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Abstract. Let X be a weakly Lindelöf determined Banach space. We prove

that the following two statements are equivalent:
(i) Every Radon probability measure on (BX∗ , w∗) has separable support.

(ii) Every countably additive X∗-valued measure with σ-finite variation has
norm separable range.

Some applications and related examples are given.

1. Introduction

In their pioneering work [4], Bartle, Dunford and Schwartz showed that the
range of any countably additive measure with values in a Banach space is relatively
weakly compact. In general, this is not true for norm compactness, even when
we restrict our attention to indefinite Pettis integrals [9, 2D]. As regards vector
measures with values in the dual X∗ of a Banach space X, a result of Rybakov [17]
(cf. [10, Corollary 10]) states that X does not contain subspaces isomorphic to `1

if and only if X∗ has the so-called Compact Range Property, i.e. every countably
additive X∗-valued measure with σ-finite variation has relatively norm compact
range; in particular, such a vector measure has norm separable range.

Pettis integrable functions with norm separably-valued indefinite integral have
been studied by several authors over the years, see [11, 15, 18]. It is worth pointing
out that such functions can be approximated “weakly” by simple functions. More
precisely, if f is a Pettis integrable function taking values in a Banach space Y and
the indefinite integral of f has norm separable range, then there is a sequence (fn)
of Y -valued simple functions such that the family {〈y∗, fn〉 : y∗ ∈ BY ∗ , n ∈ N}
is uniformly integrable and, for each y∗ ∈ Y ∗, we have limn〈y∗, fn〉 = 〈y∗, f〉 a.e.,
see [11, Theorem 3] or [18, 5-3-2]. For a detailed account on this topic we refer the
reader to [12, 13]. The following question was posed by Musial in [12, Problem 22]:
which Banach spaces Y have the Pettis Separability Property, that is, the indefinite
integral of any Y -valued Pettis integrable function has norm separable range?

The aim of this paper is to discuss the norm separability of the range of a vector
measure with values in the dual of a wide class of Banach spaces: those which are
weakly Lindelöf determined (WLD for short, see below for the definition). Our
main result (Theorem 2.3) states that for a WLD Banach space X the following
conditions are equivalent:

(i) (BX∗ , w∗) has the so-called property (M), i.e. every Radon probability mea-
sure on (BX∗ , w∗) has separable support.

(ii) Every countably additive X∗-valued measure with σ-finite variation has
norm separable range.
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We recall that (i) holds automatically whenever X is weakly compactly generated
or, more generally, weakly K-countably determined (every Gul’ko compact has
property (M), see [2, Remarks 3.2] and [3]). Moreover, it is known that the validity
of (i) for arbitrary WLD spaces is independent of ZFC, see [2, Remarks 3.2] and [16].

Some applications of Theorem 2.3 are also provided. On the one hand, we
give a partial answer to the aforementioned Musial’s question by showing that
X∗ has the Pettis Separability Property whenever X is a WLD Banach space such
that (BX∗ , w∗) has property (M) (Corollary 2.5). On the other hand, it turns out
that if a WLD Banach space X does not contain subspaces isomorphic to `1, then
(BX∗ , w∗) has property (M) (Corollary 2.6).

We finish the paper by showing that for any Banach space X with a subspace
isomorphic to `1(ω1), there exists a countably additive X∗-valued measure with
finite variation whose range is not norm separable (Corollary 2.8).

Notation and terminology. As usual, we write ω1 to denote the first uncountable
ordinal. All unexplained notation and terminology can be found in our standard
references [5] and [7].

Our Banach spaces (Y, ‖ · ‖) are assumed to be real. By a ‘subspace’ of Y we
mean a norm closed linear subspace. We write BY to denote the closed unit ball
of Y and w∗ stands for the weak∗ topology on Y ∗ (the topological dual of Y ). Given
y∗ ∈ Y ∗ and y ∈ Y , we write 〈y∗, y〉 to denote the evaluation of y∗ at y.

Recall that Y is said to be WLD if (BY ∗ , w∗) is homeomorphic to some subset
S of a cube [−1, 1]Λ, endowed with the product topology, such that for each s ∈ S
the set {λ ∈ Λ : s(λ) 6= 0} is countable. The class of WLD Banach spaces contains
all weakly compactly generated spaces and, more generally, all weakly K-countably
determined ones, see e.g. [8, Theorem 11.16] and [7, Theorem 7.2.7], respectively.
As regards WLD spaces, we will only need Lemma 1.1 below, which follows from
a standard argument used in the construction of projectional resolutions of the
identity in non separable WLD spaces, see e.g. [7, Chapters 6 and 8]. We sketch a
proof for the convenience of the reader.

Lemma 1.1. Let Y be a WLD Banach space and S a w∗-separable subset of Y ∗.
Then there exist two subspaces Y0, Y1 ⊂ Y such that Y = Y0 ⊕ Y1, Y0 is separable
and 〈y∗, y〉 = 0 for every y∗ ∈ S and every y ∈ Y1. In particular, every bounded
subset of S is w∗-metrizable.

Sketch of proof. We can suppose without loss of generality that S is countable.
Since Y is WLD, there is a set-valued mapping Φ : Y ∗ −→ 2Y with the following
properties:

• Φ(y∗) is countable for every y∗ ∈ Y ∗,
• {y∗ ∈ B

w∗

: 〈y∗, y〉 = 0 for every y ∈ Φ(B)} = {0} for each non-empty set
B ⊂ Y ∗ for which B

‖·‖
is a subspace of Y ∗,

see e.g. [7, Proposition 8.3.1]. (The couple (Y ∗,Φ) is called a projectional generator
on Y .) Fix a set-valued mapping Ψ : Y −→ 2Y ∗

such that, for each y ∈ Y , the set
Ψ(y) ⊂ BY ∗ is countable and ‖y‖ = sup{〈y∗, y〉 : y∗ ∈ Ψ(y)}. By [7, Lemma 6.1.3]
we can find countable sets A ⊂ Y and S ⊂ B ⊂ Y ∗ such that A

‖·‖
and B

‖·‖
are

subspaces of Y and Y ∗, respectively, with Φ(B) ⊂ A and Ψ(A) ⊂ B. Since we have

• ‖y‖ = sup{〈y∗, y〉 : y∗ ∈ B ∩BY ∗} for every y ∈ A,
• {y∗ ∈ B

w∗

: 〈y∗, y〉 = 0 for every y ∈ A} = {0},
an appeal to [7, Lemma 6.1.1] ensures the existence of a bounded linear projection
P : Y −→ Y such that P (Y ) = A

‖·‖
and 〈y∗, y〉 = 0 for every y∗ ∈ B and every
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y ∈ ker P . It is clear that the subspaces Y0 := P (Y ) and Y1 := kerP satisfy the
required properties. The last assertion of the lemma now follows easily. �

A measurable space is a pair (Ω,Σ), where Ω is a set and Σ is a σ-algebra
on Ω. Given a countably additive measure ν defined on Σ with values in a Banach
space Y , we write |ν| to denote the variation of ν, i.e. the function |ν| : Σ −→ [0,∞]
defined by |ν|(A) = sup

∑n
i=1 ‖ν(Ai)‖, where the supremum is taken over all the

finite partitions (Ai)n
i=1 of A in Σ. As usual, we say that |ν| is σ-finite if there is a

countable partition (En) of Ω in Σ such that |ν|(En) < ∞ for every n ∈ N.
Let (Ω,Σ, µ) be a complete probability space and Y a Banach space. Recall that

a function f : Ω −→ Y ∗ is said to be Gelfand integrable if for every y ∈ Y the
function 〈f, y〉 : Ω −→ R, defined by ω 7→ 〈f(ω), y〉, is µ-integrable; in this case,
there exists (see e.g. [5, p. 53]) a finitely additive measure γf : Σ −→ Y ∗ such that

〈γf (A), y〉 =
∫

A

〈f, y〉 dµ for every A ∈ Σ and every y ∈ Y.

Notice that if f is bounded then γf is countably additive and has finite variation,
because for each A ∈ Σ we have

‖γf (A)‖ = sup
y∈BY

〈γf (A), y〉 = sup
y∈BY

∫
A

〈f, y〉 dµ ≤
(
sup
ω∈Ω

‖f(ω)‖
)
· µ(A).

2. The results

In order to deal with Theorem 2.3 we need two auxiliary lemmas.

Lemma 2.1. Let Y be a Banach space such that (BY ∗ , w∗) is separable. Let (Ω,Σ)
be a measurable space and ν : Σ −→ Y a countably additive measure. Then ν(Σ) is
norm separable.

Proof. We know that ν(Σ) is relatively weakly compact (cf. [5, Corollary 7, p. 14]).
Thus, in order to prove the lemma we only have to check that any weakly compact set
K ⊂ Y is norm separable. To this end, notice that the subspace Z = span(K) ⊂ Y
is weakly compactly generated and, in particular, every bounded w∗-separable sub-
set of Z∗ is w∗-metrizable (Lemma 1.1). Since (BY ∗ , w∗) is separable, its contin-
uous image (BZ∗ , w∗) is separable too. It follows that Z is norm separable, as
required. �

Notice that any Banach space as in the previous lemma is isomorphic to a sub-
space of `∞. Therefore, Lemma 2.1 can also be obtained as a consequence of Rosen-
thal’s theorem saying that, for any probability measure µ, every weakly compact
subset of L∞(µ) is separable (cf. [5, Theorem 13, p. 252]).

Lemma 2.2. Let X be a Banach space, G the family of all open sets of (BX∗ , w∗)
and µ a Radon probability measure on (BX∗ , w∗). Then the ‘identity’ function
I : BX∗ −→ X∗, I(x∗) = x∗, is Gelfand integrable with respect to µ and the support
of µ is contained in spanw∗

(γI(G)).

Proof. The first assertion is obvious. Now fix x∗0 ∈ BX∗ \ spanw∗
(γI(G)). By the

Hahn-Banach separation theorem, there is x ∈ X such that 〈x∗, x〉 = 0 for every
x∗ ∈ γI(G) and 〈x∗0, x〉 > 0. Take ε > 0 and G ∈ G containing x∗0 such that
〈x∗, x〉 ≥ ε for every x∗ ∈ G. Hence

0 = 〈γI(G), x〉 =
∫

G

〈x∗, x〉 dµ(x∗) ≥ εµ(G)

and therefore µ(G) = 0. It follows that x∗0 does not belong to the support of µ. �

We can now prove the main result of this paper.
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Theorem 2.3. Let X be a WLD Banach space. The following conditions are
equivalent:

(i) (BX∗ , w∗) has property (M).
(ii) For every measurable space (Ω,Σ) and every countably additive measure

ν : Σ −→ X∗ with σ-finite variation, ν(Σ) is norm separable.
In this case, for such a ν there exist a separable complemented subspace X0 ⊂ X
and a complemented subspace Z0 ⊂ X∗ isomorphic to X∗

0 such that ν(Σ) ⊂ Z0.

Proof. (ii)⇒(i) Fix a Radon probability measure µ on (BX∗ , w∗) and let S ⊂ BX∗

be its support. Since S is w∗-compact, in order to prove that S is w∗-separable
we only have to check that S is w∗-metrizable. Consider the ‘identity’ mapping
I : BX∗ −→ X∗ as a bounded Gelfand integrable function with respect to µ. Since
γI is countably additive and has finite variation, it has norm separable range. On
the other hand, by Lemma 2.2 we have S ⊂ spanw∗

(γI(G)), where G is the family
of all open sets of (BX∗ , w∗). Since γI(G) is norm separable, spanw∗

(γI(G)) is
w∗-separable and Lemma 1.1 now ensures that S is w∗-metrizable. The proof of
(ii)⇒(i) is over.

(i)⇒(ii) We divide the proof into several steps.
Step 1.- Since ν is countably additive, there is a non-negative countably additive

measure µ on Σ such that limµ(A)→0 ‖ν(A)‖ = 0 (Bartle, Dunford and Schwartz [4],
cf. [5, Corollary 6, p. 14]). Observe that we can assume without loss of generality
that µ is complete. Indeed, if we write (Ω,Σ0, µ0) to denote the completion of the
finite measure space (Ω,Σ, µ), a standard argument would allow us to extend ν
to a countably additive measure ν0 : Σ0 −→ X∗ with σ-finite variation such that
limµ0(A)→0 ‖ν0(A)‖ = 0.

Step 2.- Suppose that there is a constant C > 0 such that |ν|(A) ≤ Cµ(A) for
every A ∈ Σ. Then (see e.g. [6, Proposition 6.7]) there is a Gelfand integrable
function f : Ω −→ X∗ such that

• f(Ω) ⊂ CBX∗ ;
• γf = ν;
• f is Σ-Borel(CBX∗ , w∗)-measurable;
• the completion of the image measure µf−1 on Borel(CBX∗ , w∗) is a Radon

probability measure.
The fact that (CBX∗ , w∗) has property (M) allows us to find a w∗-separable set
T ∈ Borel(CBX∗ , w∗) such that µ(Ω \ f−1(T )) = 0. An appeal to the Hahn-
Banach separation theorem now establishes that ν(Σ) ⊂ spanw∗

(T ) (bear in mind
that ν = γf ). Notice that spanw∗

(T ) is w∗-separable.
Step 3.- Since ν has σ-finite variation, we can find a countable partition (An)

of Ω in Σ such that, for each n ∈ N, there is Cn > 0 such that |ν|(A) ≤ Cnµ(A) for
every A ∈ Σ, A ⊂ An (see e.g. the proof of Lemma 5.9 in [6]). In view of Step 2,
for each n ∈ N the set {ν(A) : A ∈ Σ, A ⊂ An} is contained in a w∗-separable
subset of X∗. Therefore, the same holds for the set

R =
{ N∑

n=1

ν(En) : En ∈ Σ, En ⊂ An for every 1 ≤ n ≤ N, N ∈ N
}

.

Since ν is countably additive, R is norm dense in ν(Σ) and we conclude that ν(Σ)
is contained in a w∗-separable set S ⊂ X∗.

Step 4.- According to Lemma 1.1, there exist two subspaces X0, X1 ⊂ X such
that X = X0 ⊕ X1, X0 is separable and 〈x∗, x〉 = 0 for every x∗ ∈ S and every
x ∈ X1. Let us consider the bounded operators ξi : X∗ −→ X∗

i defined by ξi(x∗) =
x∗|Xi for i = 0, 1. Set Z0 = ker ξ1 and Z1 = ker ξ0. It is easy to check that
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X∗ = Z0 ⊕ Z1 and that the restriction ξ0|Z0 : Z0 −→ X∗
0 is an isomorphism

of Banach spaces. Since (BX∗∗
0

, w∗) is separable (by Goldstein’s theorem) and
ν(Σ) ⊂ Z0, an appeal to Lemma 2.1 ensures that ν(Σ) is norm separable. The
proof is complete. �

Theorem 2.3 can be translated easily into the language of operators:

Corollary 2.4. Let X be a WLD Banach space. The following conditions are
equivalent:

(i) (BX∗ , w∗) has property (M).
(ii) For every complete probability space (Ω,Σ, µ) and every bounded operator

T : L1(µ) −→ X∗, T (L1(µ)) is norm separable.

In this case, for such a T there exist a separable complemented subspace X0 ⊂ X
and a complemented subspace Z0 ⊂ X∗ isomorphic to X∗

0 such that T (L1(µ)) ⊂ Z0.

Proof. (i)⇒(ii) The formula ν(A) := T (χA) (where χA stands for the characteristic
function of A ∈ Σ) defines a countably additive measure ν : Σ −→ X∗ such that
|ν|(A) ≤ ‖T‖µ(A) for every A ∈ Σ. The norm separability of T (L1(µ)) and the last
assertion of the corollary now follow from Theorem 2.3 and the fact that simple
functions are dense in L1(µ).

(ii)⇒(i) Fix a Radon probability measure µ on (BX∗ , w∗) and consider again
the ‘identity’ mapping I : BX∗ −→ X∗ as a bounded Gelfand integrable function
with respect to µ. Clearly, there is a bounded operator T : L1(µ) −→ X∗ such
that T (χA) = γI(A) for every A ∈ Σ. By hypothesis, T has norm separable range
and so the same holds for γI . The proof finishes as in the implication (ii)⇒(i) in
Theorem 2.3. �

Since the indefinite integral of any Pettis integrable function has σ-finite variation
(see e.g. [12, Theorem 4.1]), our Theorem 2.3 can be applied to deduce:

Corollary 2.5. Let X be a WLD Banach space such that (BX∗ , w∗) has prop-
erty (M) (for instance, a weakly K-countably determined space). Then X∗ has the
Pettis Separability Property.

Combining Theorem 2.3 with the result of Rybakov mentioned in the introduc-
tion, we arrive at the following corollary.

Corollary 2.6. Let X be a WLD Banach space. If X does not contain subspaces
isomorphic to `1, then (BX∗ , w∗) has property (M).

We finish the paper by showing that the absence of copies of `1(ω1) in a Banach
space X is a necessary condition to have the property that every countably additive
X∗-valued measure with σ-finite variation has norm separable range.

Example 2.7. There exists a countably additive `∞(ω1)-valued measure with finite
variation whose range is not norm separable.

Proof. For each ordinal α < ω1 we write eα to denote the element of `1(ω1) given
by eα(β) = δα,β (the Kronecker symbol) and πα : {0, 1}ω1 −→ R stands for the
α-coordinate projection. Let us denote by ({0, 1}ω1 ,Σ, µ) the complete probability
space obtained after completing the usual product probability measure on {0, 1}ω1 .
Consider the ‘identity’ function f : {0, 1}ω1 −→ `∞(ω1) and notice that 〈f, eα〉 = πα

for every α < ω1. Bearing in mind that f is bounded, we conclude that f is Gelfand
integrable and that ν := γf is a countably additive measure with finite variation.
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Set Eα = π−1
α ({1}) ∈ Σ for every α < ω1. Then we have

‖ν(Eα)− ν(Eβ)‖∞ ≥ |〈ν(Eα), eα〉 − 〈ν(Eβ), eα〉|

=
∣∣∣∫

Eα

πα dµ−
∫

Eβ

πα dµ
∣∣∣ = µ(Eα)− µ(Eα ∩ Eβ) =

1
4

whenever α, β < ω1, α 6= β. It follows that ν(Σ) is not separable. �

Given a subspace Y of a Banach space X and a countably additive Y ∗-valued
measure ν′ with finite variation, a theorem of Musial and Ryll-Nardzewski [14]
ensures that there is a countably additive X∗-valued measure ν with finite variation
such that r ◦ ν = ν′, where r : X∗ −→ Y ∗ denotes the ‘restriction’ operator. Thus,
in view of Example 2.7, we obtain the announced result.

Corollary 2.8. Let X be a Banach space with a subspace isomorphic to `1(ω1).
Then there exists a countably additive X∗-valued measure with finite variation whose
range is not norm separable.

The converse of Corollary 2.8 does not hold in general. Indeed, under the Con-
tinuum Hypothesis, Kalenda (see [15, Corollary 4.4]) showed that there is a WLD
Banach space X such that (BX∗ , w∗) does not have property (M). Thus we can find
a countably additive X∗-valued measure with finite variation whose range is not
norm separable (Theorem 2.3). On the other hand, `1(ω1) cannot be isomorphic
to a subspace of X, because the property of being WLD is inherited by subspaces
(see e.g. the remarks after Proposition 1.2 in [1]) and `1(ω1) is not WLD.
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23 (1993), no. 2, 395–446.

[2] S. Argyros, S. Mercourakis, and S. Negrepontis, Functional-analytic properties of Corson-

compact spaces, Studia Math. 89 (1988), no. 3, 197–229.
[3] S. Argyros and S. Negrepontis, On weakly K-countably determined spaces of continuous

functions, Proc. Amer. Math. Soc. 87 (1983), no. 4, 731–736.

[4] R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canad.
J. Math. 7 (1955), 289–305.

[5] J. Diestel and J. J. Uhl, Jr., Vector measures, Mathematical Surveys, No. 15, American

Mathematical Society, Providence, R.I., 1977.
[6] D. van Dulst, Characterizations of Banach spaces not containing l1, CWI Tract, vol. 59,

Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

[7] M. Fabian, Gâteaux differentiability of convex functions and topology. Weak Asplund spaces,
Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley &

Sons Inc., New York, 1997.
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