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Abstract. In general, Banach space-valued Riemann integrable functions de-

fined on [0, 1] (equipped with the Lebesgue measure) need not be weakly con-

tinuous almost everywhere. A Banach space is said to have the weak Lebesgue

property if every Riemann integrable function taking values in it is weakly

continuous almost everywhere. In this paper we discuss this property for the

Banach space L1
X of all Bochner integrable functions from [0, 1] to the Banach

space X. We show that L1
X has the weak Lebesgue property whenever X has

the Radon-Nikodým property and X∗ is separable. This generalizes the result

by Chonghu Wang and Kang Wan [Rocky Mountain J. Math. 31 (2001), no. 2,

697–703] that L1[0, 1] has the weak Lebesgue property.

1. Introduction

The study of Riemann integration for Banach space-valued functions goes back
to the origins of Banach space theory. In a pioneering paper [1] dated on 1927,
Graves made clear that Lebesgue’s well-known criterion of Riemann integrability
for real-valued functions fails in general for vector-valued ones. Indeed, he gave
an example of a Riemann integrable function f : [0, 1] → `∞([0, 1]) which is not
norm continuous almost everywhere (a.e. for short) with respect to the Lebesgue
measure. In fact, it turns out that this failure is shared by the most familiar infinite-
dimensional Banach spaces (a remarkable exception is `1(N)). On the contrary, it
is not difficult to see that every a.e. norm continuous Banach space-valued function
defined on [0, 1] is Riemann integrable. For a detailed account on this topic, we
refer the reader to the survey [2] by Gordon.

The connection between Riemann integrability and continuity with respect to
the weak topology was first discussed by Alexiewicz and Orlicz [3]. They showed an
example of a weakly continuous function f : [0, 1] → c0(N) which is not Riemann
integrable. The ultimate reason for that relies on the fact that c0(N) contains
weakly convergent sequences which are not norm convergent (i.e. it fails the Schur
property): Kadets [4] proved that a Banach space Y has the Schur property if and
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only if every weakly continuous function f : [0, 1] → Y is Riemann integrable. This
result has been extended by Chonghu Wang and Zhenhua Yang [5] to arbitrary
locally convex topologies on Y weaker than the norm topology. On the other
hand, going back to the paper by Alexiewicz and Orlicz, they also constructed
a C[0, 1]-valued Riemann integrable function without points of continuity for the
weak topology. A Banach space Y is said to have the weak Lebesgue property (WLP
for short) if every Riemann integrable function f : [0, 1] → Y is weakly continuous
a.e. It is not difficult to check that every Banach space with separable dual has the
WLP, see [6, 7]. Recently, Chonghu Wang and Kang Wan [7] have shown that the
separability of the dual is not a necessary condition to have the WLP by proving
that L1[0, 1] has this property.

In this paper we study the WLP for the Banach space L1
X of all Bochner inte-

grable functions from [0, 1] to the Banach space X. Our approach clarifies somehow
the role of uniform integrability (relative weak compactness) in the original proof
that L1[0, 1] = L1

R has the WLP and allows us to extend this result to L1
X under

certain assumptions on X. Our main result states that L1
X has the WLP when-

ever X has the Radon-Nikodým property and X∗ is separable (Theorem 2.4). This
happens, for instance, if X is separable and reflexive. We finish the paper making
clear that the L1 space associated to a probability measure fails the WLP whenever
it has density character greater than or equal to the continuum (Proposition 2.10).

Terminology. All unexplained terminology can be found in our standard refer-
ences [8, 9]. The density character of a topological space is the minimal cardi-
nality of a dense subset. We work with [0, 1] equipped with the Lebesgue mea-
sure λ on the σ-algebra L of all Lebesgue measurable subsets of [0, 1]. All Banach
spaces here are assumed to be real. Let (Y, ‖ · ‖Y ) be a Banach space. Then
BY := {y ∈ Y : ‖y‖Y ≤ 1} and Y ∗ stands for the topological dual of Y . The weak∗

topology on Y ∗ is denoted by w∗. A function f : [0, 1] → Y is said to be strongly
measurable if it is the a.e. limit of a sequence of simple functions. According to
Pettis’ measurability theorem (cf. [8, Theorem 2, p. 42]), f is strongly measurable
if and only if it is scalarly measurable (i.e. for each y∗ ∈ Y ∗ the composition y∗ ◦ f

is measurable) and there is E ∈ L with λ(E) = 1 such that f(E) is separable. A
strongly measurable function f : [0, 1] → Y is Bochner integrable if the real-valued
function ‖f‖Y given by t 7→ ‖f(t)‖Y is Lebesgue integrable. After identifying func-
tions which coincide a.e., the linear space L1

Y of all (equivalence classes of) Bochner
integrable functions from [0, 1] to Y becomes a Banach space when endowed with
the norm

‖f‖L1
Y

:=
∫ 1

0

‖f‖Y dλ.

Recall that Y has the Radon-Nikodým property (RNP for short) if for each λ-
continuous countably additive measure ν : L → Y with bounded variation there
is a Bochner integrable function f : [0, 1] → Y such that ν(E) =

∫
E

f dλ for all
E ∈ L. Standard examples of Banach spaces having the RNP are the reflexive ones
and the separable duals.
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2. The results

Recall that a function f defined on [0, 1] and taking values in a Banach space Y

is said to be Riemann integrable, with integral y ∈ Y , if for every ε > 0 there is
δ > 0 such that ∥∥∥ n∑

k=1

λ(Ik)f(tk)− y
∥∥∥

Y
≤ ε

whenever I1, . . . , In is a finite collection of non-overlapping closed subintervals cov-
ering [0, 1] such that max1≤k≤n λ(Ik) ≤ δ and tk ∈ Ik for all 1 ≤ k ≤ n.

Lemma 2.1. Let Y be a Banach space with w∗-separable dual. Let f : [0, 1] → Y be
a function such that y∗ ◦ f is Riemann integrable for every y∗ ∈ Y ∗. The following
statements are equivalent:

(i) There is E ∈ L with λ(E) = 1 such that, for each sequence (tn) in [0, 1]
converging to a point of E, the set {f(tn) : n ∈ N} is relatively weakly
compact in Y .

(ii) f is weakly continuous a.e.

Proof. (ii)⇒(i) is obvious.
(i)⇒(ii) Let N ⊂ Y ∗ be a countable w∗-dense set and let σ(Y,N) be the topology

on Y of pointwise convergence on N , which is Hausdorff because N separates the
points of Y . Given y∗ ∈ N , the composition y∗ ◦ f is Riemann integrable and so it
is continuous a.e. Since N is countable, we can find F ∈ L with λ(F ) = 1 such that
f is σ(Y,N)-continuous at each point of F . We claim that f is weakly continuous
at each t ∈ E ∩ F . Indeed, let (tn) be a sequence in [0, 1] converging to t. Then
f(tn) → f(t) in the topology σ(Y,N). By the assumption, the set {f(tn) : n ∈ N}
is relatively weakly compact in Y . Since σ(Y,N) is Hausdorff and coarser than the
weak topology, both topologies coincide on any weakly compact subset of Y . It
follows that f(tn) → f(t) weakly and the proof is over. �

Given a Banach space X, we write L∞X∗ to denote the Banach space of all es-
sentially bounded strongly measurable functions from [0, 1] to X∗, equipped with
the essential supremum norm (functions which coincide a.e. are identified). It is
known (cf. [8, IV.1]) that there is an isometric embedding L∞X∗ ↪→ (L1

X)∗, where
the duality is given by 〈ϕ, h〉 =

∫ 1

0
〈ϕ(·), h(·)〉 dλ for all ϕ ∈ L∞X∗ and h ∈ L1

X . This
isometry is onto if and only if X∗ has the RNP, cf. [8, Theorem 1, p. 98]. In the
general case, BL∞

X∗ is still w∗-dense in B(L1
X)∗ .

Lemma 2.2. Let X be a Banach space. Let h, g ∈ L1
X for which there exist

disjoint A,B ∈ L such that
∫

A
‖h‖X dλ > a and

∫
B
‖g‖X dλ > b. Then either

‖h + g‖L1
X

> a + b or ‖h− g‖L1
X

> a + b.

Proof. We write hχA (resp. gχB) to denote the element of L1
X which coincides

with h (resp. g) on A (resp. B) and vanishes outside A (resp. B). Since BL∞
X∗

is w∗-dense in B(L1
X)∗ , we can take ϕh, ϕg ∈ BL∞

X∗ such that 〈ϕh, hχA〉 > a and
〈ϕg, gχB〉 > b. Clearly, we can assume without loss of generality that ϕh (resp. ϕg)
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vanishes outside A (resp. B). Then both ϕh +ϕg and ϕh−ϕg belong to BL∞
X∗ and,

therefore, we have

‖h + g‖L1
X

+ ‖h− g‖L1
X
≥ 〈ϕh + ϕg, h + g〉+ 〈ϕh − ϕg, h− g〉 =

= 2〈ϕh, h〉+ 2〈ϕg, g〉 = 2〈ϕh, hχA〉+ 2〈ϕg, gχB〉 > 2(a + b).

Hence either ‖h + g‖L1
X

> a + b or ‖h− g‖L1
X

> a + b. �

Given a Banach space X, a set H ⊂ L1
X is called uniformly integrable if it is

bounded and for each ε > 0 there is δ > 0 such that suph∈H
∫

C
‖h‖X dλ ≤ ε for

every C ∈ L with λ(C) ≤ δ.

Lemma 2.3. Let X be a Banach space with the WLP. Let f : [0, 1] → L1
X be a

Riemann integrable function. Then there is E ∈ L with λ(E) = 1 such that, for
each sequence (tn) in [0, 1] converging to a point of E, we have:

(i) The set {f(tn) : n ∈ N} is uniformly integrable.
(ii) For each C ∈ L, the set {

∫
C

f(tn) dλ : n ∈ N} is relatively weakly compact
in X.

Proof. We divide the proof into several steps.
Step 1. Fix β > 0 and let Eβ be the set of all t ∈ [0, 1] such that:

For every δ > 0 there exist t′ ∈ [0, 1] with |t′ − t| < δ and C ∈ L
with λ(C) < δ such that

∫
C
‖f(t)− f(t′)‖X dλ > β.

We claim that λ∗(Eβ) = 0 (as usual, λ∗ stands for the Lebesgue outer measure).
Suppose, if possible, otherwise. Since f is Riemann integrable, there is a finite
collection J1, . . . , Jm of non-overlapping closed subintervals covering [0, 1] such that∥∥∥ m∑

j=1

λ(Jj)(f(ξj)− f(ξ′j))
∥∥∥

L1
X

< βλ∗(Eβ)

for all choices ξj , ξ
′
j ∈ Jj , 1 ≤ j ≤ m. Write Ij to denote the interior of Jj , so

that the Ij ’s are pairwise disjoint. For some I ⊂ {1, . . . ,m} we have Ij ∩ Eβ 6= ∅
for every j ∈ I and

∑
j∈I λ∗(Ij ∩ Eβ) ≥ λ∗(Eβ). Rearranging if necessary, we can

assume that I = {1, . . . , n} for some 1 ≤ n ≤ m. Observe that

(1)
∥∥∥ n∑

j=1

λ(Ij)(f(ξj)− f(ξ′j))
∥∥∥

L1
X

< βλ∗(Eβ)

for all choices ξj , ξ
′
j ∈ Ij , 1 ≤ j ≤ n.

Since I1 ∩ Eβ 6= ∅, there exist points t1 ∈ I1 ∩ Eβ and t′1 ∈ I1 such that∫ 1

0
‖f(t1) − f(t′1)‖X dλ > β, hence

∫ 1

0
‖λ(I1)(f(t1) − f(t′1))‖X dλ > βλ(I1). Fix

1 ≤ k < n and assume that we have already chosen points tj , t
′
j ∈ Ij for all

1 ≤ j ≤ k with the property that

∥∥∥ k∑
j=1

λ(Ij)(f(tj)− f(t′j))
∥∥∥

L1
X

> β
( k∑

j=1

λ(Ij)
)
.
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Set g :=
∑k

j=1 λ(Ij)(f(tj)− f(t′j)) ∈ L1
X and

α := ‖g‖L1
X
− β

( k∑
j=1

λ(Ij)
)

> 0.

Choose δ > 0 such that
∫

C
‖g‖X dλ < α whenever C ∈ L and λ(C) < δ. Since

Ik+1 ∩Eβ 6= ∅, there exist tk+1 ∈ Ik+1 ∩Eβ , t′k+1 ∈ Ik+1 and C ∈ L with λ(C) < δ

such that
∫

C
‖f(tk+1)−f(t′k+1)‖X dλ > β, so h := λ(Ik+1)(f(tk+1)−f(t′k+1)) ∈ L1

X

satisfies

(2)
∫

C

‖h‖X dλ > βλ(Ik+1).

By the choice of δ, we also have
∫

C
‖g‖X dλ <

∫ 1

0
‖g‖X dλ− β(

∑k
j=1 λ(Ij)), thus

(3)
∫

[0,1]\C
‖g‖X dλ > β

( k∑
j=1

λ(Ij)
)
.

Bearing in mind inequalities (2) and (3), an appeal to Lemma 2.2 (interchanging
the role of tk+1 and t′k+1 if necessary) ensures that

∥∥∥k+1∑
j=1

λ(Ij)(f(tj)− f(t′j))
∥∥∥

L1
X

> β
(k+1∑

j=1

λ(Ij)
)
.

Continuing the process in this way, we are able to find tj , t
′
j ∈ Ij for all 1 ≤ j ≤ n

such that∥∥∥ n∑
j=1

λ(Ij)(f(tj)− f(t′j))
∥∥∥

L1
X

> β
( n∑

j=1

λ(Ij)
)
≥ β

( n∑
j=1

λ∗(Ij ∩ Eβ)
)
≥ βλ∗(Eβ),

which contradicts (1). This shows that λ∗(Eβ) = 0.
Step 2. Let (Cn) be a sequence in L such that

(4) inf
n∈N

λ(C4Cn) = 0 for every C ∈ L.

Fix n ∈ N and consider the linear continuous mapping Tn : L1
X → X given by

Tn(h) :=
∫

Cn
h dλ. Since the composition Tn ◦ f : [0, 1] → X is Riemann integrable

and X has the WLP, there is Fn ∈ L with λ(Fn) = 1 such that Tn ◦ f is weakly
continuous at each point of Fn. Then F :=

⋂
n∈N Fn is measurable, λ(F ) = 1 and,

for each n ∈ N, the function Tn ◦ f is weakly continuous at each point of F .
Step 3. Define E := F \

⋃
n∈N E1/n. Then E is measurable with λ(E) = 1.

We will check that E satisfies the required property. Fix a sequence (tn) in [0, 1]
converging to a point t ∈ E. On the one hand, f is bounded (since it is Riemann
integrable) and so {f(tn) : n ∈ N} is bounded in L1

X . On the other hand, fix
m ∈ N. Since t 6∈ E1/m, there is δ > 0 such that

∫
C
‖f(t) − f(t′)‖X dλ ≤ 1/m for

every t′ ∈ [0, 1] with |t′ − t| < δ and every C ∈ L with λ(C) < δ. Since tn → t

as n → ∞, we may and do assume that |tn − t| < δ for every n ∈ N. Moreover,
we can also assume that

∫
C
‖f(t)‖X dλ ≤ 1/m for every C ∈ L with λ(C) < δ.

Hence supn∈N
∫

C
‖f(tn)‖X dλ ≤ 2/m for every C ∈ L with λ(C) < δ. As m ∈ N is

arbitrary, it follows that {f(tn) : n ∈ N} is uniformly integrable.
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Fix C ∈ L and ε > 0. Since the set {f(tn) : n ∈ N} is uniformly integrable,
we can find δ > 0 such that supn∈N

∫
D
‖f(tn)‖X dλ ≤ ε/2 for every D ∈ L with

λ(D) ≤ δ. By (4), there is m ∈ N such that λ(C4Cm) ≤ δ. Since Tm ◦ f is weakly
continuous at t ∈ F , we have∫

Cm

f(tn) dλ →
∫

Cm

f(t) dλ weakly in X as n →∞.

In particular, the set K := {
∫

Cm
f(tn) dλ : n ∈ N} is relatively weakly compact.

Moreover, we have λ(Cm \ C) ≤ δ and λ(C \ Cm) ≤ δ, hence∥∥∥∫
C

f(tn) dλ−
∫

Cm

f(tn) dλ
∥∥∥

X
≤

∫
C\Cm

‖f(tn)‖X dλ +
∫

Cm\C
‖f(tn)‖X dλ ≤ ε

for every n ∈ N. Thus {
∫

C
f(tn) dλ : n ∈ N} ⊂ K + εBX . An appeal to

Grothendieck’s test for weak compactness (cf. [10, Lemma 2, p. 227]) ensures
that {

∫
C

f(tn) dλ : n ∈ N} is relatively weakly compact in X, as required. �

The classical Dunford’s theorem (cf. [8, Theorem 15, p. 76]) states that the
relatively weakly compact subsets of L1[0, 1] are precisely those which are uniformly
integrable. However, in general this characterization is not valid when dealing with
spaces of Bochner integrable functions. The problem of characterizing the relatively
weakly compact subsets of L1

X for an arbitrary Banach space X has attracted the
attention of several authors over the years; see [11], [8, IV.2], [12] and the references
therein. When both X and X∗ have the RNP, a set H ⊂ L1

X is relatively weakly
compact if and only if it is uniformly integrable and, for each C ∈ L, the set
{
∫

C
h dλ : h ∈ H} is relatively weakly compact in X, cf. [8, Theorem 1, p. 101].

This characterization is used to prove our main result:

Theorem 2.4. Let X be a Banach space with the RNP such that X∗ is separable.
Then L1

X has the WLP.

Proof. The space L1
X is separable, because simple functions are dense in it, X

is separable and there is a sequence in L satisfying condition (4) above. Hence
(L1

X)∗ is w∗-separable. On the other hand, the separability of X∗ ensures that it
has the RNP (cf. [8, Theorem 1, p. 79]) and also that X has the WLP (as we
have mentioned in the introduction). The conclusion now follows from Lemmas 2.1
and 2.3, taking into account the comments preceding the theorem. �

Corollary 2.5. Let X be a separable reflexive Banach space. Then L1
X has the

WLP.

As a particular case we get the aforementioned result of Chonghu Wang and
Kang Wan [7]:

Corollary 2.6. L1[0, 1] has the WLP.

Remark 2.7. Theorem 2.4 and its corollaries are still true for the Banach space
L1

X(µ) of all Bochner integrable functions from a probability space (Ω,Σ, µ) to a
Banach space X provided that L1(µ) = L1

R(µ) is separable (or, equivalently, there
is a sequence (Cn) in Σ such that infn∈N µ(C4Cn) = 0 for every C ∈ Σ).
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It is worth pointing out here that if L1(µ) is separable and µ is atomless, then
L1(µ) is isometrically isomorphic to L1[0, 1], cf. [13, Theorem 9 and its Corollary,
p. 128]; bearing in mind the identification of L1

X(µ) with the projective tensor
product of L1(µ) and X (cf. [8, Example 10, p. 228]), it follows that L1

X(µ) is
isometrically isomorphic to L1

X .

We finish the paper with some remarks on the WLP for non-separable Banach
spaces. Our starting point is the following observation.

Remark 2.8. Let Y be a Banach space and f : [0, 1] → Y a function which is
weakly continuous a.e. Then f is strongly measurable.

Proof. There is E ∈ L with λ(E) = 1 such that f is weakly continuous at each
point of E. In particular, the restriction f |E : E → Y is weakly continuous. Since
E is separable, the set f(E) ⊂ Y is weakly separable and so it is norm separable.
On the other hand, for each y∗ ∈ Y ∗, the composition y∗ ◦f is continuous a.e. and,
in particular, it is measurable. �

As a consequence of the previous remark, a Banach space Y fails the WLP
whenever there is a Riemann integrable function f : [0, 1] → Y which is not strongly
measurable. It is known that this happens in the following cases (as usual, c stands
for the cardinality of R):

• Y = c0(c) (see [14, proof of Theorem 2.5]).
• Y has density character c and admits an equivalent uniformly convex norm

(see [15, proof of Lemma 3.2]).

Recall that the canonical norm of Lp(µ) for 1 < p < ∞ (where µ is any non-negative
measure) is always uniformly convex. In fact, in the particular case of the Hilbert
space `2(c) it is not difficult to give a concrete example of a Riemann integrable
function f : [0, 1] → `2(c) which is not strongly measurable:

Example 2.9. Define f : [0, 1] → `2(c) by f(t) := eϕ(t), where (eα)α<c is the
canonical basis of `2(c) and ϕ : [0, 1] → c is any bijection. Then f is Riemann
integrable but not strongly measurable.

Proof. Fix ε > 0. Let I1, . . . , In be a finite collection of non-overlapping closed
subintervals covering [0, 1] such that max1≤k≤n λ(Ik) ≤ ε and take tk ∈ Ik for all
1 ≤ k ≤ n. Observe that for each ordinal α < c there are at most two different
k, k′ ∈ {1, . . . , n} for which ϕ(tk) = ϕ(tk′) = eα. Therefore, we can write

n∑
k=1

λ(Ik)f(tk) =
n∑

k=1

λ(Ik)eϕ(tk) =
∑
α∈A

cαeα,

where A ⊂ c is finite, cα ∈ [0, 2ε] for all α ∈ A and
∑

α∈A cα = 1. Then∥∥∥ n∑
k=1

λ(Ik)f(tk)
∥∥∥

`2(c)
=

(∑
α∈A

c2
α

)1/2

≤
(
2ε

(∑
α∈A

cα

))1/2

=
√

2ε.

As ε > 0 is arbitrary, f is Riemann integrable, with integral 0. On the other hand,
f is not strongly measurable, because f(C) is non-separable for every uncountable
set C ⊂ [0, 1] (observe that ‖f(t)− f(t′)‖`2(c) =

√
2 for every t 6= t′). �
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Clearly, the WLP is inherited by closed subspaces and it is preserved by isomor-
phisms. In view of the previous example and the comments preceding it, a Banach
space containing a closed subspace isomorphic to `2(c) fails automatically the WLP.
This happens for “large” L1 spaces and we arrive at the following result.

Proposition 2.10. Let µ be a probability measure. If the density character of L1(µ)
is greater than or equal to c, then L1(µ) fails the WLP.

Proof. It suffices to show that L1(µ) contains a closed subspace isomorphic to `2(c).
Given an infinite cardinal κ, we write λκ to denote the usual product probability
measure on {0, 1}κ. As a consequence of Maharam’s theorem, the space L1(µ) is
isometrically isomorphic to the `1-sum(

`1(Γ)⊕
(⊕

i∈I

L1(λκi
)
)

1

)
1

where Γ and I are countable sets, each κi is an infinite cardinal and κi 6= κi′

whenever i 6= i′, cf. [13, Theorem 9, p. 127]. The density character of each L1(λκi
)

is exactly κi, cf. [16, §254]. Since the union of countably many sets of cardinality
strictly less than c also has cardinality strictly less than c (cf. [17, Corollary 5.14])
and the density character of L1(µ) is greater than or equal to c, there is j ∈ I such
that κj ≥ c. Finally, since `2(κj) is isomorphic to a closed subspace of L1(λκj )
(cf. [13, Theorem 12, p. 128]), it follows that L1(µ) contains a closed subspace
isomorphic to `2(c). �

Combining Corollary 2.6 (in its slightly more general version pointed out in
Remark 2.7) with Proposition 2.10 we get:

Corollary 2.11 (Under the Continuum Hypothesis). Let µ be a probability mea-
sure. Then L1(µ) has the WLP if and only if it is separable.
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