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Abstract. We study integration of Banach space-valued functions with

respect to Banach space-valued measures. The natural extensions to this

setting of the Birkhoff and McShane integrals centre our attention. The
corresponding generalization of the Birkhoff integral was first considered

by Dobrakov under the name S∗-integral. Our main result states that
S∗-integrability implies McShane integrability in contexts in which the
later notion is definable. We also show that a function is measurable

and McShane integrable if and only if it is Dobrakov integrable (i.e.
Bartle *-integrable).

1. Introduction

The first attempts to establish a theory of integration of vector-valued
functions with respect to vector-valued measures go back to the early days of
Banach spaces (see [18] for an overview) and, since then, several authors have
worked on this topic. Perhaps the most known method is that of Bartle [1],
subsequently generalized by Dobrakov (see the survey [22] and the references
therein). More recent contributions to this subject are [17, 19, 21, 24].

Most of these theories, including Dobrakov’s one, have a common feature:
the functions are required to be measurable (in other words, they must be the
pointwise limit of a sequence of simple functions). Unfortunately, non mea-
surable vector-valued functions arise naturally and the necessity of integration
techniques including such functions becomes evident.

In the particular case of a non-negative measure µ and functions f with
values in a Banach space X, the Birkhoff integral [2] and the (generalized)
McShane integral [14], which do not require such kind of “strong” measura-
bility, have caught the attention of some authors pretty recently, see [3, 23],
[12], [4, 16] and the references given there. Roughly speaking, both integrals
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are defined as limits of sums of the form
∑

i µ(Ai)f(ti), where (Ai) is a count-
able family of pairwise disjoint measurable sets and the ti’s are points of the
domain which are related to the Ai’s in some way. It is natural to try to
extend these integrals to the more general setting of vector-valued measures
and our purpose here is to study such generalizations, which are obtained as
follows: we will consider a vector measure µ with values in the Banach space
L(X, Y ) of all bounded operators from X to another Banach space Y and the
sums

∑
i µ(Ai)f(ti) will be constructed by replacing the product by scalars

R×X −→ X with the natural bilinear map L(X, Y )×X −→ Y .
The S∗-integral of Dobrakov [8], derived from Kolmogorov’s approach to

integration theory [20, 25], is the natural extension of the Birkhoff integral
to the case of vector-valued functions and vector-valued measures. Under
the assumption that the semivariation of the vector measure is continuous
(see below for the definitions), it is known that Dobrakov integrability (i.e.
Bartle *-integrability) implies S∗-integrability and that both notions coincide
for measurable functions. For the convenience of the reader we have collected
the definitions and basic facts (some of them already known) about the S∗-
integral and the Dobrakov integral in Section 2.

In Section 3 we develop the theory of the McShane integral with respect
to a vector measure. Naturally, throughout this section we work with vector-
valued functions defined on topological spaces and we require that the semi-
variation of the vector measure has a quasi-Radon “control measure”. Sub-
Section 3.1 contains some preliminary work which paves the way to deal with
Sub-Section 3.2, that is devoted to compare in this setting the McShane in-
tegral with the Dobrakov and S∗ integrals. The main result of this paper,
Theorem 3.7, states that every S∗-integrable function is McShane integrable
(and the respective integrals coincide). This generalizes partially a result of
Fremlin, [12, Proposition 4], regarding the McShane integrability of a Birkhoff
integrable function defined on a σ-finite outer regular quasi-Radon measure
space. As a consequence of Theorem 3.7 we deduce that a function is Do-
brakov integrable if and only if it is measurable and McShane integrable (The-
orem 3.8).

Notation and terminology. Throughout this paper X and Y are real Ba-
nach spaces, (Ω,Σ) is a measurable space and µ : Σ −→ L(X, Y ) is a count-
ably additive vector measure. L(X, Y ) is the Banach space of all bounded
operators from X to Y .

The notion of semivariation defined below differs from the usual one of
scalar semivariation of a vector measure ν, [5, p. 2], which will be denoted
by ‖ν‖. The semivariation of µ, [6, p. 513], is the function µ̂ : Σ −→ [0,∞]
defined by µ̂(A) = sup ‖

∑n
i=1 µ(Ai)(xi)‖, where the supremum is taken over

all finite partitions (Ai)n
i=1 of A in Σ and all finite collections (xi)n

i=1 in BX

(the closed unit ball of X). µ̂ is always monotone and countably subadditive.
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Throughout we will assume that µ̂ is continuous, [7, p. 17]: if (En)∞n=1 is
a decreasing sequence in Σ such that ∩∞n=1En = ∅, then limn µ̂(En) = 0.
We emphasize that µ̂ is continuous if and only if there exists a non-negative
finite measure λ on Σ such that limλ(A)→0 µ̂(A) = 0 and limµ̂(A)→0 λ(A) = 0,
see [7, Lemma 2]. Throughout the paper λ will always be such a measure.
From the continuity of µ̂ it follows that µ̂(Ω) < ∞ (see the remarks after
Lemma 2 in [7]). Observe that for each E ∈ Σ the restriction of µ to the
σ-algebra ΣE = {B ∈ Σ : B ⊂ E}, denoted by µE , is countably additive and
has continuous semivariation. Moreover, the restriction of λ to ΣE , denoted
by λE , fulfills limλE(A)→0 µ̂E(A) = 0 and limµ̂E(A)→0 λE(A) = 0.

There are several cases in which µ̂ is continuous, see for instance [1, 17, 22].
Let us mention two of them:

C1: Integration of X-valued functions with respect to a non-negative
finite measure ν on Σ. In such a case we take Y := X and µ(E)(x) :=
ν(E)x for every E ∈ Σ and every x ∈ X. It is obvious that µ̂ = ν is
continuous.

C2: Integration of real-valued functions with respect to a countably ad-
ditive vector measure ν : Σ −→ Y . In such a case we take X := R
and µ(E)(x) := xν(E) for every E ∈ Σ and every x ∈ R. Observe
that µ̂ = ‖ν‖ is continuous, by [5, Corollary 6, p. 14]. The standard
integral in this setting is that of Bartle, Dunford and Schwartz, see
[10, Section IV.10].

2. Dobrakov and S∗ integrals

As said in the introduction, this section contains a brief summary of the
definitions and some basic facts on the Dobrakov and S∗ integrals.

For a given simple function f =
∑n

i=1 xiχAi
, xi ∈ X, Ai ∈ Σ, we write∫

Ω
f dµ :=

∑n
i=1 µ(Ai)(xi). A function f : Ω −→ X is called measurable if

there is a sequence of simple functions converging pointwise to f . A function
f : Ω −→ X is Dobrakov integrable with respect to µ, [6, Definition 2 and
Theorem 7], if it is measurable and there is a sequence of simple X-valued
functions (fn) converging to f µ̂-almost everywhere such that for every E ∈ Σ
there exists limn

∫
E

fn dµE , for the norm topology of Y ; the Dobrakov integral
of f with respect to µ is defined by (D)

∫
Ω

f dµ = limn

∫
Ω

fn dµ.
Within the framework of this paper (that is, under the assumption that

the vector measure has continuous semivariation) the differences between the
Bartle bilinear *-integral and the Dobrakov integral are simply language mat-
ters. Indeed, let Z be another real Banach space, ν : Σ −→ Z a countably
additive vector measure and φ : X×Z −→ Y a continuous bilinear map. Then
ν has the *-property with respect to φ, [1, Definition 2], if and only if the set
function µ : Σ −→ L(X, Y ) given by µ(E)(x) = φ(x, ν(E)) has continuous
semivariation. In this case, Theorem 9 in [1] says that a function f : Ω −→ X
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is Bartle *-integrable with respect to ν and φ if and only if f is equal µ̂-almost
everywhere to a function which is Dobrakov integrable with respect to µ (the
respective integrals coincide).

In the particular case C1 (resp. C2) mentioned above, a function is inte-
grable in the sense of Dobrakov if and only if it is measurable and integrable
in the sense of Pettis (resp. Bartle, Dunford and Schwartz), see [1, 6].

Given a function f : Ω −→ X, a countable family Γ = (An) of pairwise
disjoint elements of Σ and a choice T = (tn) in Γ (i.e., tn ∈ An for every n),
the symbol

S(f,Γ, T ) :=
∑

n

µ(An)(f(tn))

denotes a formal series. As usual, we say that another countable family Γ′

of pairwise disjoint elements of Σ is finer than Γ when each element of Γ′ is
contained in some element of Γ.

Definition 2.1. A function f : Ω −→ X is S∗-integrable with respect to µ,
with S∗-integral y ∈ Y , [8, Definition 1], if for every ε > 0 there is a countable
partition Γ0 of Ω in Σ such that for every countable partition Γ of Ω in Σ finer
than Γ0 and every choice T in Γ

(i) the series S(f,Γ, T ) is unconditionally convergent in Y ;
(ii) ‖S(f,Γ, T )− y‖ < ε.

The vector y ∈ Y is necessarily unique and will be denoted by (S∗)
∫
Ω

f dµ.

The set of all functions from Ω to X which are S∗-integrable with respect
to µ will be denoted by S∗(µ). It is easy to check that S∗(µ) is a linear
subspace of XΩ and that the map from S∗(µ) to Y given by f 7→ (S∗)

∫
Ω

f dµ
is linear.

The basic properties of the S∗-integral and the precise relationship with the
Dobrakov integral were studied in [8] (see [9] for a variant of the S∗-integral,
called S-integral, which only deals with finite partitions). Theorem 1 in [8]
states that a function f : Ω −→ X is Dobrakov integrable with respect to µ if
and only if f is measurable and S∗-integrable with respect to µ (in this case,
the respective integrals coincide).

It is worth it to point out that S∗-integrability generalizes Birkhoff in-
tegrability. More precisely, Proposition 2.6 in [3] can be read as: if ν is a
non-negative finite measure on Σ, then a function f : Ω −→ X is Birkhoff
integrable with respect to ν if and only if f is S∗-integrable with respect to
the set function µ : Σ −→ L(X, X) given by µ(E)(x) = ν(E)x (in this case,
the respective integrals coincide).

We end up the section with two lemmas that will be needed in the proof
of Theorem 3.7. We first emphasize that:

(i) if f : Ω −→ X is S∗-integrable with respect to µ, then for each A ∈ Σ
the restriction f |A is S∗-integrable with respect to µA;
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(ii) the set function νf : Σ −→ Y given by

νf (A) := (S∗)
∫

A

f dµA

is a countably additive vector measure,

see [8, Lemma 1 (1)].

Lemma 2.1. Let f ∈ S∗(µ). Then for each ε > 0 there is a countable
partition Γ0 of Ω in Σ such that for every countable family Γ = (An) of
pairwise disjoint elements of Σ finer than Γ0 and every choice T in Γ, the
series S(f,Γ, T ) is unconditionally convergent and

(1) ‖S(f,Γ, T )− νf (∪nAn)‖ ≤ ε.

Proof. Let Γ0 be a countable partition of Ω in Σ such that for every countable
partition Γ̃ of Ω in Σ finer than Γ0 and every choice T̃ in Γ̃

‖S(f, Γ̃, T̃ )− νf (Ω)‖ < ε,

the series involved being unconditionally convergent.
Fix an arbitrary countable family Γ = (An) of pairwise disjoint elements

of Σ finer than Γ0, and take any choice T = (tn) in Γ. Write A := ∪nAn and
set Γ′ := {E \A : E ∈ Γ0, E 6⊂ A}. Fix a choice T ′ in Γ′.

Since Γ∪Γ′ is a countable partition of Ω in Σ finer than Γ0 and T ∪T ′ is a
choice in Γ ∪ Γ′, the series S(f,Γ ∪ Γ′, T ∪ T ′) is unconditionally convergent.
Therefore, the subseries S(f,Γ, T ) is unconditionally convergent.

Let us turn to the proof of (1). There is a sequence {Γ′k}k∈N of countable
partitions of Ω\A in Σ finer than Γ′, and a sequence of choices {T ′k}k∈N, such
that

(2) lim
k

S(f,Γ′k, T ′k) = νf (Ω \A).

For each k ∈ N we define Γk := Γ∪Γ′k, which is a countable partition of Ω in Σ
finer than Γ0, and Tk := T ∪ T ′k. The choice of Γ0 implies that S(f,Γk, Tk) is
unconditionally convergent and

‖S(f,Γk, Tk)− νf (Ω)‖ < ε

for every k ∈ N, which yields

‖S(f,Γ, T )− νf (A)‖ ≤ ‖S(f,Γk, Tk)− νf (Ω)‖+ ‖S(f,Γ′k, T ′k)− νf (Ω \A)‖
< ε + ‖S(f,Γ′k, T ′k)− νf (Ω \A)‖

for every k ∈ N. Now (1) follows from (2), and the proof is complete. �

Lemma 2.2. Suppose that Ω is an atom of λ. If f ∈ S∗(µ), then there is
E ∈ Σ such that µ̂(Ω \ E) = 0 and νf (Ω) = µ(Ω)(f(ω)) for every ω ∈ E.
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Proof. Since f ∈ S∗(µ), for each m ∈ N there is a countable partition Γm of Ω
in Σ such that

‖S(f,Γm, T )− νf (Ω)‖ ≤ 1
m

for every choice T in Γm, the series involved being unconditionally convergent.
But Ω is an atom of λ, so there is some Em ∈ Γm such that λ(Ω \ Em) = 0.
The previous inequality can now be read as

sup
ω∈Em

‖µ(Ω)(f(ω))− νf (Ω)‖ ≤ 1
m

, m ∈ N,

and therefore the set E := ∩∞m=1Em fulfills the required properties. �

We should also mention that the Dobrakov and S∗-integrals can be defined
in the more general setting of vector measures on δ-rings that are countably
additive for the strong operator topology on L(X, Y ), see [6, 8]. The results
of [8] quoted above (including Theorem 1) are valid in this context under
further assumptions on the functions involved and the semivariation that are
fairly close to assume the continuity of the latter.

3. The McShane integral with respect to vector measures

This section is devoted to analyze the McShane integral with respect to a
vector measure and its relationship with the Dobrakov and S∗ integrals. Our
approach here to the McShane integral differs from that of [14] and is inspired
by the equivalent formulation given in [11, 13] and [15, Chapter 48]. For all
unexplained terminology we refer the reader to [15].

As in the case of non-negative measures, further conditions are needed to
set up this method of integration. Throughout this section τ is a topology on Ω
with τ ⊂ Σ and we suppose that (Ω, τ, Σ, λ) is a finite quasi-Radon measure
space, in the sense of [15, 411H] (for instance, a finite Radon measure space,
see [15, 416A]). Equivalently, µ̂ satisfies the following properties:

(α) for every E ∈ Σ and every ε > 0 there exists a τ -closed set C ⊂ E
such that µ̂(E \ C) < ε;

(β) infG∈G µ̂(∪G \G) = 0 for every non-empty upwards directed family G
of τ -open sets;

(γ) if A ⊂ E ∈ Σ and µ̂(E) = 0, then A ∈ Σ.
There are natural examples of topological spaces and vector measures ful-

filling the properties above. We next mention some of them.

Example 3.1. Let (Ω, τ) be a compact Hausdorff topological space. Follow-
ing [5, p. 157], we say that a countably additive vector measure ν defined on
the Borel σ-algebra Σ1 of Ω with values in Y is regular if for every E ∈ Σ1 and
every ε > 0 there is a compact set K ⊂ E such that ‖ν‖(E \K) < ε. These
measures arise in the representation of weakly compact operators C(Ω) −→ Y
via the Bartle-Dunford-Schwartz integral, see [5, Chapter VI].
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Given such a ν, take X := R and define µ1 : Σ1 −→ L(X, Y ) by µ1(E)(x) :=
xν(E). Then µ1 is a countably additive vector measure and µ̂1 = ‖ν‖
is continuous (we are in the conditions of the particular case C2). Fix a
non-negative finite measure λ1 on Σ1 such that limλ1(A)→0 µ̂1(A) = 0 and
limµ̂1(A)→0 λ1(A) = 0. Write (Ω,Σ, λ) for the completion of (Ω,Σ1, λ1). It
is easy to see that µ1 can be extended (in a unique way) to a countably ad-
ditive vector measure µ : Σ −→ L(X, Y ) such that limλ(A)→0 µ̂(A) = 0 and
limµ̂(A)→0 λ(A) = 0. Moreover, we have µ̂|Σ1 = µ̂1. It follows from the reg-
ularity of ν that (Ω, τ, Σ, λ) is a finite Radon measure space and therefore µ̂
satisfies (α), (β) and (γ) (so µ̂1 fulfills (α) and (β)).

Example 3.2. Let (Ω, τ) be an analytic Hausdorff topological space (e.g.
a Polish space). It is well known that the completion of any non-negative
finite measure defined on the Borel σ-algebra Σ1 of Ω is a Radon measure,
see [15, 433C]. Consequently, if µ1 : Σ1 −→ L(X, Y ) is a countably additive
vector measure with continuous semivariation, then µ̂1 satisfies properties (α)
and (β), and µ1 can be extended to a countably additive vector measure with
continuous semivariation that also fulfills (γ), as in the previous example.

We will use without explicit mention the fact that properties (α), (β)
and (γ) are hereditary: for each A ∈ Σ the set function µ̂A fulfills condi-
tions (α), (β) and (γ) with respect to ΣA and the induced topology τA =
{B ∩ A : B ∈ τ}, since (A, τA,ΣA, λA) is a quasi-Radon measure space, see
[15, 415B].

To introduce the McShane integral we need some terminology. A gauge on
(Ω, τ) is a function δ : Ω −→ τ such that ω ∈ δ(ω) for every ω ∈ Ω. A partial
McShane partition of Ω is a finite collection P = {(Ei, si) : 1 ≤ i ≤ p} where
(Ei)

p
i=1 are pairwise disjoint elements of Σ and si ∈ Ω for every 1 ≤ i ≤ p.

We write WP := ∪p
i=1Ei. P is said to be subordinate to δ if Ei ⊂ δ(si) for

every 1 ≤ i ≤ p.
For every gauge δ on (Ω, τ) and every η > 0 the set Πδ,η, made up of all

partial McShane partitions P of Ω subordinate to δ such that µ̂(Ω\WP) ≤ η,
is not empty (the arguments in [14, 1B(d)] can be applied since (Ω, τ, Σ, λ) is
a finite quasi-Radon measure space). It is clear that the family

B = {Πδ,η : δ is a gauge on (Ω, τ), η > 0}

is a filter base on the set Π of all partial McShane partitions of Ω. Let us
denote by F the filter on Π generated by B.

From now on, given a function f : Ω −→ X and a partial McShane partition
P = {(Ei, si) : 1 ≤ i ≤ p} of Ω, we write

f(P) :=
p∑

i=1

µ(Ei)(f(si)).
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Definition 3.1. Let f : Ω −→ X be a function. We say that f is McShane
integrable with respect to µ if there exists limP→F f(P) = y for the norm
topology of Y , i.e., for every ε > 0 the set {P ∈ Π : ‖f(P)− y‖ < ε} belongs
to F . The vector y ∈ Y is called the McShane integral of f and will be denoted
by (M)

∫
Ω

f dµ.

The set of all functions from Ω to X which are McShane integrable with
respect to µ, denoted by M(µ), is a linear subspace of XΩ and the map from
M(µ) to Y given by f 7→ (M)

∫
Ω

f dµ is linear.
The McShane integral of Banach-valued functions defined on finite quasi-

Radon measure spaces, in the sense of [14], turns out to be a particular case
of the McShane integral with respect to a vector measure, as we have defined
it. More precisely, if (Ω, τ, Σ, ν) is a finite quasi-Radon measure space, then a
function f : Ω −→ X is McShane integrable according to [14, 1A] if and only
if f is McShane integrable with respect to the set function µ : Σ −→ L(X, X)
given by µ(E)(x) = ν(E)x (in this case, the respective integrals coincide), see
[13, Proposition 3].

3.1. Preliminary results. In this sub-section we establish the basics of the
theory of the McShane integral with respect to vector measures.

Given a gauge δ on (Ω, τ) and E ∈ Σ, we will denote by δE the gauge on
(E, τE) defined by δE(ω) := δ(ω) ∩ E for every ω ∈ E.

Lemma 3.1. Let f ∈ M(µ). Then for each A ∈ Σ the restriction f |A is
McShane integrable with respect to µA. Its McShane integral will be denoted
by ζf (A).

Proof. By the completeness of X, it suffices to show that for every ε > 0
there exist a gauge δA on (A, τA) and η > 0 such that ‖f(P1) − f(P2)‖ < ε
whenever P1 and P2 are partial McShane partitions of A subordinate to δA

such that µ̂(A \WPi
) ≤ η for i = 1, 2.

Since f ∈ M(µ), there exist a gauge δ on (Ω, τ) and η > 0 such that

(3) ‖f(P)− f(P ′)‖ < ε

for every P,P ′ ∈ Πδ,2η. Fix a partial McShane partition P0 of Ω \A subordi-
nate to δΩ\A such that µ̂(Ω \ (A ∪WP0)) ≤ η.

Now let P1 and P2 be partial McShane partitions of A subordinate to δA

such that µ̂(A \WPi) ≤ η for i = 1, 2. Then P = P1 ∪ P0 and P ′ = P2 ∪ P0

belong to Πδ,2η, and (3) applies to get

‖f(P1)− f(P2)‖ = ‖f(P)− f(P ′)‖ < ε,

as required. �

Lemma 3.2. Let f ∈ M(µ). Then
(i) limµ̂(E)→0 ζf (E) = 0;
(ii) ζf : Σ −→ Y is a countably additive vector measure.
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Proof. It is easy to check that ζf is a finitely additive vector measure. In view
of this, (ii) follows directly from (i) and the continuity of µ̂.

In order to prove (i) fix ε > 0. Since f ∈ M(µ), there are η > 0 and a gauge
δ on (Ω, τ) such that ‖f(P)− ζf (Ω)‖ < ε whenever P ∈ Πδ,η. Fix E ∈ Σ such
that µ̂(E) ≤ η

2 . We claim that ‖ζf (E)‖ < 3ε.
Indeed, take a partial McShane partition P1 of Ω \E subordinate to δΩ\E

such that µ̂(Ω\(E∪WP1)) ≤
η
2 , and fix another partial McShane partition P2

of E subordinate to δE such that ‖f(P2)− ζf (E)‖ < ε. Since P1 and P1 ∪P2

are in Πδ,η, we have

‖ζf (E)‖ ≤ ‖ζf (E)− f(P2)‖+ ‖f(P1 ∪ P2)− ζf (Ω)‖
+ ‖f(P1)− ζf (Ω)‖ < 3ε.

Since ε > 0 is arbitrary, (i) holds and the proof is complete. �

The following version of the Henstock-Saks lemma will be needed in the
proof of Proposition 3.4.

Lemma 3.3. Let f ∈ M(µ). Then for each ε > 0 there is a gauge δ on (Ω, τ)
such that ∥∥∥ p∑

i=1

µ(Ei)(f(si))− ζf (∪p
i=1Ei)

∥∥∥ < ε

for every partial McShane partition {(Ei, si) : 1 ≤ i ≤ p} of Ω subordinate
to δ.

Proof. Fix η > 0 and a gauge δ on (Ω, τ) such that

‖f(P ′)− ζf (Ω)‖ <
ε

2
for every P ′ ∈ Πδ,η.

Take an arbitrary partial McShane partition P = {(Ei, si) : 1 ≤ i ≤ p}
of Ω subordinate to δ. Since f |Ω\WP ∈ M(µΩ\WP ), there is a partial McShane
partition P0 of Ω\WP subordinate to δΩ\WP such that µ̂(Ω\(WP∪WP0)) ≤ η
and

‖f(P0)− ζf (Ω \WP)‖ <
ε

2
.

Since P ∪ P0 ∈ Πδ,η and ζf is finitely additive, we have∥∥∥ p∑
i=1

µ(Ei)(f(si))− ζf (∪p
i=1Ei)

∥∥∥ ≤ ‖f(P ∪ P0)− ζf (Ω)‖

+ ‖f(P0)− ζf (Ω \WP)‖ <
ε

2
+

ε

2
= ε,

and the proof is complete. �

For a given function f : Ω −→ X and A ∈ Σ, we denote by fχA the
function from Ω to X defined by fχA(ω) = f(ω) if ω ∈ A, fχA(ω) = 0 if
ω ∈ Ω \A.
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Proposition 3.4. Let f : Ω −→ X be a function and A ∈ Σ such that f |A is
McShane integrable with respect to µA. Then fχA ∈ M(µ) and

(M)
∫

Ω

fχA dµ = (M)
∫

A

f dµA.

Proof. Fix ε > 0. By property (α) of µ̂, for every m ∈ N we can choose an
open set Gm ⊃ A such that

(4) µ̂(Gm \A) <
ε

2m ·m
.

Since f |A is McShane integrable with respect to µA, Lemma 3.3 applies to get
a gauge δ′ on (A, τA) such that

(5) ‖f(P ′)− ζf |A(WP′)‖ ≤ ε

for every partial McShane partition P ′ of A subordinate to δ′. On the other
hand, by Lemma 3.2 (i) there is η > 0 such that

(6) ‖ζf |A(E)‖ ≤ ε

whenever µ̂(E) ≤ η, E ∈ ΣA. Fix a closed set K ⊂ A such that µ̂(A \K) ≤ η
2

(use again property (α)).
Let δ be a gauge on (Ω, τ) such that

• δ(ω) ∩A = δ′(ω) and δ(ω) ⊂ Gm if ω ∈ A and m− 1 ≤ ‖f(ω)‖ < m;
• δ(ω) = Ω \K if ω ∈ Ω \A.

We claim that

(7)
∥∥∥ p∑

i=1

µ(Ei)(fχA(si))− (M)
∫

A

f dµA

∥∥∥ ≤ 3ε

for every P = {(Ei, si) : 1 ≤ i ≤ p} ∈ Πδ, η
2
. Indeed, since the collection

{(Ei ∩ A, si) : si ∈ A} is a partial McShane partition of A subordinate to δ′,
it follows from (5) that

(8)
∥∥∥ ∑

si∈A

µ(Ei ∩A)(f(si))− ζf |A
(
∪si∈A(Ei ∩A)

)∥∥∥ ≤ ε.

Note that A ∩ (∪si 6∈AEi) ⊂ A \K, by the choice of δ. Therefore

µ̂
(
A \ ∪si∈AEi

)
≤ µ̂

(
A ∩ (∪si 6∈AEi)

)
+ µ̂(Ω \WP)

≤ µ̂(A \K) + µ̂(Ω \WP) ≤ η

2
+

η

2
= η,

and (6) yields ‖ζf |A(A \ ∪si∈AEi)‖ ≤ ε. This inequality and (8) imply

(9)
∥∥∥ ∑

si∈A

µ(Ei ∩A)(f(si))− ζf |A(A)
∥∥∥ ≤ 2ε.
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On the other hand, set Im = {1 ≤ i ≤ p : si ∈ A, m− 1 ≤ ‖f(si)‖ < m}
for every m ∈ N. Since ∪i∈Im

Ei ⊂ Gm for every m ∈ N (by the choice of δ),
(4) yields∥∥∥ ∑

si∈A

µ(Ei \A)(f(si))
∥∥∥ ≤ ∞∑

m=1

∥∥∥ ∑
i∈Im

µ(Ei \A)(f(si))
∥∥∥

≤
∞∑

m=1

µ̂(Gm \A) ·m ≤
∞∑

m=1

ε

2m
= ε,

which combined with (9) implies∥∥∥ p∑
i=1

µ(Ei)(fχA(si))− ζf |A(A)
∥∥∥ =

∥∥∥ ∑
si∈A

µ(Ei)(f(si))− ζf |A(A)
∥∥∥ ≤ 3ε.

Hence (7) holds. Since ε > 0 is arbitrary, fχA is McShane integrable with
respect to µ and (M)

∫
Ω

fχA dµ = (M)
∫

A
f dµA. �

Corollary 3.5. Let f : Ω −→ X be a simple function, f =
∑n

i=1 xiχAi
. Then

f is McShane integrable with respect to µ and (M)
∫
Ω

f dµ =
∑n

i=1 µ(Ai)(xi).

Proof. It suffices to consider the case f = xχA, which follows from Proposi-
tion 3.4 and the fact that constant functions are McShane integrable. �

Corollary 3.6. Let f, g : Ω −→ X be two functions which are equal µ̂-almost
everywhere. Then f ∈ M(µ) if and only if g ∈ M(µ). In this case,

(M)
∫

Ω

f dµ = (M)
∫

Ω

g dµ.

Proof. It suffices to check that h := f − g is McShane integrable with respect
to µ and (M)

∫
Ω

h dµ = 0. Fix A ∈ Σ such that h(ω) = 0 for every ω ∈ A and
µ̂(Ω \ A) = 0. Since h|Ω\A is McShane integrable with respect to µΩ\A, with
integral 0, an appeal to Proposition 3.4 ensures us that hχΩ\A = h ∈ M(µ)
and (M)

∫
Ω

h dµ = 0, as required. �

3.2. Relationship with the Dobrakov and S∗ integrals. In this sub-
section we discuss the relationship between the different integrals considered
in this paper.

Theorem 3.7. If f : Ω −→ X is S∗-integrable with respect to µ, then f is
McShane integrable with respect to µ and

(S∗)
∫

Ω

f dµ = (M)
∫

Ω

f dµ.

The proof will be divided into four cases.
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Case 1. Suppose that Ω is an atom of λ.
By Lemma 2.2 there is E ∈ Σ such that µ̂(Ω \ E) = 0 and

νf (Ω) = µ(Ω)(f(ω)) for every ω ∈ E.

Therefore f(P) = νf (Ω) for every partial McShane partition P of E such
that µ̂(E \ WP) < µ̂(E) (keep in mind that E is an atom of λ). It fol-
lows that f |E is McShane integrable with respect to µE , with McShane in-
tegral νf (Ω). An appeal to Proposition 3.4 ensures us that fχE ∈ M(µ)
and (M)

∫
Ω

fχE dµ = νf (Ω). Since f and fχE are equal µ̂-almost ev-
erywhere, it follows that f is McShane integrable with respect to µ and
(M)

∫
Ω

f dµ = νf (Ω) (by Corollary 3.6). �

Case 2. Suppose that there is a countable partition (An) of Ω made up of
atoms of λ.

Given E ∈ Σ and n ∈ N, the restriction f |An∩E is S∗-integrable with
respect to µAn∩E . It is obvious that f |An∩E ∈ M(µAn∩E), with McShane
integral νf (An∩E) = 0, when µ̂(An∩E) = 0. If, on the contrary, An∩E is an
atom of λ, Case 1 applies to deduce that f |An∩E ∈ M(µAn∩E), with McShane
integral νf (An ∩E). We conclude from Proposition 3.4 that fχAn∩E ∈ M(µ)
and

(M)
∫

Ω

fχAn∩E dµ = (M)
∫

An∩E

f dµAn∩E = νf (An ∩ E).

In particular, fχAn ∈ M(µ) and

(10) ζfχAn
(E) = ζfχAn

(An ∩ E) = (M)
∫

An∩E

f dµAn∩E = νf (An ∩ E)

for every n ∈ N and every E ∈ Σ.
Fix ε > 0. By Lemma 3.3, for each n there is a gauge δn on (Ω, τ) such

that

(11) ‖fχAn
(P ′)− ζfχAn

(WP′)‖ ≤ ε

2n

for every partial McShane partition P ′ of Ω subordinate to δn. On the other
hand, since νf is countably additive, there is N0 ∈ N such that

(12)
∥∥∥∑

n∈F

νf (An)
∥∥∥ ≤ ε

for every finite set F ⊂ N satisfying F ∩ {1, . . . , N0} = ∅.
By property (α) of µ̂, for every 1 ≤ n ≤ N0 we can choose a closed set

Fn ⊂ An such that µ̂(An \ Fn) = 0 (keep in mind that An is an atom of λ).
Define a gauge δ on (Ω, τ) by

δ(ω) := δn(ω) \
N0⋃

m=1
m6=n

Fm whenever ω ∈ An.
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Fix 0 < η < min{µ̂(An) : 1 ≤ n ≤ N0}. We claim that

(13) ‖f(P)− νf (Ω)‖ ≤ 2ε for every P ∈ Πδ,η.

To prove this fix P = {(Ei, si) : 1 ≤ i ≤ p} ∈ Πδ,η. Given 1 ≤ n ≤ N0, the
definition of δ implies that

An \
⋃

si∈An

Ei ⊂ (An \ Fn) ∪ (Ω \ ∪p
i=1Ei),

hence µ̂(An \ ∪si∈An
Ei) ≤ η < µ̂(An) and, since An is an atom of λ, we

conclude that µ̂(An \ ∪si∈AnEi) = 0. Therefore

νf

(
An \

⋃
si∈An

Ei

)
= 0 for every 1 ≤ n ≤ N0.

On the other hand, for each n > N0 we have

νf

(
An \

⋃
si∈An

Ei

)
∈ {0, νf (An)},

because An is an atom of λ. It follows from (12) that

(14)
∥∥∥∑

n

νf

(
An \

⋃
si∈An

Ei

)∥∥∥ ≤ ε.

Note that for each n ∈ N the collection {(Ei, si) : si ∈ An} is a partial
McShane partition of Ω subordinate to δn, hence∥∥∥ ∑

si∈An

µ(Ei)(fχAn(si))− νf

(( ⋃
si∈An

Ei

)
∩An

)∥∥∥ ≤ ε

2n
,

by (11) and (10). Combining this inequality with (14) we get

‖f(P)− νf (Ω)‖ =
∥∥∥∑

n

∑
si∈An

µ(Ei)(fχAn
(si))−

∑
n

νf (An)
∥∥∥

≤
∑

n

∥∥∥ ∑
si∈An

µ(Ei)(fχAn(si))− νf

(( ⋃
si∈An

Ei

)
∩An

)∥∥∥
+

∥∥∥∑
n

νf

(
An \

⋃
si∈An

Ei

)∥∥∥ ≤ ∑
n

ε

2n
+ ε = 2ε.

Therefore, (13) holds. Since ε > 0 is arbitrary, f is McShane integrable with
respect to µ and (M)

∫
Ω

f dµ = νf (Ω). �

Case 3. Suppose that λ is atomless.
For each ω ∈ Ω we have λ∗({ω}) = 0 (here λ∗ stands for the outer measure

induced by λ) and, since (Ω,Σ, λ) is complete, {ω} ∈ Σ and µ̂({ω}) = 0.
Fix ε > 0. By Lemma 2.1 there exists a countable partition Γ0 = (An) of

Ω in Σ such that

(15) ‖S(f,Γ, T )− νf (∪mBm)‖ < ε
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for every finite collection Γ = (Bm) of pairwise disjoint elements of Σ finer
than Γ0 and any choice T in Γ.

Since νf is countably additive and νf (E) = 0 whenever λ(E) = 0, we have
limλ(E)→0 νf (E) = 0, see [5, Theorem 1, p. 10], and we can choose η > 0 such
that

(16) ‖νf (E)‖ ≤ ε for every E ∈ Σ with µ̂(E) ≤ η.

Fix N0 ∈ N large enough such that

(17) µ̂(∪n>N0An) ≤ η

3
.

Property (α) of µ̂ ensures us that for each n, m ∈ N there exist a closed set
Kn ⊂ An and an open set Gn,m ⊃ An such that

(18) µ̂(An \Kn) ≤ η

2n · 3
and

(19) µ̂(Gn,m \An) ≤ ε

2n+m ·m
.

Let us consider the gauge δ on (Ω, τ) defined by

δ(ω) := Gn,m \
N0⋃
i=1
i 6=n

Ki

whenever ω ∈ An and m− 1 ≤ ‖f(ω)‖ < m. We will prove that

(20)
∥∥∥ p∑

i=1

µ(Ei)(f(si))− νf (Ω)
∥∥∥ ≤ 3ε

for every P = {(Ei, si) : 1 ≤ i ≤ p} ∈ Πδ, η
3
. To this end, observe that we can

suppose that si 6= sj for i 6= j. Choose N ≥ N0 such that s1, . . . , sp ∈ ∪N
n=1An.

Define F := Ω \ {si : 1 ≤ i ≤ p} and write In = {1 ≤ i ≤ p : si ∈ An} for
each 1 ≤ n ≤ N (some In may be empty). Let us define

Ei,n := (Ei ∩An ∩ F ) ∪ {si}

for every 1 ≤ n ≤ N and every i ∈ In. Since

Γ = {Ei,n : 1 ≤ n ≤ N, i ∈ In}

is a finite collection of pairwise disjoint elements of Σ finer than Γ0, (15)
applies to get

(21)
∥∥∥ N∑

n=1

∑
i∈In

(
µ(Ei,n)(f(si))− νf (Ei,n)

)∥∥∥ ≤ ε.



INTEGRATION WITH RESPECT TO VECTOR MEASURES 15

Since λ({ω}) = 0 for every ω ∈ Ω, we have λ((Ei ∩ An)4Ei,n) = 0 for
every 1 ≤ n ≤ N and every i ∈ In, hence

νf

( N⋃
n=1

⋃
i∈In

Ei,n

)
= νf

( N⋃
n=1

⋃
i∈In

(Ei ∩An)
)
.

This equality, the fact that µ(Ei,n) = µ(Ei ∩ An) (for all 1 ≤ n ≤ N and
i ∈ In) and (21) imply

(22)
∥∥∥ N∑

n=1

∑
i∈In

µ(Ei ∩An)(f(si))− νf

(
∪N

n=1(Pn ∩An)
)∥∥∥ ≤ ε,

where Pn := ∪i∈In
Ei for every 1 ≤ n ≤ N .

We will now show that

(23) An \Pn ⊂ (An \Kn)∪ (∪s>N0As)∪ (Ω\∪p
i=1Ei) for every 1 ≤ n ≤ N.

It suffices to check that (An \Pn)∩ (∪p
i=1Ei) ⊂ An \Kn for every 1 ≤ n ≤ N0.

To this end, take 1 ≤ i ≤ p and suppose that (An \ Pn) ∩Ei 6= ∅. Then there
is some k 6= n such that si ∈ Ak and, therefore, we have

Ei ∩Kn ⊂ δ(si) ∩Kn ⊂
(
Ω \

N0⋃
i=1
i 6=k

Ki

)
∩Kn = ∅,

hence (An \Pn)∩Ei ⊂ An \Kn, as required. This completes the proof of (23).
As a consequence of (23) we have (recall that N ≥ N0)

µ̂
(( N⋃

n=1

(An \ Pn)
)
∪

( ⋃
n>N

An

))
≤

N∑
n=1

µ̂(An \Kn)

+ µ̂(∪s>N0As) + µ̂(Ω \ ∪p
i=1Ei) ≤

N∑
n=1

η

2n · 3
+

η

3
+

η

3
≤ η,

by (18), (17) and the fact that P ∈ Πδ, η
3
. An appeal to (16) yields

∥∥∥νf

(( N⋃
n=1

(An \ Pn)
)
∪

( ⋃
n>N

An

))∥∥∥ ≤ ε,

which combined with (22) allows us to conclude that

(24)
∥∥∥ N∑

n=1

∑
i∈In

µ(Ei ∩An)(f(si))− νf (Ω)
∥∥∥ ≤ 2ε.
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By the definition of δ we have Ei \ An ⊂ Gn,m \ An whenever i ∈ In and
m− 1 ≤ ‖f(si)‖ < m. Therefore

∥∥∥ N∑
n=1

∑
i∈In

µ(Ei \An)(f(si))
∥∥∥ ≤ N∑

n=1

∞∑
m=1

∥∥∥ ∑
i∈In

m−1≤‖f(si)‖<m

µ(Ei \An)(f(si))
∥∥∥

≤
N∑

n=1

∞∑
m=1

µ̂(Gn,m \An) ·m ≤
N∑

n=1

∞∑
m=1

ε

2n+m
≤ ε,

by (19). This inequality and (24) imply∥∥∥ p∑
i=1

µ(Ei)(f(si))− νf (Ω)
∥∥∥ =

∥∥∥ N∑
n=1

∑
i∈In

µ(Ei)(f(si))− νf (Ω)
∥∥∥ ≤ 3ε.

Therefore, (20) holds. Since ε > 0 is arbitrary, f is McShane integrable with
respect to µ and (M)

∫
Ω

f dµ = νf (Ω). �

General case.
Since λ is finite, there is a countable family (An) of pairwise disjoint atoms

of λ such that λΩ\A is atomless, where A := ∪nAn.
Since f |A (resp. f |Ω\A) is S∗-integrable with respect to µA (resp. µΩ\A),

Case 2 (resp. Case 3 ) implies that f |A (resp. f |Ω\A) is McShane integrable
with respect to µA (resp. µΩ\A) and

(M)
∫

A

f dµA = νf (A)
(
resp. (M)

∫
Ω\A

f dµΩ\A = νf (Ω \A)
)
.

We conclude from Proposition 3.4 that fχA ∈ M(µ) (resp. fχΩ\A ∈ M(µ))
and (M)

∫
Ω

fχA dµ = νf (A) (resp. (M)
∫
Ω

fχΩ\A dµ = νf (Ω \A)).
It follows that f = fχA + fχΩ\A is McShane integrable with respect to µ

and (M)
∫
Ω

f dµ = νf (A) + νf (Ω \ A) = νf (Ω). The proof of Theorem 3.7 is
complete. �

Proposition 4 in [12] states that every Birkhoff integrable function defined
on a σ-finite outer regular quasi-Radon measure space is McShane integrable
in the sense of [14] (and the respective integrals coincide). The converse does
not hold in general, although it is true if the closed unit ball of the dual of
the range space is weak∗-separable, [12, Theorem 10]. Examples of McShane
integrable functions defined on [0, 1] (with the Lebesgue measure) which are
not Birkhoff integrable can be found in [12, Example 8] and [23, Corollaries 2.4
and 2.6]. Observe that the finite measure case of the aforementioned Fremlin’s
result is included in our Theorem 3.7.

We end up the paper by pointing out the precise relationship between
McShane and Dobrakov integrability.
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Theorem 3.8. Let f : Ω −→ X be a function. The following conditions are
equivalent:

(i) f is Dobrakov integrable with respect to µ;
(ii) f is measurable and McShane integrable with respect to µ.

In this case, (D)
∫
Ω

f dµ = (M)
∫
Ω

f dµ.

Proof. As pointed out in Section 2, (i) is equivalent to
(i’) f is measurable and S∗-integrable with respect to µ;

and, in this case, (D)
∫
Ω

f dµ = (S∗)
∫
Ω

f dµ. It follows from Theorem 3.7
that (i) implies (ii) and that (D)

∫
Ω

f dµ = (M)
∫
Ω

f dµ.
The proof of (ii)⇒(i) is as follows. Since f is measurable, there is a count-

ably valued function g : Ω −→ X, g =
∑∞

n=1 xnχAn , xn ∈ X, An ∈ Σ
pairwise disjoint, such that ‖f − g‖ ≤ 1 µ̂-almost everywhere, see [5, Corol-
lary 3, p. 42]. Hence f − g is Dobrakov integrable with respect to µ, by [6,
Theorem 5], and, in view of (i)⇒(ii), McShane integrable with respect to µ.
Define gn =

∑n
k=1 xkχAk

for every n ∈ N. Clearly (gn)∞n=1 converges to g
pointwise and, since g = f − (f − g) is McShane integrable with respect to µ,
Lemma 3.2 (ii) implies that for each E ∈ Σ there exists the limit

lim
n

∫
E

gn dµE = lim
n

n∑
k=1

µ(E ∩Ak)(xk) = lim
n

n∑
k=1

ζg(E ∩Ak).

Therefore, g is Dobrakov integrable with respect to µ and the same is true for
f = g + (f − g). The proof is finished. �

Finally, Corollary 3.6 allows us to translate the previous theorem into the
language of the Bartle bilinear *-integral.

Corollary 3.9. Let Z be a real Banach space, ν : Σ −→ Z a countably
additive vector measure and φ : X × Z −→ Y a continuous bilinear map.
Suppose that ν has the *-property with respect to φ and that the semivariation
of the set function µ : Σ −→ L(X, Y ) given by µ(E)(x) = φ(x, ν(E)) fulfills
properties (α), (β) and (γ). Let f : Ω −→ X be a function. The following
conditions are equivalent:

(i) f is Bartle *-integrable with respect to ν and φ;
(ii) f is McShane integrable with respect to µ and there is a sequence of

simple functions converging to f µ̂-almost everywhere.
In this case the respective integrals coincide.
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