coincide (c0(I) and the superreflexive ones) are WLD.
The existence of Markushevich bases in WLD Banach spaces, [19, Corollary 3.1]
(alternatively see Theorem 12.50 in [7]), will be an essential tool for the proofs of
Theorems 2.1 and 2.3.

2. The results

Let (Ω,Σ, µ) be a complete probability space. Recall that a function f defined
on Ω with values in a Banach space X is Birkhoff integrable (with respect to µ) if,
and only if, for every ε > 0 there is a countable partition (Bn) of Ω in Σ such that∥∥∥∑

n

µ(Bn)f(tn)−
∑
n

µ(Bn)f(t′n)
∥∥∥ < ε

for arbitrary choices tn, t′n ∈ Bn, being the series involved unconditionally conver-
gent. Note that the last requirement is automatically fulfilled if f is bounded.

Theorem 2.1. Let X be a WLD Banach space. If X is non-separable, then there
exist a complete probability space (Ω,Σ, µ) and a bounded Pettis integrable function
f : Ω −→ X which is not Birkhoff integrable.

Proof. As pointed out in the introduction, since X is WLD, there exists a Marku-
shevich basis of X, say {(yi, y∗i )}i∈I . By [17, Corollary], we can also assume that

sup
i∈I

‖yi‖ · ‖y∗i ‖ <∞.

Set xi = ‖y∗i ‖ · yi and x∗i = ‖y∗i ‖−1 · y∗i for each i ∈ I. Then {(xi, x∗i )}i∈I is a
Markushevich basis of X such that x∗i ∈ BX∗ for every i ∈ I and supi∈I ‖xi‖ <∞.
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Since span{xi}i∈I = X and X is non-separable, I is uncountable. Set Ω := I.
Let us consider the σ-algebra Σ in Ω made up of all sets A ⊂ Ω for which A or
Ω\A is countable, and take the following complete probability measure µ on (Ω,Σ):
µ(A) = 0 if A is countable, µ(A) = 1 otherwise. Define f : Ω −→ X by f(i) = xi
for every i ∈ Ω. Obviously f is bounded.

On the one hand, f is not Birkhoff integrable. Our proof is by contradiction.
Assume that f is Birkhoff integrable. Then there is a countable partition (Bn) of Ω
in Σ such that

(1)
∥∥∥∑
n

µ(Bn)f(tn)−
∑
n

µ(Bn)f(t′n)
∥∥∥ ≤ 1

2

whenever tn, t′n ∈ Bn. Since Ω is an atom of µ, all the Bn’s but one (say BN ) are
of µ-measure 0. Inequality (1) can now be read as

1
2
≥ sup
i,j∈BN

∥∥f(i)− f(j)
∥∥ = sup

i,j∈BN

∥∥xi − xj
∥∥

≥ sup
i,j∈BN

x∗i (xi − xj) = sup
i,j∈BN

(1− δi,j),

which contradicts the fact that BN has two distinct elements (in fact, BN is un-
countable). Therefore, f is not Birkhoff integrable.

On the other hand, f is Pettis integrable. To see this fix x∗ ∈ X∗. Since X is
WLD, the set {i ∈ I : x∗(xi) 6= 0} is countable, see [7, Proposition 12.51], and
therefore x∗f vanishes µ-almost everywhere. As x∗ ∈ X∗ is arbitrary, f is scalarly
µ-null and, in particular, Pettis integrable. The proof is complete. �

It follows that a WLD Banach space X is separable if, and only if, every
(bounded) Pettis integrable function defined on a complete probability space with
values in X is Birkhoff integrable. Therefore, whereas the coincidence of Pettis
and Bochner integrability characterizes the finite-dimensional Banach spaces, the
coincidence of Pettis and Birkhoff integrability characterizes the separable spaces
inside the class of WLD Banach spaces.

Our proof of Theorem 2.3 below is inspired by some ideas of the example of a
Pettis integrable function which is not Birkhoff integrable given in [12]. We first
need the result isolated in Lemma 2.2. Observe that, since the Borel σ-algebra
of [0, 1] has cardinality c, the same also holds for the collection of all countable
partitions of [0, 1] by Borel sets, which we enumerate as {Γα : α < c}.

Lemma 2.2. There exist collections {Aα}α<c and {A′α}α<c of countable subsets
of [0, 1] such that

(i) Aα ∩Aβ = ∅ and A′α ∩A′β = ∅ for every α, β < c with α 6= β;
(ii) Aα ∩A′β = ∅ for every α, β < c;
(iii) Aα ∩ E 6= ∅ and A′α ∩ E 6= ∅ for every α < c and every E ∈ Γα with

λ(E) > 0.

Proof. We proceed by transfinite induction. The first step is easy, since A0 and A′0
can be obtained by choosing exactly one point of each member of Γ0 of positive
λ-measure (taking different points for A0 and A′0, of course). Suppose now that
α < c and that we have already constructed two collections {Aβ}β<α and {A′β}β<α
of countable subsets of [0, 1] with the following properties: (1) Aβ ∩ Aγ = ∅ and
A′β ∩ A′γ = ∅ for every β, γ < α with β 6= γ; (2) Aβ ∩ A′γ = ∅ for every β, γ < α;
(3) Aβ ∩E 6= ∅ and A′β ∩E 6= ∅ for every β < α and every E ∈ Γβ with λ(E) > 0.

Observe thatA := ∪β<α(Aβ∪A′β) has cardinality |A| < c, because eachAβ∪A′β is
countable and |α| < c. Since each uncountable Borel subset of [0, 1] has cardinality
c, see [3, Theorem 8.3.6], it follows that if E ∈ Γα and λ(E) > 0, then |E \ A| = c
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and, in particular, E \ A has two distinct elements. Therefore, Aα and A′α can be
constructed by choosing exactly one element of E \A for every E ∈ Γα of positive
λ-measure (with different choices for Aα and A′α). The proof is finished. �

Theorem 2.3. Let X be a WLD Banach space. If dens(X) ≥ c, then there exists a
bounded Pettis integrable function f : [0, 1] −→ X which is not Birkhoff integrable.

Proof. As in the proof of Theorem 2.1, X admits a Markushevich basis {(xi, x∗i )}i∈I
such that x∗i ∈ BX∗ for every i ∈ I and supi∈I ‖xi‖ <∞.

Since span{xi}i∈I = X and dens(X) ≥ c, the cardinality of I is greater than or
equal to c. Fix two injective maps φ, ψ : c −→ I such that φ(c) ∩ ψ(c) = ∅. Let
{Aα}α<c and {A′α}α<c be the collections of subsets of [0, 1] obtained in Lemma 2.2.
Define f : [0, 1] −→ X by

(2) f(t) =


xφ(α) if t ∈ Aα, α < c

xψ(α) if t ∈ A′α, α < c

0 if t 6∈ ∪α<c(Aα ∪A′α).

Next we show that the bounded function f satisfies the required properties.
To see that f is Pettis integrable fix x∗ ∈ X∗. We already know that the set

{i ∈ I : x∗(xi) 6= 0} is countable. Since φ and ψ are injective and the Aα’s and
A′α’s are countable, the set {t ∈ [0, 1] : x∗f(t) 6= 0} is countable. As x∗ ∈ X∗ is
arbitrary, f is scalarly λ-null and, therefore, Pettis integrable.

To finish the proof we will show that f is not Birkhoff integrable by contradiction.
Assume that f is Birkhoff integrable. Then there exists a countable partition
Γ = (Bn) of [0, 1] in L such that

(3)
∥∥∥∑
n

λ(Bn)f(tn)−
∑
n

λ(Bn)f(t′n)
∥∥∥ ≤ 1

2

for arbitrary choices tn, t′n ∈ Bn. By the inner regularity of λ with respect to the
Borel σ-algebra of [0, 1], we can suppose without loss of generality that Γ is made
up of Borel sets, that is, Γ = Γα for some α < c.

Since Aα∩Bn 6= ∅ and A′α∩Bn 6= ∅ whenever λ(Bn) > 0, for each n ∈ N there are
some tn, t′n ∈ Bn such that

∑
n λ(Bn)f(tn) = xφ(α) and

∑
n λ(Bn)f(t′n) = xψ(α).

It follows that∥∥∥∑
n

λ(Bn)f(tn)−
∑
n

λ(Bn)f(t′n)
∥∥∥ =

∥∥xφ(α) − xψ(α)

∥∥
≥ x∗φ(α)(xφ(α) − xψ(α)) = 1,

which contradicts (3) and shows that f is not Birkhoff integrable. The proof is
finished. �

Observe that the function f constructed in the proof of Theorem 2.3 is even
universally Pettis integrable, i.e., f is Pettis integrable with respect to each Radon
measure on [0, 1]. This follows immediately from the boundedness of f and the fact
that {t ∈ [0, 1] : x∗f(t) 6= 0} is countable for every x∗ ∈ X∗.

As a consequence of Theorem 2.3 it turns out that, under the Continuum Hy-
pothesis, a WLD Banach space X is separable if, and only if, every (bounded) Pettis
integrable function f : [0, 1] −→ X is Birkhoff integrable.

Corollary 2.4. Let X be a superreflexive Banach space. If dens(X) ≥ c, then
there exists a bounded McShane integrable function f : [0, 1] −→ X which is not
Birkhoff integrable.

Proof. Since X superreflexive, Pettis and McShane integrability coincide for func-
tions f : [0, 1] −→ X, see [4]. The result now follows from Theorem 2.3. �
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From now on, given a set I, {(xi, x∗i )}i∈I will denote the standard Markushevich
basis of c0(I) (i.e. xi(j) = δi,j for every i, j ∈ I and x∗i (y) = y(i) for every y ∈ c0(I)
and every i ∈ I).
Theorem 2.5. Let I be a set of cardinality |I| ≥ c. Then there exists a uniformly
bounded sequence fn : [0, 1] −→ c0(I) of Birkhoff integrable functions that converges
pointwise to a function f : [0, 1] −→ c0(I) which is not Birkhoff integrable.

Proof. Let f : [0, 1] −→ c0(I) be the function given by (2) associated to the basis
{(xi, x∗i )}i∈I . The proof of Theorem 2.3 reveals that f is not Birkhoff integrable.

Write Aα = {aα,1, aα,2, . . . } and A′α = {a′α,1, a′α,2, . . . } for every α < c, and
define Dn := {aα,n : α < c} ∪ {a′α,n : α < c} and En := ∪nk=1Dk for every n ∈ N.
Define hn := fχDn

and fn := fχEn
=

∑n
k=1 hk for every n ∈ N (where χA denotes

the characteristic function of the set A). Then (fn) is a uniformly bounded sequence
(since f is bounded) that converges pointwise to f . In order to prove that each fn
is Birkhoff integrable it suffices to check that each hn is Birkhoff integrable. To this
end fix n ∈ N and ε > 0. Choose a finite partition (Ck)1≤k≤m of [0, 1] in L such
that λ(Ck) ≤ ε for every 1 ≤ k ≤ m. Observe that if tk ∈ Ck for every 1 ≤ k ≤ m,
then ∥∥∥ m∑

k=1

λ(Ck)hn(tk)
∥∥∥
∞
≤ max

1≤k≤m
λ(Ck) ≤ ε,

since hn|Dn
= f |Dn

is injective. As ε > 0 is arbitrary, hn is Birkhoff integrable. It
follows that fn is Birkhoff integrable for every n ∈ N, and the proof is finished. �

Observe that the functions fn obtained in the proof of Theorem 2.5 are even
Riemann integrable, i.e., given n ∈ N, for every ε > 0 there is a finite family (Ik)
of non-overlapping closed intervals covering [0, 1] such that∥∥∥∑

k

λ(Ik)fn(tk)−
∑
k

λ(Ik)fn(t′k)
∥∥∥
∞
< ε

whenever tk, t′k ∈ Ik. For a detailed account of the theory of Riemann integration
in Banach spaces we refer the reader to [11].

We finish the paper with Corollary 2.6 below (already known, see [9, Example 8]).
Although this result can be deduced in the same way as we did in Corollary 2.4
(recall that Pettis and McShane integrability coincide for functions defined on [0, 1]
with values in c0(I), [4]), the particular properties of our constructions allow us to
provide a direct proof.

Corollary 2.6. Let I be a set with cardinality |I| ≥ c. Then there exists a bounded
McShane integrable function f : [0, 1] −→ c0(I) which is not Birkhoff integrable.

Proof. We use the terminology of [10]. Let f : [0, 1] −→ c0(I) be the function
constructed in the proof of Theorem 2.5. We know that f is not Birkhoff integrable.
In order to prove that f is McShane integrable fix ε > 0. For each α < c the
set Aα (resp. A′α) is countable and we can choose an open set Aα ⊂ Gα ⊂ R
(resp. A′α ⊂ G′α ⊂ R) such that λ(Gα) ≤ ε (resp. λ(G′α) ≤ ε). Fix any gauge
δ : [0, 1] −→ R+ such that [t − δ(t), t + δ(t)] ⊂ Gα (resp. [t − δ(t), t + δ(t)] ⊂ G′α)
whenever t ∈ Aα (resp. t ∈ A′α) and α < c.

Now, if 〈([ai, bi], ti)〉1≤i≤n is a McShane partition of [0, 1] subordinate to δ, we
have∥∥∥ n∑

i=1

(bi − ai)f(ti)
∥∥∥
∞

=
∥∥∥∑
α<c

λ
( ⋃
ti∈Aα

[ai, bi]
)
xφ(α) +

∑
α<c

λ
( ⋃
ti∈A′

α

[ai, bi]
)
xψ(α)

∥∥∥
∞
≤ ε,
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since ∪ti∈Aα
[ai, bi] ⊂ Gα and ∪ti∈A′

α
[ai, bi] ⊂ G′α for every α < c. As ε > 0 is

arbitrary, f is McShane integrable, with integral 0, and the proof is complete. �
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2. B. Cascales and J. Rodŕıguez, Birkhoff integral and the property of Bourgain, preprint (2003),
available at URL http://www.um.es/beca/.
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Departamento de Matemáticas, Universidad de Murcia, 30.100 Espinardo

Murcia, Spain
E-mail address: joserr@um.es


