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ABSTRACT. We establish here some inequalities between distances of point-
wise bounded subsets H of RX to the space of real-valued continuous functions
C(X) that allow us to examine the quantitative difference between (pointwise)
countable compactness and compactness of H relative to C(X). We prove,
amongst other things, that if X is a countably K-determined space the worst
distance of the pointwise closure H of H to C(X) is at most 5 times the worst
distance of the sets of cluster points of sequences in H to C(X): here distance
refers to the metric of uniform convergence in RX . We study the quantitative
behavior of sequences in H approximating points in H . As a particular case we
obtain the results known about angelicity for these Cp(X) spaces obtained by
Orihuela. We indeed prove our results for spaces C(X, Z) (hence for Banach-
valued functions) and we give examples that show when our estimates are sharp.

1. INTRODUCTION
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The type of problems that we study in this paper are
illustrated in the Figure 1. Take X a topological space
and let C(X) be the space of real-valued continuous
functions defined on X . Now consider C(X) ⊂ RX

as the figure shows and let d be the metric of uni-
form convergence on RX . In order to fix ideas we
start with a pointwise bounded set H ⊂ C(X) (a bit
later we will allow H to be a subset of RX as in the
figure): if τp is the topology of pointwise convergence

on RX , then Tychonoff’s theorem says thatHRX

is τp-
compact. Therefore in order for H to be τp-relatively
compact in C(X) the only thing we must worry about

is to have HRX

⊂ C(X). Notice that if d̂ is the worst

distance from H
RX

to C(X) then d̂ = 0 if, and only, if HRX

⊂ C(X) if, and only
if, H is τp-relatively compact in C(X). In general d̂ ≥ 0 gives us a measure of
non τp-compactness for H relative to C(X). Hence the question is:

(A) for which kind of spaces X can we theoretically compute d̂?
and moreover

(B) are there useful estimates for d̂ that are equivalent to qualita-
tive properties of the sets H’s?

Here is a simplified case in the framework of (B) that we picture in Figure 1: take

a pointwise bounded set H ⊂ RX and let Hc be the set of those elements in HRX

that are cluster points of sequences in H (Hc is likely to be strictly smaller than
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H
RX

). If ρ̂ is the worst distance from Hc to C(X), the inclusion Hc ⊂ H
RX

clearly implies ρ̂ ≤ d̂. We study the existence of a universal constant M such that
for all pointwise bounded sets H ⊂ RX we have that d̂ ≤ Mρ̂. We succeed by
finding that this constant can be taken as M = 2 if X = K is a compact space and
the sets H are taken uniformly bounded and seated inside C(K). More generally,
for the very general class of countablyK-determined spacesX (for topologists the
class of Lindelöf Σ-spaces X) we prove that the universal constant can be taken as
M = 5. The inequality

ρ̂ ≤ d̂ ≤ 5ρ̂, (1.1)
somehow quantifies the fact that τp-relatively countably compact and τp-relatively
compact subsets of C(X) are the same. To properly say so we prove in Theo-
rem 3.2 an inequality sharper than (1.1) (when reading this theorem notice that
ck(H) ≤ ρ̂) that really says about the quantitative difference between countable
compactness and compactness for these (C(X), τp) spaces.

An answer to question (A) can be given using the result below:

Theorem 1.1 ([4, Proposition 1.18]). Let X be a normal space. If f ∈ RX , then

d(f, C(X)) =
1
2

osc(f)

where osc(f) = supx∈X osc(f, x) and

osc(f, x) := inf
U
{ sup
y,z∈U

|f(y)− f(z)| : U ⊂ X open, x ∈ U}.

In the cited reference, the theorem is stated under more restrictive conditions:
X is paracompact and f is uniformly bounded on X . A careful reading of the
proof in the reference should be enough to convince the reader that the uniform
boundedness of f is not needed and that paracompactness can be replaced by X
being normal if one takes into account [6, Exercise 1.7.5 (b)].

This paper is organized as follows. Section 2 is devoted to establishing the
already introduced inequalities for spaces C(K), K compact, and bounded sets
H ⊂ C(K), see Theorem 2.3: here we use techniques about distances to spaces
C(K), distances of iterated limits and oscillations of functions introduced in [5]
by W. Marciszewski, M. Raja and the second named author. In Example 2.4 it is
shown that the constants involved in Theorem 2.3 are sharp.

In Section 3 we get rid of the constraints imposed in Theorem 2.3, namely: be-
sides obtaining the results from compact spaces K by to countably K-determined
topological spaceX , we deal with pointwise bounded setsH ⊂ RX instead of uni-
formly bounded sets made up of continuous functions, see Theorems 3.1 and 3.2.
To do so we have to prove a technical result for ZX extending Proposition 2.2 to
the case when (Z, d) is only assumed to be separable instead of compact and when
the ε-interchanging of limits with the whole X is replaced by ε-interchanging of
limits with some distinguished subsets of X: see Lemmas 1, 2 and 3. We note
that all our results in this section are proved for spaces C(X,Z) with X countably
K-determined and (Z, d) metric and separable. We prove that our results here do
imply the main result obtained by Orihuela in [12]. The paper ends up by showing
that if X is a normal space with countable tightness (in particular metric space)
then the constants involved in the proved inequalities can be sharpened, see Propo-
sition 3.5 and Corollary 3.6.
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A bit of terminology: by letters T,X, Y, . . . we denote here sets or completely
regular topological spaces, (Z, d) is a metric space (Z if d is tacitly assumed); R
is considered as a metric space endowed with the metric associated to | · |. The
space ZX is equipped with the product topology τp. In ZX we also consider the
standard supremum metric, that abusively is also denoted by d and that we allow
to take the value +∞, i.e.,

d(f, g) = sup{d(f(x), g(x)) : x ∈ X}

for functions f, g : X → Z: we could have replaced the original metric in (Z, d) by
a bounded one without changing the uniform structure of Z and thus providing us
with a real uniform metric on ZX ; nonetheless we rather prefer to use the original
metric of (Z, d) and then deal with the usual arithmetic with +∞ and real numbers
when needed. C(X,Z) is the space of continuous maps from X into Z: C(X) is
the space of real-valued continuous functions and Cb(X) stands for the subspace
of C(X) made up of uniformly bounded functions. With symbols Cp(X,Z), and
their like, we denote the space C(X,Z) endowed with the topology induced by τp.

For A and B nonempty subsets of a metric space (Z, d), we consider the usual
distance between A and B given by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

and the Hausdorff non-symmetrized distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}.

2. THE RESULT FOR C(K) AND SHARPNESS OF THE CONSTANTS

The notion below introduced in [5] was first considered by Grothendieck in [9],
for ε = 0. For ε ≥ 0, this concept has also been used, in the framework of Banach
spaces, in [3, 7, 11] amongst others.

Definition 1. Let (Z, d) be a metric space, X a set and ε ≥ 0.

(i) We say that a sequence (fm)m inZX ε-interchanges limits with a sequence
(xn)n in X if

d(lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)) ≤ ε

whenever all limits involved do exist.
(ii) We say that a subsetH of ZX ε-interchanges limits with a subsetA ofX , if

each sequence in H ε-interchanges limits with each sequence in A. When
ε = 0 we simply say that H interchanges limits with A.

The following two results appeared in [5]:

Proposition 2.1 ([5, Corollary 2.6]). Let X be a topological space and let H be a
uniformly bounded subset of Cb(X). The following properties hold:

(i) if X is normal and H ε-interchanges limits with X , then

d̂(HRX

, Cb(X)) ≤ ε .

(ii) if X is countably compact and d̂(HRX

, Cb(X)) ≤ ε, then H 2ε-inter-
changes limits with X .



4 C. ANGOSTO AND B. CASCALES

Proposition 2.2 ([5, Proposition 5.2]). Let (Z, d) be a compact metric space, K
a set, and H ⊂ ZK a set which ε-interchanges limits with K. Then for any

f ∈ HZK

, there is a sequence (fn)n in H such that

sup
x∈K

d(g(x), f(x)) ≤ ε

for any cluster point g of (fn) in ZK .

Let T a topological space. For a subset A of T , AN is considered as the set of
all sequences in A and the set of all cluster points in T of a sequence ϕ ∈ AN is
denoted by clustT (ϕ). Recall that clustT (ϕ) is a closed subset of T and it can be
expressed as

clustT (ϕ) =
⋂
n∈N
{ϕ(m) : m > n}.

Combining the above two results we can prove now the result below.

Theorem 2.3. Let K be a compact topological space and let H be a uniformly
bounded subset of C(K). If we define

ck(H) := sup
ϕ∈HN

d(clustRK (ϕ), C(K))

then
ck(H) ≤ d̂(HRK

, C(K)) ≤ 2 ck(H), (2.1)

and for any f ∈ HRK

, there is a sequence (fn)n in H such that

sup
x∈K
|g(x)− f(x)| ≤ 2 ck(H) (2.2)

for any cluster point g of (fn) in RK .

Proof. The first inequality in (2.1) straightforwardly follows from the definitions
involved. We prove now that if ck(H) < +∞ then H 2 ck(H)-interchanges limits
with K. Indeed, let (fm)m be a sequence in H and (xn)n a sequence in K and let
us assume that both iterated limits

lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)

exist in R. If we fix α ∈ R with α > ck(H) the sequence (fm)m has a τp-cluster
point f ∈ RK such that d(f, C(K)) < α. Take and fix now f ′ ∈ C(K) such that

sup
x∈K
|f(x)− f ′(x)| < α. (2.3)

Let us pick x ∈ K a cluster point of (xn)n. Since f ′ and each fm are continuous
f ′(x) and fm(x) are, respectively, cluster points in R of (f ′(xn))n and (fm(xn))n.
Hence we can produce a subsequence (xnk

)k of (xn)n such that limk f
′(xnk

) =
f ′(x). Thus we have that

| lim
k
f(xnk

)− f(x)| ≤

≤ | lim
k
f(xnk

)− lim
k
f ′(xnk

)|+ |f ′(x)− f(x)|
(2.3)
≤ 2α.

(2.4)

We conclude that
lim
m

lim
n
fm(xn) = lim

m
fm(x) = f(x)
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and so
| lim
n

lim
m
fm(xn)− lim

m
lim
n
fm(xn)| =

= | lim
n

lim
m
fm(xn)− f(x)| = | lim

k
f(xnk

)− f(x)|
(2.4)
≤ 2α.

Now, the second inequality in (2.1) follows from Proposition 2.1 and (2.2) follows
from Proposition 2.2. The proof is over. �

Recall that a subset M of a topological space T is said to be relatively compact
(resp. relatively compact) if M ⊂ T is compact (resp. every sequence in M
has a cluster point in T ). Observe that if H is relatively countably compact in
Cp(K) then ck(H) = 0 and that H is relatively compact in Cp(K) if, and only

if, d̂(HRK

, C(K)) = 0. Theorem 2.3 says about approximation of points in the
pointwise closure of H by sequences from H and about the quantitative difference
between τp-countable compactness and τp-compactness of H relative to C(K).

Example 2.4. The following example communicated to us by Prof. Marciszewski
shows that the constant 2 in the inequality (2.1) in Theorem 2.3 cannot be im-
proved. Consider [0, ω1] the compact set of all the ordinals smaller or equal to the
first non countable ordinal ω1. Put

K = ({−1, 1} × [0, ω1])/R

where R is the relation defined as xRy if, and only if

x = y or x, y ∈ {(−1, ω1), (1, ω1)}.

Clearly K is a compact set. For α ≺ ω1 define fα : K → R as

fα(i, γ) =
{ 0 if γ � α,
i if γ � α

and put H = {fα : α ≺ ω1} ⊂ C(K). If (fαn)n is a sequence in H and
α := sup{αn : n ∈ N} then α ≺ ω1 and fαn(i, β) = 0 for all n ∈ N and β � α.
So for every β � α we have that g(i, β) = 0 for each cluster point g of (fαn)n.
If we define h : K → R as h(i, β) = 0 if β � α and h(i, β) = i/2 if β � α
then h ∈ C(K) and d(h, g) ≤ 1/2 for each cluster point g of (fαn)n. Thus we
conclude that ck(H) ≤ 1/2. On the other hand, the function h′ : K → R defined

as h′(i, β) = 0 if β = ω1 and h′(i, β) = i if β 6= ω1 belongs to HRK

and clearly
osc(h′) = 2 = 2d(h′, C(K)), see Theorem 1.1. Then

d̂(HRK

, C(K)) ≥ d(h′, C(K)) = 1 ≥ 2 ck(H)

and therefore by Theorem 2.3 d(HRK

, C(K)) = 2 ck(H). �

3. APPROXIMATION BY SEQUENCES IN Cp(X)

In this section we provide several lemmata leading to Theorem 3.1, that is a
fairly general result of approximation by sequences, and to Theorem 3.2, whose
inequalities say about the quantitative difference between countable compactness
and compactness in the spaces Cp(X,Z) considered. Here we will present our
results in its more general scope extending ideas from [12].
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If X is a topological space, (Z, d) a metric space and H a relatively compact
subset of the space (ZX , τp) we define

ck(H) := sup
ϕ∈HN

d(clustZK (ϕ), C(X,Z)). (3.1)

Note that Tychonoff’s theorem implies that in (ZX , τp) each relatively count-
ably compact set is relatively compact.

Lemma 1. Let X be a topological space, (Z, d) a metric space and H a relatively
compact subset of the space (ZX , τp). If we define

ε := ck(H) + d̂(H,C(X,Z)),

then H 2ε-interchanges limits with relatively countably compact subsets of X .

Proof. The proof goes like the one in Theorem 2.3 but with some further precau-
tions: in order to avoid a possible confusion of the reader we repeat some of the
arguments already presented. We only have to take care of the case ε < +∞. Let
(fm)m be a sequence in H and (xn)n a sequence in a relatively countably compact
subset of X and let us assume that both iterated limits

lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)

exist. If we fix α ∈ R with α > ck(H), then the sequence (fm)m has a τp-cluster
point f ∈ ZX such that d(f, C(X,Z)) < α. We observe that

lim
n

lim
m
fm(xn) = lim

n
f(xn). (3.2)

Take and fix now f ′ ∈ C(X,Z) such that

d(f, f ′) < α. (3.3)

On the other hand, if we fix β ∈ R with β > d̂(H,C(X,Z)), then for everym ∈ N
there is f ′m ∈ C(X,Z) such that

d(fm, f ′m) < β. (3.4)

Let us fix now x ∈ X a cluster point of (xn)n. Since f ′ and each f ′m are continuous
f ′(x) and f ′m(x) are, respectively, cluster points of (f ′(xn))n and (f ′m(xn))n in the
metric space (Z, d); hence we can produce a subsequence (xnk

)k of (xn)n such
that limk f

′(xnk
) = f ′(x) and limk f

′
m(xnk

) = f ′m(x) for every m ∈ N. Thus we
have that

d(lim
k
f(xnk

), f(x)) ≤

≤ d(lim
k
f(xnk

), lim
k
f ′(xnk

)) + d(f ′(x), f(x))
(3.3)
≤ 2α

(3.5)

and that
d(lim

k
fm(xnk

), fm(x)) ≤

≤ d(lim
k
fm(xnk

), lim
k
f ′m(xnk

)) + d(f ′m(x), fm(x))
(3.4)
≤ 2β.

(3.6)

We take now a subsequence (fmj )j of (fm)m such that f(x) = limj fmj (x) and
we conclude that

d(lim
m

lim
n
fm(xn), f(x)) = d(lim

j
lim
k
fmj (xnk

), lim
j
fmj (x))

(3.6)
≤ 2β
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and

d(lim
n

lim
m
fm(xn), f(x)) (3.2)= d(lim

k
f(xnk

), f(x))
(3.5)
≤ 2α.

The last two inequalities imply that

d(lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)) ≤ 2ε,

and the proof is over. �

Next easy lemma will be used repeatedly in the proof of Lemma 3.

Lemma 2. Suppose that (Z, d) is a separable metric space and let X be a set.
Given functions f1, . . . , fn ∈ ZX and D ⊂ X there is a countable subset L ⊂ D
such that for every x ∈ D

inf
y∈L

max
1≤k≤n

d(fk(y), fk(x)) = 0.

Proof. The metric
d∞
(
(tk), (sk)

)
:= sup

1≤k≤n
d(tk, sk),

(tk), (sk) ∈ Zn, defines the product topology of the space Zn. (Zn, d∞) is a
separable metric space and consequently its subspace

H = {(f1(x), f2(x), . . . , fn(x)) : x ∈ D}

is separable too. Thus, for some countable set L ⊂ D we have H ⊂ GZ
n

where

G := {(f1(y), f2(y), . . . , fn(y)) : y ∈ L}.
In other words, for each x ∈ D we have

(f1(x), f2(x), . . . , fn(x)) ∈ GZ
n

,

that precisely means

0 = inf
g∈G

d∞(g, (f1(x), . . . , fn(x))) = inf
y∈L

max
1≤k≤n

d(fk(y), fk(x)).

�

Let NN be the space of all sequences of positive integers and let N(N) be the
set of all finite sequences of positive integers. As a topological space NN always
carries its product topology τp of the discrete spaces N. We use the following
conventions: if α = (a1, a2, . . . ) ∈ NN and if n ∈ N, then α|n := (a1, a2, ..., an).
Let Σ be a subset of NN: we denote by F(Σ) the subset of the set of finite sequences
of positive integers N(N) defined by

F(Σ) = {(a1, a2, . . . , an) ∈ N(N) : there exists α ∈ Σ, α|n = (a1, a2, . . . , an)}.
Let {Aα : α ∈ Σ} be a family of non-void subsets of the set X . Given α =
(a1, a2, . . . ) ∈ Σ and n ∈ N we write

Cα|n =
⋃
{Aβ : β ∈ Σ and β|n = α|n}.

As usual, for a given set C ⊂ X and a sequence (xn)n in X we say that (xn)n
is eventually in C if there is m ∈ N such that xn ∈ C for n ≥ m.

Lemma 3. Let (Z, d) be a separable metric space, X a set and H a subset of the
space (ZX , τp) and ε ≥ 0. We assume that:
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(i) there is Σ ⊂ NN and a family {Aα : α ∈ Σ} of non-void subsets of the set
X such that X =

⋃
{Aα : α ∈ Σ};

(ii) for every α = (a1, a2, . . . ) ∈ Σ the set H ε-interchanges limits in Z with
every sequence (xn)n in X that is eventually in each set Cα|m, m ∈ N.

Then for any f ∈ HZX

there exists a sequence (fn)n∈N in H such that

sup
x∈X

d(g(x), f(x)) ≤ ε

for any cluster point g of (fn)n∈N in ZX .

Proof. Define f0 := f . Since F(Σ) is countable and infinite there is a bijec-
tion ϕ : N → F(Σ). We define Dn := Cϕ(n) for each n ∈ N. We claim
that there are a sequence of functions f0, f1, . . . , fn, . . . and a sequence of sets
L1, L2, . . . , Ln, . . . with the properties:

(a) Ln = {ln1 , ln2 , . . . , lnm, . . . } is a countable subset of Dn for every n ∈ N;
(b) for each n ∈ N and every x ∈ Dn we have

inf
y∈Ln

max
0≤k<n

d(fk(y), fk(x)) = 0; (3.7)

(c) for each n ∈ N the function fn belongs to H and

d(fn(y), f0(y)) <
1
n

for every y ∈ {ljk : 1 ≤ k ≤ n, 1 ≤ j ≤ n}. (3.8)

We prove the existence of the above sequences of functions and sets by recurrence.
FIRST STEP. Applying Lemma 2 to D := D1 and f0 we obtain a countable subset
L1 = {l11, l12, . . . , l1m, . . . } of D1 such that

inf
y∈L1

d(f0(y), f0(x)) = 0 for every x ∈ D1.

Since f ∈ HZX

, there is f1 ∈ H such that

d(f1(l11), f0(l11)) < 1.

INDUCTION STEP. Assuming we have produced f1, f2, . . . , fn andL1, L2, . . . , Ln
satisfying (3.7) and (3.8) we use Lemma 2 for D := Dn+1 and f0, f1, . . . , fn to
obtain Ln+1 ⊂ Dn+1 satisfying

inf
y∈Ln+1

max
0≤k<n+1

d(fk(y), fk(x)) = 0 for every x ∈ Dn+1.

Once again, since f ∈ HZX

we can take a function fn+1 ∈ H satisfying

d(fn+1(y), f0(y)) <
1

n+ 1
for every y ∈ {ljk : 1 ≤ k ≤ n+ 1, 1 ≤ j ≤ n+ 1}.

The constructed sequences f0, f1, . . . , fn, . . . and L1, L2, . . . , Ln, . . . satisfy (a),
(b) and (c) above.

We shall prove now that (fn)n∈N has the property required in the thesis in the
lemma: fix a cluster point g of (fn)n in ZX and fix a point x ∈ X and let us prove
that d(g(x), f(x)) ≤ ε. We note first that inequality (3.8) implies that

lim
n
fn(y) = f(y) for every y ∈ L =

⋃
n∈N

Ln. (3.9)

Now, we pick α = (a1, a2, . . . ) ∈ Σ such that x ∈ Aα and define

P := ϕ−1({α|n : n ∈ N}) ⊂ N.
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P is an infinite subset because ϕ is a bijection. Since the point x ∈
⋂
p∈P Dp, (3.7)

applied to each p ∈ P allows us to pick yp ∈ Lp with the property

d(fk(yp), fk(x)) <
1
p

for 0 ≤ k < p. (3.10)

Being P infinite we can and do fix p1 < p2 < · · · < pj < · · · ↗ +∞ a strictly
increasing sequence in P . We claim that the sequence (ypj )j is eventually in Cα|n
for every n ∈ N. Indeed, for a given n ∈ N take pj(n) an element of the sequence
(pj)j , with pj(n) > ϕ−1(α|i), i = 1, 2, . . . , n. Therefore, if j > j(n) then pj 6=
ϕ−1(α|i) for i = 1, 2, . . . , n and consequently ϕ(pj) = α|n(pj) for some n(pj) >
n. The latter implies

ypj ∈ Dpj = Cα|n(pj) ⊂ Cα|n, for j > j(n),

proving that (ypj )j is eventually in each Cα|n.
Observe also that (3.10) implies that

lim
j
fk(ypj ) = fk(x) for k = 0, 1, 2, . . . . (3.11)

Since g(x) is a cluster point of (fn(x))n in the metric space (Z, d) we can
choose a subsequence (fnk

)k of (fn)n such that limk fnk
(x) = g(x). With all

the above we have

lim
k

lim
j
fnk

(ypj ) (3.11)= lim
k
fnk

(x)=g(x),

lim
j

lim
k
fnk

(ypj ) (3.9)= lim
j
f(ypj ) (3.11)= f(x).

Being the sequence (ypj )j eventually in every Cα|n the assumption (ii) in the
lemma ensures us that H ε-interchanges limits with (ypj )j , consequently

d(g(x), f(x)) = d(lim
k

lim
j
fnk

(ypj ), lim
j

lim
k
fnk

(ypj )) ≤ ε,

and the proof is over. �

Recall that a topological space X is said to be countably K-determined if there
is a subspace Σ ⊂ NN and an upper semi-continuous set-valued map T : Σ→ 2X

such that T (α) is compact for each α ∈ Σ and T (Σ) :=
⋃
{T (α) : α ∈ Σ} = X .

Here the set-valued map T is called upper semi-continuous if for each α ∈ Σ and
for any open subset U of X such that T (α) ⊂ U there exists a neighborhood V
of α with T (V ) ⊂ U. A good reference for countably K-determined spaces is
[2] where they appear under the name Lindelöf Σ-spaces: notice that this class
of spaces does properly contain the classes of K-analytic and (so) the σ-compact
spaces. The paper [14] is a milestone when speaking about Banach spaces which
are countably K-determined when endowed with their weak topologies.

Theorem 3.1. Let X be a countably K-determined space, (Z, d) a separable me-
tric space and H a relatively compact subset of the space (ZX , τp). Then, for any

f ∈ HZX

there exists a sequence (fn)n in H such that

sup
x∈X

d(g(x), f(x))
(a)

≤ 2 ck(H) + 2d̂(H,C(X,Z))
(b)

≤ 4 ck(H)

for any cluster point g of (fn)n in ZX .
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Proof. We define ε := ck(H) + d̂(H,C(X,Z)). Let T : Σ → 2X be the set-
valued map giving the countably K-determined structure to X and let us write
Aα := T (α) for every α ∈ Σ. Then, the family {Aα : α ∈ Σ} covers X . We start
by proving the following:

CLAIM.- For every α ∈ Σ the set H 2ε-interchanges limits with every sequence
(xn)n in X that is eventually in each set Cα|m, m ∈ N.

To prove this we only have to use Lemma 1 after noticing that any such a sequence
(xn)n lies in a compact subset of X , namely

K := {xn : n ∈ N} ∪ T (α).

That such a K is compact is a well known fact about compact-valued upper-
semicontinuous maps but we include a short proof for the sake of completeness.
Let {Ui : i ∈ I} be an open cover of K in X . Since T (α) is compact there
are finitely many Ui1 , Ui2 , . . . , Uip such that T (α) ⊂ U =

⋃p
k=1 Uik . Now the

upper-semicontinuity of T applies to provide m ∈ N with the property that

Cα|m =
⋃
{T (β) : β ∈ Σ and β|m = α|m} ⊂ U.

Since (xn)n is eventually in every set Cα|m, there is n(m) ∈ N such that xn ∈ U
for all n > n(m). If we take Uip+1 , . . . , Uip+n(m)

from {Ui : i ∈ I} such that

xk ∈ Uip+k
for k = 1, 2, . . . , n(m), then K ⊂

⋃p+n(m)
k=1 Uik and consequently K

is compact and the proof of the claim is over.
Once the claim is proved inequality (a) follows from Lemma 3. To finish we

observe that given f ∈ H if we take ϕ(n) := f , n ∈ N, then clustZK (ϕ) = {f}
and therefore we have that

d̂(H,C(X,Z)) ≤ ck(H), (3.12)

leading to inequality (b). �

Theorem 3.2. Let X be a countably K-determined space, (Z, d) a separable me-
tric space and H a relatively compact subset of the space (ZX , τp). Then

ck(H)
(a)

≤ d̂(HZX

, C(X,Z))
(b)

≤ 3 ck(H) + 2d̂(H,C(X,Z))
(c)

≤ 5 ck(H).

Proof. Inequality (a) follows from the very definitions of the notions involved.
When ck(H) = +∞ all inequalities become trivial equalities. So we only take
care of the case when ck(H) < +∞. Inequality (c) follows from (3.12). To prove
(b) we define ε like we did in Theorem 3.1 as ε := ck(H) + d̂(H,C(X,Z)). We
fix α ∈ R with

α > ck(H). (3.13)

Pick now any f ∈ HZX

. Theorem 3.1 ensures the existence of a sequence (fn)n
in H such that

sup
x∈X

d(g(x), f(x)) ≤ 2ε (3.14)

for any cluster point g of (fn) in ZX . Now inequality (3.13) ensures the exis-
tence of such a cluster point g with d(g, C(X,Z)) < α that together with inequal-
ity (3.14) finishes the proof of (b). �
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Observe that if H ⊂ C(X,Z) then d̂(H,C(X,Z)) = 0 and consequently the
constant 5 can be replaced by the constant 3 in inequality (c) in the previous result.
Observe also that Theorems 3.1 and 3.2 are selfcontained and really strengthen
Theorem 2.3.

Remark 3.3. Note that if X and (Z, d) are as in Theorem 3.2 and H ⊂ C(X,Z) is
relatively compact in ZX then the following conditions are equivalent:

(i) ck(H) = 0,
(ii) H is a relatively countably compact subset of C(X,Z),

(iii) H is a relatively compact subset of C(X,Z).
Whereas (ii)⇒(i) is obvious and (ii)⇔(iii) was known [12], the implication (i)⇒(ii)
seems to require indeed the inequalities in Theorem 3.2. �

A topological space T is said to be angelic if, whenever H is a relatively count-
ably compact subset of T , its closure H is compact and each element of H is a
limit of a sequence in H . Our references for angelic spaces are [8] and [12]. Theo-
rems 3.1 and 3.2 are the quantitative versions of the angelicity of spaces Cp(X,Z)
established as the main result in [12] that we obtain as a corollary below.

Corollary 3.4 (Orihuela). Let X be a countably K-determined space and (Z, d) a
metric space. Then Cp(X,Z) is an angelic space.

Proof. A result by Fremlin states that Cp(X,Z) is angelic for any metric space
if, and only if, Cp(X,R) is angelic, [8, Theorem 3.5]. We prove the latter. If we
take H ⊂ C(X) a τp-relatively countably compact set in C(X), then ck(H) = 0.
This implies that the right hand side of inequality (c) in Theorem 3.2 is zero and
therefore we have

d̂(HRX

, C(X)) = 0,

that says that HRX

⊂ C(X) and consequently HRX

is compact in Cp(X). On

the other hand, if we pick f ∈ H
RX

an application of Theorem 3.1 produces a
sequence (fn)n in H such that for any τp-cluster point g of (fn)n we have

sup
x∈X

d(g(x), f(x)) = 0.

This means that the sequence (fn)n actually converges to f because it lies in the

τp-compact set HRX

and has f as its unique τp-cluster point. �

We point out that our main results, Theorems 3.1 and 3.2, can be proved (same
proofs and difficulty) in the more general setting of spaces X being web-compact,
quasi-Souslin, etc. as studied in [12]. Nonetheless we have preferred to stick to
countably K-determined spaces X because this case already carries all the main
ideas, is powerful enough for applications and this class of spaces X is already
pretty interesting for both topologists and analysts.

We end up the section and the paper studying some other kind of spaces X for
which estimates of the kind that we have presented in 3.2 can be proved.

A topological space T is said to be countably tight if, whenever S is a subset of
T and t ∈ S, then for some countable subset A of S, t ∈ A. Note that the simplest
examples of spaces countably tight are the first countable spaces (in particular met-
ric spaces). There are spaces which are non first countable but countably tight as
for instance Banach spaces endowed with their weak topologies, see [10, §24.1.6].
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If K is a compact space such that Cp(K) is Lindelöf then K is countably tight:
therefore Talagrand, Gulko and Corson compact spaces are countably tight, [14].

Oscillations for real functions have been defined in Theorem 1.1. Similarly for
f ∈ (Z, d)X the oscillation of f at x ∈ X is defined by

osc(f, x) = inf
U

sup
y,z∈U

d(f(y), f(z))

where the infimum is taken over the neighborhoods U of x in X . The overall
oscillation of f is given by osc(f) = supx∈X osc(f, x).

Proposition 3.5. Let X be a first countable space, (Z, d) a metric space and H a
pointwise relatively compact subset of (ZX , τp). Then

sup
f∈H

osc(f) = sup
ϕ∈HN

inf{osc(f) : f ∈ clustZX (ϕ)}. (3.15)

For Z = R the equality (3.15) holds when X is countably tight.

Proof. Let α be the right hand side of (3.15). Clearly

β := sup
f∈H

osc(f) ≥ α.

If β = 0 we are done. Otherwise, Otherwise, the equality (3.15) will be established
if we prove that each time β > ε > 0 we also have α ≥ ε. Pick f ∈ H such that
osc(f) > ε and then fix x0 ∈ X such that

osc(f, x0) > ε. (3.16)

Let U be a basis of neighborhoods for x0 ∈ X and let us distinguish the two cases
stated in the statement of the Proposition.
A. X is a first countable space.- We assume that U = {Un}n is countable to induc-
tively use inequality (3.16) and choose xn, yn ∈ Un such that d(f(xn), f(yn)) > ε,
for every n ∈ N. Let us write D := {xn : n ∈ N} ∪ {yn : n ∈ N}. Since
D ⊂ X is countable and f ∈ H there exists a sequence ϕ ∈ HN such that
limn ϕ(n)(x) = f(x) for every x ∈ D. Therefore, if g is an arbitrary τp-cluster
point of ϕ then g|D = f |D and we have in particular that

d(g(xn), g(yn)) > ε, for every n ∈ N, (3.17)

and so osc(g, x0) ≥ ε. Since g is an arbitrary τp-cluster point of ϕ we have proved
that

inf{osc(g) : g ∈ clustZX (ϕ)} ≥ ε
and therefore α ≥ ε and the proof for this case is complete.
B. X is countably tight and Z = R.- If we define

f1(x0) = inf
U∈U

sup
y∈U

f(y) and f2(x0) = sup
V ∈U

inf
z∈V

f(z),

then for every U, V ∈ U we have that

+∞ ≥ sup
y∈U

f(y) ≥ f1(x0) ≥ f(x0) ≥ f2(x0) ≥ inf
z∈V

f(z) ≥ −∞. (3.18)

We prove now the claim:
CLAIM.- for each U ∈ U there are elements yU , zU ∈ U such that
for every pair U, V in U we have that

f(yU )− f(zV ) > ε. (3.19)
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To prove the claim we distinguish three cases:
B1. The values f1(x0) and f2(x0) are real.- In this case we clearly have

osc(f, x0) = f1(x0)− f2(x0)
(3.16)
> ε.

For some γ ∈ R inequality (3.18) can be rephrased as

sup
y∈U

f(y)− ε

2
≥ f1(x0)− ε

2
> γ > f2(x0) +

ε

2
≥ inf

z∈V
f(z) +

ε

2

for each U, V ∈ U . Hence for every U, V ∈ U we can pick yU ∈ U and zV ∈ V
such that

f(yU )− ε

2
> γ > f(zV ) +

ε

2
and the claim is proved.
B2. f1(x0) = +∞.- In this case inequality (3.18) can be rewritten for each U, V ∈
U as

+∞ = sup
y∈U

f(y) > f(x0) + 2ε > f(x0) + ε > f2(x0) ≥ inf
z∈V

f(z) ≥ −∞.

Hence we can choose yU ∈ U and zV ∈ V such that

f(yU ) > f(x0) + 2ε > f(x0) + ε > f(zV ).

and the CLAIM is proved in this case.
B3. f1(x0) = −∞.- It is similar to case B2.

Now we finish the proof of B. Observe that x0 ∈ {yU : U ∈ U}∩{zV : V ∈ U}.
Since X is countably tight there are countable sets B ⊂ {yU : U ∈ U} and
C ⊂ {zV : V ∈ U} such that

x0 ∈ B ∩ C. (3.20)

Now D := B ∪ C ⊂ X is countable and proceeding as we did in Case A there
exists a sequence ϕ ∈ HN such that limn ϕ(n)(x) = f(x) for every x ∈ D.
Therefore, if g is any τp-cluster point of ϕ then g|D = f |D and if U ∈ U is
arbitrary equation (3.20) applies to provide us with b ∈ B ∩U and c ∈ C ∩U that
gives us when

d(g(b), g(c)) > ε

because of (3.19) and f(b) = g(b) and f(c) = g(c). Thus osc(g, x0) ≥ ε and
since g is an arbitrary τp-cluster point of ϕ the proof of this case concludes as we
concluded the proof of Case A. �

Corollary 3.6. Let X be a metric space, E a Banach space and H a τp-relatively
compact subset of EX . Then

ck(H) ≤ d̂(HEX

, C(X,E)) ≤ 2 ck(H). (3.21)

In the particular case whenE = R the spaceX can be taken normal and countably
tight and we have

d̂(HRX

, C(X)) = ck(H). (3.22)

Proof. In [5, Lemma 2.7] it has been proved that if X is paracompact space, E is
normed and f ∈ EX is bounded then

1
2

osc(f) ≤ d(f, Cb(X,E)) ≤ osc(f) .
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Where Cb(X,E) stands for the family of bounded continuous functions from X
to E: the reader can check that the the same proof of [5, Lemma 2.7] provides us
with the estimates

1
2

osc(f) ≤ d(f, C(X,E)) ≤ osc(f)

for arbitrary f ∈ EX . The latter together with the first part of Proposition 3.5
give us inequalities (3.21). On the other hand, the equality (3.21) follows from
Theorem 1.1 and the second part of Proposition 3.5. �

Note that without extra hypothesis of countable tightness for X we cannot ex-

pect to have the equality d̂(HRX

, C(X)) = ck(H) as the Example 2.4 shows.
At this point we should credit the Ph. D. dissertation [13]: some ideas for the

proof of Proposition 3.5 when Z = R have been inspired by the reading of a result
in [13] that is sharpened by our Corollary 3.6.

We would like to finish this paper noting that the reference [1] is a recent paper
dealing with cluster points of an arbitrary family of functions in the pointwise
convergence topology.
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DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30.100 ESPINARDO

MURCIA, SPAIN

E-mail address: beca@um.es


