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ABSTRACT. Let (Ω, Σ, µ) be a complete probability space andu : X −→ Y an abso-
lutely summing operator between Banach spaces. We prove that for each Dunford inte-
grable (i.e. scalarly integrable) functionf : Ω −→ X the compositionu ◦ f is scalarly
equivalent to a Bochner integrable function. Such a composition is shown to be Bochner
integrable in several cases, for instance, whenf is properly measurable, Birkhoff inte-
grable or McShane integrable, as well as whenX is a subspace of an Asplund generated
space or a subspace of a weakly Lindelöf space of the formC(K). We also study the
continuity of the composition operatorf 7→ u ◦ f . Some other applications are given.

1. INTRODUCTION

An operator (i.e. linear and continuous map) between Banach spaces is said to be ab-
solutely summing if it takes unconditionally convergent series to absolutely convergent
ones. Since absolutely summing operators improve summability properties of sequences,
it is not surprising that they also improve the integrability of vector-valued functions[12,
p. 56]. This fact was first noticed by Diestel [11], who proved that, given a complete prob-
ability space(Ω,Σ, µ), if an operator between Banach spacesu : X −→ Y is absolutely
summing then for eachstrongly measurablePettis integrable functionf : Ω −→ X the
compositionu ◦ f is Bochner integrable and the linear map

(Pm(µ,X), ‖ · ‖P ) −→ (L1(µ, Y ), ‖ · ‖1), f 7→ u ◦ f,

is continuous, wherePm(µ,X) denotes the space of all strongly measurable Pettis inte-
grable functions fromΩ to X and‖ · ‖P is the so-called Pettis seminorm (see below for
the definitions). Diestel also showed that the converse holds true for atomlessµ. Later,
Belanger and Dowling [2] proved that the composition of any bounded Pettis integrable
function, defined on aperfectcomplete probability space, with an absolutely summing
operator isscalarly equivalentto a Bochner integrable function. The boundedness as-
sumption has recently been removed by Marraffa [30], who has also obtained the analogue
of the aforementioned Diestel’s result forMcShane integrablefunctions defined on a com-
pact Radon probability space. We also mention that Heiliö [26] studied similar questions
in the setting of weak Baire measures in Banach spaces.

The aim of this paper is to go a bit further when studying the composition of an “in-
tegrable” vector-valued function and an absolutely summing operator. Our discussion in-
volves non-separable Banach spaces and notions of integral (intermediate between those
due to Bochner and Pettis) that have caught the attention of many authors pretty recently,
like the Birkhoff, Talagrand and McShane integrals. We next summarize the content of this
work.
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Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an absolutely summing
operator between Banach spaces. WriteD(µ,X) to denote the space of all Dunford in-
tegrable (i.e. scalarly integrable) functions fromΩ to X. In Section 2 we prove that for
eachf ∈ D(µ,X) the compositionu ◦ f is scalarly equivalent to a Bochner integrable
functionuf (Theorem 2.3), even for non-perfectµ. Moreover, the linear map

(D(µ,X), ‖ · ‖P ) −→ (L1(µ, Y ), ‖ · ‖1), f 7→ uf ,

is shown to be continuous (Corollary 2.5). Our views also allow us to give an affirmative
answer to an open question posed in [26] concerning the image measureλ ◦u−1 of a weak
Baire measureλ onX that is “weakly summable” (Proposition 2.7).

Section 3 is devoted to study conditions on eitherf ∈ D(µ,X) or X that ensure us that
u◦f is Bochner integrable. Our Lemma 2.2 states thatu◦f is Bochner integrable whenever
u ◦ f is strongly measurable. Since the last requirement follows automatically provided
that u(X) is separable, in Sub-Section 3.1 we pay attention to Banach spaces for which
all the absolutely summing operators defined on them have separable range. We show in
Theorem 3.3 that this property is shared by a wide class of Banach spaces including, for
instance, those that are isomorphic to subspaces of weakly Lindelöf determined spaces of
the formC(K) (e.g. weakly countablyK-determined spaces), as well as those that are iso-
morphic to subspaces of Asplund generated spaces (e.g. Asplund spaces). Sub-Section 3.2
deals with the composition of a properly measurable function and an absolutely summing
operator. It turns out (Corollary 3.6) that such a composition is Bochner integrable when-
ever the function is Dunford integrable (e.g. Talagrand integrable). As an application we
show that the composition of a Dunford integrable function with values in a subspace of a
weakly Lindel̈of space of the formC(K) and an absolutely summing operator is always
Bochner integrable (Proposition 3.9). We complete Section 3 by establishing the Bochner
integrability of the composition of Birkhoff and McShane integrable functions with abso-
lutely summing operators (Sub-Sections 3.3 and 3.4, respectively). Finally, in Section 4
we give two examples making clear that the composition of a Dunford integrable function
and an absolutely summing operator is not Bochner integrable in general.

For all unexplained terminology we refer to our standard references [12] (absolutely
summing operators), [13] (vector measures), [17, 18] (Banach spaces and related com-
pact spaces) and [36] (Pettis integral). All our vector spaces are assumed to be real. For
a complete probability space(Ω,Σ, µ) we denote byL1(µ) the space of allµ-integrable
real-valued functions defined onΩ andL1(µ) for the corresponding Banach space of equiv-
alence classes with its usual norm‖ · ‖1. A setH ⊂ L1(µ) is uniformly integrableiff it is
‖ · ‖1-bounded and for eachε > 0 there isδ > 0 such thatsuph∈H

∫
E
|h| dµ ≤ ε when-

everµ(E) ≤ δ. GivenA ∈ Σ, we writeµA to denote the restriction ofµ to theσ-algebra
{E ⊂ A : E ∈ Σ}.

Now let Z be a Banach space. As usual,BZ is the closed unit ball ofZ andZ∗ stands
for the topological dual ofZ. We denote byw andw∗ the weak and weak∗ topologies
on Z andZ∗, respectively. A setB ⊂ BZ∗ is normingiff ‖z‖ = sup{|z∗(z)| : z∗ ∈ B}
for everyz ∈ Z.

We denote byL1(µ,Z) the Banach space of all Bochner integrable functions fromΩ
to Z (functions that are equalµ-a.e. are identified), endowed with the norm‖ · ‖1. Recall
that a functionf : Ω −→ Z is Bochner integrableiff it is strongly measurable(i.e. f
is theµ-a.e. limit of a sequence of simple functions) and‖f‖1 :=

∫
Ω
‖f‖ dµ < ∞. A

function f : Ω −→ Z is Dunford integrable(or scalarly integrable) iff the real-valued
functionz∗ ◦ f is µ-integrable for everyz∗ ∈ Z∗. In this case there is a finitely additive
vector measureνf : Σ −→ Z∗∗ such thatνf (E)(z∗) =

∫
E

z∗ ◦ f dµ for everyE ∈ Σ and
z∗ ∈ Z∗. Moreover,

‖f‖P := sup
{∫

Ω

|z∗ ◦ f | dµ : z∗ ∈ BZ∗

}
<∞,
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and thereforeνf is bounded. Whenνf takes its values inZ thenf is calledPettis integrable
(in this case,νf is a countably additive vector measure). The set of all Pettis integrable
functionsf : Ω −→ Z for which νf (Σ) = {νf (E) : E ∈ Σ} is norm relatively compact
will be denoted byPc(µ,Z). Two functionsf, g : Ω −→ Z are said to bescalarly
equivalentiff for eachz∗ ∈ Z∗ we havez∗ ◦ f = z∗ ◦ g µ-a.e.

Our compact topological spaces are assumed to be Hausdorff. For a compact spaceK
we denote byC(K) the Banach space of all real-valued continuous functions defined onK
with the supremum norm. For eacht ∈ K the Dirac deltaδt ∈ BC(K)∗ is defined by
δt(f) = f(t) for everyf ∈ C(K). Throughout this paperM+(K) stands for the set of all
(completions of) non-negative Radon (i.e. finite and inner regular with respect to compact
sets) measures onBorel(K). Givenν ∈M+(K), thesupportof ν is

supp(ν) := K \
⋃
{U ⊂ K : U open, ν(U) = 0}.

It is easy to check thatν(K \ supp(ν)) = 0 and thatν(U ∩ supp(ν)) > 0 whenever
U ⊂ K is open andU ∩ supp(ν) 6= ∅.

2. SCALAR EQUIVALENCE TO BOCHNER INTEGRABLE FUNCTIONS AND CONTINUITY

OF THE COMPOSITION OPERATOR

It is well known [12, p. 34] that an operator between Banach spacesu : X −→ Y is
absolutely summing if and only ifu is 1-summing, i.e. there is a constantC ≥ 0 such that

n∑
i=1

‖u(xi)‖ ≤ C sup
{ n∑

i=1

|x∗(xi)| : x∗ ∈ BX∗

}
for every finite collectionx1, . . . , xn ∈ X. In this case, the smallest constantC ≥ 0
satisfying the inequality above will be denoted byπ(u). It is easy to check that

(1)
n∑

i=1

‖u(xi)‖ ≤ 2π(u) sup
{∥∥∥∑

i∈S

xi

∥∥∥ : S ⊂ {1, . . . , n}
}

for every finite collectionx1, . . . , xn ∈ X.
As a consequence, the composition of a bounded vector measure with an absolutely

summing operator always has bounded variation (see Lemma 2.1 below). Recall that,
given a finitely additive vector measureν defined on an algebraA (of subsets of a setΩ)
with values in a Banach spaceX, thetotal variationof ν is defined by

|ν|(Ω) := sup
{ n∑

i=1

‖ν(Ei)‖ : {E1, . . . , En} is a finite partition ofΩ in A
}
∈ [0,∞].

Lemma 2.1. LetA be an algebra of subsets of a setΩ andu : X −→ Y an absolutely
summing operator between Banach spaces. Ifν : A −→ X is a bounded finitely additive
vector measure, then the compositionu ◦ ν has bounded variation, i.e.|u ◦ ν|(Ω) <∞.

Proof. Given any finite partition ofΩ in A, say{E1, . . . , En}, inequality (1) applies to
deduce

n∑
i=1

‖u ◦ ν(Ei)‖ ≤ 2π(u) sup
{∥∥∥∑

i∈S

ν(Ei)
∥∥∥ : S ⊂ {1, . . . , n}

}
≤ 2π(u) sup{‖ν(A)‖ : A ∈ A} <∞.

Thereforeu ◦ ν has bounded variation, as required. �

Let h be a strongly measurable Dunford integrable function defined on a complete prob-
ability space(Ω,Σ, µ) with values in a Banach spaceZ. It follows from Proposition 1
in [31] that |νh|(Ω) =

∫
Ω
‖h‖ dµ (maybe infinite). This fact will be used in the proof of

the following result.
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Lemma 2.2. Let (Ω,Σ, µ) be a complete probability space,u : X −→ Y an absolutely
summing operator between Banach spaces andf : Ω −→ X a Dunford integrable func-
tion. Letg : Ω −→ Y be scalarly equivalent tou ◦ f . Theng is Bochner integrable if and
only if g is strongly measurable.

Proof. Assume thatg is strongly measurable. Sincef is Dunford integrable, the same
holds foru◦f , with νu◦f = u∗∗ ◦νf , whereu∗∗ : X∗∗ −→ Y ∗∗ is the second adjoint ofu.
Henceg is also Dunford integrable andνg = νu◦f = u∗∗ ◦ νf . According to the comment
preceding this lemma,|νg|(Ω) =

∫
Ω
‖g‖ dµ. On the other hand, sinceu is absolutely

summing,u∗∗ is absolutely summing too, see [12, Proposition 2.19], hence Lemma 2.1
applied toνf andu∗∗ ensures thatu∗∗ ◦ νf = νg has bounded variation. Consequently,∫
Ω
‖g‖ dµ <∞ and thereforeg is Bochner integrable. The proof is over. �

Theorem 2.3. Let (Ω,Σ, µ) be a complete probability space,u : X −→ Y an absolutely
summing operator between Banach spaces andf : Ω −→ X a Dunford integrable func-
tion. Thenu ◦ f is scalarly equivalent to some Bochner integrable functiong : Ω −→ Y .

Proof. Sinceu is absolutely summing,u is weakly compact, see [12, Theorem 2.17], and
thereforeu(X) is a weakly compactly generated Banach space in whichu ◦ f takes its
values. Every weakly compactly generated Banach space is weakly Lindelöf (see [18,
Chapter 12]) and, therefore, measure-compact in its weak topology. Thus the scalarly
measurable functionu◦f is scalarly equivalent to a strongly measurable oneg : Ω −→ Y ,
see [16, Proposition 5.4]. An appeal to Lemma 2.2 now ensures us thatg is Bochner
integrable and the proof is complete. �

Remark. As we mentioned in the introduction, the same conclusion was obtained in [2]
(in the case of bounded functions) and [30, Proposition 3] for Pettis integrable functions
and perfect measures.

We next discuss the continuity of the “composition” operator associated with an abso-
lutely summing operator. Let(Ω,Σ, µ) be a complete probability space andu : X −→ Y
an operator between Banach spaces. LetM be a linear subspace ofD(µ, X) such that for
eachf ∈ M the compositionu ◦ f is scalarly equivalent to a Bochner integrable function
uf : Ω −→ Y . Then we can consider the map

ũM : (M, ‖ · ‖P ) −→ (L1(µ, Y ), ‖ · ‖1)
that sends eachf ∈ M to the equivalence class ofuf . Observe that̃uM does not depend
on the particular choice of theuf ’s, because two scalarly equivalent strongly measurable
functions must coincideµ-a.e., see [13, Corollary 7, p. 48]. For the same reason,ũM is
linear.

Lemma 2.4. With the notations above, the mapũM has closed graph.

Proof. Fix a sequence(fn) in M such thatlimn ‖fn‖P = 0 and there is a Bochner in-
tegrable functionh : Ω −→ Y with limn ‖ufn

− h‖1 = 0. By passing to a further
subsequence, we can suppose without loss of generality that(ufn

) converges toh µ-a.e.,
see [14, Proposition 14, p. 130]. Sinceh is strongly measurable, in order to check that
h = 0 µ-a.e. it suffices to show that for eachy∗ ∈ Y ∗ we havey∗ ◦ h = 0 µ-a.e. To this
end, fixy∗ ∈ Y ∗. Sincelimn ‖fn‖P = 0, we have

lim
n

∫
Ω

|y∗ ◦ ufn | dµ = lim
n

∫
Ω

|y∗ ◦ u ◦ fn| dµ = 0

and therefore Fatou’s lemma yields
∫
Ω
|y∗ ◦ h| dµ = 0, hencey∗ ◦ h = 0 µ-a.e. Since

y∗ ∈ Y ∗ is arbitrary,h = 0 µ-a.e. Thus̃uM has closed graph, as required. �

Although the normed spaces obtained (by identifying scalarly equivalent functions)
from D(µ,X) andPm(µ,X) are not complete in general, see [27, 38], they are always
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ultrabornological [10], hence barrelled and therefore every linear map defined on them
with values in a Banach space is continuous whenever it has closed graph. (For a detailed
account of the theory of barrelled locally convex spaces we refer the reader to [4].) Bearing
in mind Theorem 2.3, we can now deduce the following

Corollary 2.5. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an abso-
lutely summing operator between Banach spaces. Then the linear map

ũD(µ,X) : (D(µ,X), ‖ · ‖P ) −→ (L1(µ, Y ), ‖ · ‖1)
is continuous.

Proof. Write E to denote the barrelled normed space obtained from(D(µ,X), ‖ · ‖P ) by
identifying scalarly equivalent functions. SinceũD(µ,X)(f) = 0 wheneverf is scalarly
null, there is a linear mapT : E −→ L1(µ, Y ) such thatT ◦ I = ũD(µ,X), where
I : D(µ, X) −→ E maps each function to its equivalence class. SinceũD(µ,X) has closed
graph (by Lemma 2.4), the same holds forT and thereforeT is continuous. TheñuD(µ,X)

is continuous too and the proof is finished. �

In the same manner we obtain

Corollary 2.6. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an opera-
tor between Banach spaces such thatu ◦ f is Bochner integrable for everyf ∈ Pm(µ,X).
Then the linear map

ũPm(µ,X) : (Pm(µ,X), ‖ · ‖P ) −→ (L1(µ, Y ), ‖ · ‖1)
is continuous.

Remark. Under the hypotheses of Corollary 2.6 and the additional assumption of the
continuity ofũPm(µ,X) (which we have shown to be redundant), it was proved in [11] that
u must be absolutely summing (withπ(u) = ‖ũPm(µ,X)‖) provided thatµ is atomless.

We end up this section with an application of Theorem 2.3 to Baire measures in Ba-
nach spaces. Recall that the Baireσ-algebra of a Banach spaceX endowed with its weak
topology, denoted byBaire(X, w), is exactly the smallest one for which eachx∗ ∈ X∗

is measurable, see [16, Theorem 2.3]. As a consequence, iff is a scalarly measurable
function defined on a complete probability space(Ω,Σ, µ) with values inX, thenf is
Σ-Baire(X, w) measurable and we can consider theimageprobability measureµ ◦ f−1

on Baire(X, w). There are non-trivial relationships between some “smoothness” proper-
ties ofµ◦f−1 and properties off like Pettis integrability and scalar equivalence to strongly
measurable functions, see [16, 32, 36] and the references therein.

Heiliö studied in [26] the class of those probability measures onBaire(X, w) for which
the identity mapIX : X −→ X is Dunford integrable (called by himweakly summable
measures). Section 8.2 of that paper dealt with the image measure induced by an absolutely
summing operator. A weakly summable measureµ is calledabsolutely summableif there
is an extensioñµ of µ to Borel(X, ‖ · ‖) such thatIX is Bochner integrable with respect
to µ̃. It was shown in [26, Theorem 8.2.4] that, given an absolutely summing operator
between Banach spacesu : X −→ Y and a probability measureµ on Baire(X, w) for
which IX ∈ Pc(µ, X), the image measureµ ◦ u−1 is absolutely summable. The question
of whether the same happens for an arbitrary weakly summable measureµ was left open
in [26, 8.2.5]. We next give an affirmative answer to this question.

Proposition 2.7. Let u : X −→ Y be an absolutely summing operator between Banach
spaces andµ a weakly summable measure onBaire(X, w). Thenµ ◦ u−1 is absolutely
summable.

Proof. It is easy to check thatµ ◦ u−1 is a weakly summable measure. WriteΣ to de-
note theµ-completion ofBaire(X, w) and letµ̂ be the complete extension ofµ to Σ. By
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Theorem 2.3 applied toIX the operatoru (viewed as a function from the complete prob-
ability space(X, Σ, µ̂) to Y ) is scalarly equivalent to some Bochner integrable function
g : X −→ Y . Sinceg is strongly measurable,g is Σ-Borel(Y, ‖ · ‖) measurable and there
is a separable closed subspaceY0 ⊂ Y such that̂µ(g−1(Y0)) = 1, see [6, Appendix E].
According to Pettis’ Measurability Theorem [13, Theorem 2, p. 42], the last condition
ensures that the scalarly measurable functionIY is strongly measurable with respect to
µ̂◦g−1. Sinceu andg are scalarly equivalent, we haveµ̂◦u−1 = µ̂◦g−1 onBaire(Y, w),
and thereforêµ ◦ g−1 is an extension ofµ ◦u−1 to Borel(Y, ‖ · ‖) for whichIY is strongly
measurable. On the other hand, sinceg is Bochner integrable, we have∫

X

‖g(x)‖ dµ̂(x) <∞.

By a standard change of variable we get∫
Y

‖IY (y)‖ d(µ̂ ◦ g−1)(y) =
∫

X

‖g(x)‖ dµ̂(x) <∞,

henceIY is Bochner integrable with respect tôµ ◦ g−1 and the proof is over. �

3. BOCHNER INTEGRABILITY OF THE COMPOSITION

3.1. Absolutely summing operators with separable range.As our Lemma 2.2 shows,
the composition of a Dunford integrable functionf with an absolutely summing operatoru
is Bochner integrable wheneveru ◦ f is strongly measurable. By Pettis’ Measurability
Theorem [13, Theorem 2, p. 42], the last condition holds if the range ofu is separable.
Thus it is natural to look for Banach spacesX satisfying that each absolutely summing
operator defined onX has separable range. In Theorem 3.3 below we show that a wide
class of Banach spaces enjoy this property.

For a compact spaceK and anyν ∈M+(K), the “identity” operator

jν : C(K) −→ L1(ν)

(that maps each function to its equivalence class) is absolutely summing, see [12, 2.9], and
has dense range, see [6, Proposition 7.4.2]. Moreover, thanks to Pietsch’s Factorization
Theorem [12, Corollary 2.15], given an absolutely summing summing operatoru defined
onC(K) with values in another Banach spaceY , there existν ∈M+(K) and an operator
v : L1(ν) −→ Y such thatu = v ◦ jν . As a consequence, it turns out thatC(K) satisfies
that each absolutely summing operator defined on it has separable range if and only if
L1(ν) is separable for everyν ∈M+(K).

Following [15], we say that a compact spaceK belongs to the classMS iff each
ν ∈ M+(K) is separable(i.e. L1(ν) is separable). The classMS is closed under sub-
spaces, continuous images and countable products, see [15], and it contains the following
compacta:

(a) Metrizable compacta, because theL1 space associated to a non-negative finite
measure defined on a countably generatedσ-algebra is always separable, see [6,
Proposition 3.4.5].

(b) Corson compacta with property (M). Recall that a compact spaceK hasprop-
erty (M) (see [1, Section 3]) iffsupp(ν) is separable for eachν ∈ M+(K). Thus
(a) and the elementary fact that any separable Corson compact space is metriz-
able (see [18, Exercise 12.56]) imply thatMS contains all Corson compacta with
property (M). These are exactly those Corson compactaK for which BC(K)∗ is
also Corson (equivalently,C(K) is weakly Lindel̈of or C(K) has property (C)
of Corson), see [1, Theorem 3.5]. In particular, all Eberlein compacta and, more
generally, all Gul’ko compacta, belong toMS (see Chapter 7 in [17]).

(c) Rosenthal compacta(Bourgain, see [39, Theorem 2] for a proof).
(d) Linearly ordered compacta, see [15, Theorem 1.0].
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(e) Zero-dimensional compactaK for whichC(K) is weakly Lindel̈of, see Lemma 3.5
in [19].

(f) Radon-Nikod́ym compacta(e.g. scattered, see [17, Chapter 1]), as we next show.

Lemma 3.1. LetK be a Radon-Nikod́ym compact space. ThenK belongs toMS.

Proof. We denote byT the original topology onK. SinceK is a Radon-Nikod́ym com-
pact, there is a lower semicontinuous metricd on K, whose corresponding topology is
finer thanT, such thatK is fragmentedby d (i.e. for everyε > 0 and every non-empty set
H ⊂ K there is a non-empty relatively open subset ofH with d-diameter less thanε), see
[7, Section I.5]. Fixν ∈ M+(K) andn ∈ N. By [28, Theorem 4.1] there is ad-compact
setFn ⊂ K such thatν(K \ Fn) ≤ 1/n. Since the topology induced byd is finer thanT,
the setFn is compact and metrizable when endowed with the restriction ofT. It follows
from (a) above thatL1(νFn) is separable. HenceEn := {hχFn : h ∈ L1(ν)} is a separable
subset ofL1(ν) (whereχA is the characteristic function of a setA ⊂ K). Consequently,⋃∞

n=1 En is separable. Sincelimn ν(K \Fn) = 0, the set
⋃∞

n=1 En is dense inL1(ν) and
thereforeL1(ν) is separable. The proof is finished. �

Under some additional set-theoretic assumptions we can say more about the classMS.
Solving a long-standing problem posed by Haydon, Fremlin showed in [22] that under
Martin’s Axiom (MA) and the negation of the Continuum Hypothesis (CH), any compact
space not belonging toMS can be mapped continuously onto[0, 1]ω1 (the converse holds
without further assumptions). It follows that all compact spaces with countable tightness
(e.g. Corson compacta or, more generally, angelic compacta, as well as compact spacesK
for which C(K) has property (C), see [19]) belong toMS whenever both MA and¬CH
are assumed. On the other hand, under CH there are examples of Corson compacta not be-
longing toMS, see [33,§5] (the Kunen-Haydon-Talagrand space) and [1, Section 3]. For
more information on separable Radon measures on compact spaces and related questions
we refer the reader to [1, 15, 19, 22, 29, 34] and the references therein.

We now introduce the Banach space counterpart of the classMS. We say that a Banach
spacebelongs to the classMS iff it is isomorphic to a subspace ofC(L), whereL is a
compact space belonging toMS. Bearing in mind that any Banach spaceX is isometric to
a subspace ofC(BX∗), it follows from (b) above that all weakly countablyK-determined
(e.g. weakly compactly generated) Banach spaces belong toMS (they have Gul’ko com-
pact dual unit ball, see [17, Chapter 7]). On the other hand, taking into account (f) and
the fact thatBX∗ is a Radon-Nikod́ym compactum wheneverX is an Asplund generated
Banach space (i.e. there exist an Asplund Banach spaceZ and an operator fromZ to X
with dense range), see [17, Chapter 1], we conclude that all Asplund generated spaces (and
their subspaces) belong toMS. Moreover, under MA and¬CH, the classMS contains
all Banach spaces with angelic dual unit ball, as well as allC(K) spaces with property (C)
(and their subspaces).

The following easy observation will be used in the proofs of Theorem 3.3 and Proposi-
tion 3.9.

Lemma 3.2. LetL be a compact space andX a closed subspace ofC(L). Then there is a
continuous mapping fromL onto aw∗-compact norming setK ⊂ BX∗ .

Proof. Notice thatD := {δt : t ∈ L} is a w∗-compact subset ofBC(L)∗ that is home-
omorphic toL. The restriction mappingr : BC(L)∗ −→ BX∗ is w∗-w∗-continuous and
mapsD onto aw∗-compact norming setK := {δt|X : t ∈ L} ⊂ BX∗ . Hence there is a
continuous map fromL ontoK and the proof is over. �

From now on, given a Banach spaceX and aw∗-compact norming setK ⊂ BX∗ , we
denote byiK the natural isometry fromX into C(K) given byiK(x)(x∗) := x∗(x).

Theorem 3.3. LetX be a Banach space.
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(i) If X belongs toMS, then each absolutely summing operator defined onX has
separable range.

(ii) Assume thatX = C(L) for some compact spaceL. If each absolutely summing
operator defined onX has separable range, thenL belongs toMS.

Proof. Part (ii) has already been established at the beginning of this section. For the proof
of (i) we can suppose without loss of generality thatX is a closed subspace ofC(L), where
L is a compact space belonging toMS. According to Lemma 3.2, there is a continuous
mapping fromL onto aw∗-compact norming setK ⊂ BX∗ . As we already mentioned,
MS is closed under continuous images, henceK belongs toMS. Now letu : X −→ Y be
an absolutely summing operator between Banach spaces. Pietsch’s Factorization Theorem,
see [12, Theorem 2.13], ensures us the existence ofν ∈ M+(K), a closed subspace
Z ⊂ L1(ν) and an operatorv : Z −→ Y such thatjν(iK(X)) ⊂ Z andu = v ◦ jν ◦ iK .
SinceL1(ν) is separable, the same holds forZ and thereforeu(X) is separable. The proof
is complete. �

Corollary 3.4. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an ab-
solutely summing operator between Banach spaces. IfX belongs toMS, thenu ◦ f is
Bochner integrable for everyf ∈ D(µ,X).

Remark. Our Corollary 3.4 improves theif part of [30, Corollary 7], where an analogous
result is proved for Pettis integrable functions in the particular case of a Radon probability
measureµ on a compact spaceΩ and a superreflexive (hence reflexive) Banach spaceX.

3.2. Properly measurable functions. We next study the composition of properly mea-
surable functions with absolutely summing operators. Properly measurable vector-valued
functions and stable families of real-valued measurable functions were thoroughly studied
in [36], mostly in connection with the Pettis integral. Recall that a familyH of real-valued
functions defined on a complete probability space(Ω,Σ, µ) is stableiff for eachA ∈ Σ
with µ(A) > 0 and each pair of real numbersα < β there existk, l ∈ N such that

µ∗k+l

( ⋃
h∈H

(
{h < α}k × {h > β}l

)
∩Ak+l

)
< µ(A)k+l,

whereµk+l is the product ofk + l copies ofµ. In particular,H is made up of measurable
functions. A well-known result of Talagrand [36, Theorem 9-5-2] states thatif H ⊂ RΩ is
stable, then the identity map(H,Tp) −→ (H,Tm) is continuous, whereTp is the topol-
ogy of pointwise convergence andTm is the topology of convergence in measure. Under
Axiom L (a weakening of MA, see [36, p. 14] for the definition), every pointwise relatively
compact sequence of real-valued measurable functions defined on a perfect complete prob-
ability space is stable, see [36, Section 9.3].

Recall that a functionf defined onΩ with values in a Banach spaceX is properly
measurableiff the family

Zf = {x∗ ◦ f : x∗ ∈ BX∗}
is stable. In view of the above, such a function belongs toPc(µ, X) wheneverZf is a
uniformly integrable subset ofL1(µ), see [36, Theorem 6-1-2].

Inspired by some ideas in [2], in Theorem 3.5 below we apply a result of Talagrand
(Theorem 10-2-1 in [36]) linking stability and joint measurability in order to study the
Bochner integrability of the composition of vector-valued functions that are “almost” prop-
erly measurable with absolutely summing operators.

Theorem 3.5. Let (Ω,Σ, µ) be a complete probability space,X a Banach space and
f : Ω −→ X a Pettis integrable function. Let us consider the following statements:

(i) there is aw∗-compact norming setK ⊂ BX∗ such that for eachν ∈M+(K) the
family{x∗ ◦ f : x∗ ∈ supp(ν)} is stable;
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(ii) there is aw∗-compact norming setK ⊂ BX∗ such that for eachν ∈M+(K) the
function

fK : Ω×K −→ R, fK(ω, x∗) := (x∗ ◦ f)(ω),

is µ× ν-measurable;
(iii) for each absolutely summing operatoru defined onX the compositionu ◦ f is

Bochner integrable.

Then (i)⇒(ii)⇒(iii). Moreover, under Axiom L all the statements are equivalent provided
thatµ is perfect (in this case, (i) and (ii) hold for anyw∗-compact norming setK ⊂ BX∗ ).

Proof. Assume that (i) holds, fixν ∈ M+(K) and writeF := supp(ν). The function
fK |Ω×F : Ω × F −→ R is measurable in the first variable and continuous in the second
one. Since, in addition, the family

{fK |Ω×F (·, x∗) = x∗ ◦ f : x∗ ∈ F}

is stable, Theorem 10-2-1 in [36] applies to conclude thatfK |Ω×F is µ× νF -measurable.
ThereforefK is µ× ν-measurable. This proves the implication (i)⇒(ii).

Let us turn to the proof of (ii)⇒(iii). Fix a w∗-compact norming setK ⊂ BX∗ satis-
fying the conditions in (ii) and consider an absolutely summing operatoru defined onX
with values in another Banach spaceY . By Lemma 2.2, in order to check thatu ◦ f is
Bochner integrable it suffices to check thatu ◦ f is strongly measurable.

By Pietsch’s Factorization Theorem there existν ∈ M+(K), a closed subspaceZ ⊂
L1(ν) and an operatorv : Z −→ Y such thatjν(iK(X)) ⊂ Z andu = v ◦ jν ◦ iK .
Write F := supp(ν) and consider the restriction operatorR : C(K) −→ C(F ) and
a linear isometryI : L1(νF ) −→ L1(ν) such thatjν = I ◦ jνF

◦ R. The function
g := R◦ iK ◦f : Ω −→ C(F ) is Pettis integrable. SinceF is the support ofν, Rosenthal’s
theorem (see [36, Theorem 12-1-5]) ensures that every weakly compact subset ofC(F )
is separable. In particular,νg(Σ) is separable (the range of any countably additive vector
measure defined on aσ-algebra is relatively weakly compact, see [13, Corollary 7, p. 14]).
Then there is a sequence of simple functionssn : Ω −→ C(F ) such that

(α) {h ◦ sn : h ∈ BC(F )∗ , n ∈ N} is uniformly integrable,
(β) for eachh ∈ C(F )∗ we havelimn h ◦ sn = h ◦ g µ-a.e.,

see [36, Theorem 5-3-2]. Definegn = g − sn for everyn ∈ N and notice that the family
F := {δx∗ ◦ gn : x∗ ∈ F, n ∈ N} is uniformly integrable, by (α) and the fact thatZg is
uniformly integrable (becauseg is Pettis integrable, see [36, Theorem 4-2-2]).

SincefK is µ × ν-measurable, the restrictionfK |Ω×F is µ × νF -measurable. On the
other hand, givenn ∈ N, it is easy to see that the function

Ω× F −→ R, (ω, x∗) 7→ (δx∗ ◦ sn)(ω),

is µ× νF -measurable. Therefore the same holds for the function

Ω× F −→ R, (ω, x∗) 7→ (δx∗ ◦ gn)(ω) = fK(ω, x∗)− (δx∗ ◦ sn)(ω).

Since the familyF is ‖ · ‖1-bounded, we have∫
F

(∫
Ω

|(δx∗ ◦ gn)(ω)| dµ(ω)
)

dν(x∗) <∞,

and therefore we can apply Fubini’s theorem obtaining

(2)
∫

F

(∫
Ω

|(δx∗ ◦ gn)(ω)| dµ(ω)
)

dν(x∗) =
∫

Ω

(∫
F

|(δx∗ ◦ gn)(ω)| dν(x∗)
)

dµ(ω)

for everyn ∈ N. DefineGn ∈ L1(νF ) by Gn(x∗) =
∫
Ω
|(δx∗ ◦ gn)(ω)| dµ(ω). Since

F is uniformly integrable and for eachx∗ ∈ F we havelimn δx∗ ◦ gn = 0 µ-a.e.
(by (β)), Vitali’s convergence theorem implies that(Gn) converges pointwise to0, and
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thus Lebesgue’s dominated convergence theorem applied to the uniformly bounded se-
quence(Gn) yieldslimn ‖Gn‖1 = 0. Now (2) applies to conclude that

lim
n

∫
Ω

(∫
F

|(δx∗ ◦ gn)(ω)| dν(x∗)
)

dµ(ω) = 0.

Therefore the sequence(Hn) in L1(µ) defined byHn(ω) =
∫

F
|(δx∗ ◦ gn)(ω)| dν(x∗)

converges to0 in the norm‖ ·‖1. Thus there is a subsequence(Hnk
) converging to0 µ-a.e.

Define the operatorQ := I ◦ jνF
: C(F ) −→ L1(ν) and observe that

‖(Q ◦ gnk
)(ω)‖ =

∫
F

|(δx∗ ◦ gnk
)(ω)| dν(x∗) = Hnk

(ω) for everyω ∈ Ω andk ∈ N.

Thuslimk ‖Q ◦ snk
− Q ◦ g‖ = 0 µ-a.e. and thereforeQ ◦ g is strongly measurable. To

finish the proof of (ii)⇒(iii) notice thatQ◦g takes its values inZ and thatv◦Q◦g = u◦f ,
thusu ◦ f is also strongly measurable, as required.

Finally, assume thatf satisfies (iii), and fixany w∗-compact norming setK ⊂ BX∗

and ν ∈ M+(K). Let us defineF := supp(ν) and consider the restriction operator
R : C(K) −→ C(F ). The compositionjνF

◦ R ◦ iK is absolutely summing, hence
g := jνF

◦R◦iK ◦f is strongly measurable, i.e.g is Σ−Borel(L1(νF ), ‖·‖1)-measurable
and essentially separably valued (see [6, Appendix E]). If we assume, in addition, thatµ
is perfect and Axiom L holds, then the criterion in [36, Theorem 10-2-4] can be applied to
fK |Ω×F to deduce that{x∗ ◦ f : x∗ ∈ F} is stable. The proof is over. �

Corollary 3.6. Let (Ω,Σ, µ) be a complete probability space,u : X −→ Y an absolutely
summing operator between Banach spaces andf : Ω −→ X a function.

(i) If f is properly measurable, thenu ◦ f is strongly measurable.
(ii) If f is properly measurable and Dunford integrable, thenu ◦ f is Bochner inte-

grable.

Proof. The proof of (i) is as follows. Sincef is scalarly measurable, there is a non-negative
measurable functionh onΩ such that for eachx∗ ∈ BX∗ we have|x∗ ◦ f | ≤ h µ-a.e. (see
e.g. [32, Proposition 3.1]). Fixn ∈ N and defineAn := {ω ∈ Ω : n−1 ≤ h(ω) < n} ∈ Σ.
Then the family of restrictionsZf |An

is a stable uniformly integrable subset ofL1(µAn
),

hencef |An
is Pettis integrable, by [36, Theorem 6-1-2], and an appeal to Theorem 3.5

ensures thatu ◦ f |An is strongly measurable. Sincen ∈ N is arbitrary, it follows that
u ◦ f is strongly measurable, as required. Part (ii) now follows immediately from (i) and
Lemma 2.2. �

Recall that a functionf defined on a complete probability space(Ω,Σ, µ) with values in
a Banach spaceX is Talagrand integrable[24] iff f satisfies thelaw of large numbers, that
is, there existslimn(1/n)

∑n
i=1 f(ωi) (in norm) for almost every(ωi)i∈N ∈ ΩN, where

ΩN is given its product probability. Equivalently,f is properly measurable and‖f‖ has an
integrable majorant, see [37]. Every Talagrand integrable function is Pettis integrable.

Corollary 3.7. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an abso-
lutely summing operator between Banach spaces. Iff : Ω −→ X is a Talagrand integrable
function, thenu ◦ f is Bochner integrable.

As we have already mentioned, under Axiom L, every pointwise relatively compact
sequence of real-valued measurable functions defined a perfect complete probability space
is stable. Since stability is preserved by taking pointwise closures, we get the following

Corollary 3.8 (Axiom L). Let (Ω,Σ, µ) be a perfect complete probability space and let
u : X −→ Y be an absolutely summing operator between Banach spaces, whereBX∗ is
w∗-separable. Thenu ◦ f is Bochner integrable for everyf ∈ D(µ,X).
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For the proof of the following proposition it is useful to recall that property (M) is
preserved by continuous mappings. Indeed, letφ : L −→ K be a continuous surjection
between compact spaces, whereL has property (M), and fixν ∈ M+(K). Then there
existsν′ ∈ M+(L) such thatν′(φ−1(B)) = ν(B) for everyB ∈ Borel(K), see e.g. [36,
1-2-5]. Sincesupp(ν′) is separable, the same holds true forφ(supp(ν′)) = supp(ν). It
follows thatK has property (M).

Proposition 3.9. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an ab-
solutely summing operator between Banach spaces, whereX is isomorphic to a subspace
of a weakly Lindel̈of space of the formC(L). Thenu ◦ f is Bochner integrable for every
f ∈ D(µ,X).

Proof. Obviously we can suppose without loss of generality thatX is a subspace ofC(L).
Now Lemma 3.2 can be applied to find aw∗-compact norming setK ⊂ BX∗ and a contin-
uous map fromL ontoK. SinceC(L) is weakly Lindel̈of, it has property (C). It follows
from a result of Pol (see [18, Exercise 12.31]) thatL has property (M), and therefore the
same also holds for its continuous imageK (see the comments preceding this proposition).

Fix f ∈ D(µ,X). SinceC(L) is weakly Lindel̈of, X is weakly Lindel̈of too and
thereforeX is measure-compact in its weak topology. Hence the scalarly measurable
function f is scalarly equivalent to a strongly measurable oneh : Ω −→ X, see [16,
Proposition 5.4]. By Lemma 2.2 the compositionu ◦ h is Bochner integrable, so in order
to finish the proof it suffices to check thatu ◦ (f − h) is Bochner integrable. Define
h′ := f − h and observe that each countable subset ofZh′ is stable (becauseh′ is scalarly
null). Since stability is preserved by taking pointwise closures andK has property (M),h′

fulfills condition (i) in Theorem 3.5 and thereforeu ◦ h′ is Bochner integrable. The proof
is over. �

3.3. Birkhoff integrable functions. The notion of integrability introduced by Garrett
Birkhoff in [3] (that lies strictly between Bochner and Pettis integrability) has been widely
studied pretty recently in [5, 20, 35]. Recall that a functionf : Ω −→ X defined on a com-
plete probability space(Ω,Σ, µ) with values in a Banach spaceX is Birkhoff integrableiff
for everyε > 0 there is a countable partition(An) of Ω in Σ such that∥∥∥∑

n

µ(An)f(tn)−
∑

n

µ(An)f(t′n)
∥∥∥ ≤ ε

for arbitrary choicestn, t′n ∈ An, the series involved being unconditionally convergent. It
was proved in [20] that every Birkhoff integrable function is properly measurable. Thus,
according to Corollary 3.6, the composition of such a function with an absolutely summing
operator is Bochner integrable. We provide in Theorem 3.11 a simpler proof of this fact
that is based on the following well-known lemma (whose proof we include here for the
sake of completeness).

Lemma 3.10. Let f : Ω −→ X be a function defined on a complete probability space
(Ω,Σ, µ) with values in a Banach spaceX. The following conditions are equivalent:

(i) f is strongly measurable;
(ii) for eachε > 0 and eachE ∈ Σ with µ(E) > 0 there isB ⊂ E, B ∈ Σ with

µ(B) > 0, such thatsupt,t′∈B ‖f(t)− f(t′)‖ ≤ ε.

Proof. It is known (see [13, Corollary 3, p. 42]) that (i) is equivalent to

(iii) for eachε > 0 there exist a countable partition(En) of Ω in Σ and a sequence
(xn) in X such that the functiong : Ω −→ X given byg =

∑
n xnχEn

satisfies
‖f − g‖ ≤ ε µ-a.e.

Therefore, it suffices to check that (ii) and (iii) are equivalent. The implication (iii)⇒(ii)
is straightforward. Conversely, assume that (ii) holds and fixε > 0. Let Sε be the (non-
empty) set of all countable families(En) made up of pairwise disjoint elements ofΣ with
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µ(En) > 0 such thatsupt,t′∈En
‖f(t) − f(t′)‖ ≤ ε for everyn. It is easy to see that

Sε, with the order given by the inclusion, satisfies that every totally ordered subset has an
upper bound (use that any family of pairwise disjoint elements ofΣ with positive measure
must be countable). An appeal to Zorn’s lemma yields a maximal element(An) ∈ Sε. By
maximality and (ii) we haveµ(Ω\∪nAn) = 0. DefineE1 := Ω\∪nAn andEn+1 := An

for everyn. Fix tn ∈ En and definexn := f(tn) for everyn. Now g =
∑

n xnχEn

satisfies the requirement in (iii) and the proof is finished. �

Theorem 3.11. Let (Ω,Σ, µ) be a complete probability space andu : X −→ Y an
absolutely summing operator between Banach spaces. Iff : Ω −→ X is a Birkhoff
integrable function, thenu ◦ f is Bochner integrable.

Proof. By Lemma 2.2, in order to prove thatu◦f is Bochner integrable it suffices to check
thatu ◦ f is strongly measurable. To this end, we will apply the characterization isolated
in Lemma 3.10. Fixε > 0 andA ∈ Σ with µ(A) > 0. Since the restrictionf |A is Birkhoff
integrable, there is a countable partition(An) of A in Σ such that

2π(u)
∥∥∥ m∑

n=1

(
µ(An)f(tn)− µ(An)f(t′n)

)∥∥∥ < ε

for arbitrary choicestn, t′n ∈ An and everym ∈ N. Then inequality (1) on page 3 yields
m∑

n=1

µ(An)‖u ◦ f(tn)− u ◦ f(t′n)‖ < ε

for arbitrary choicestn, t′n ∈ An and everym ∈ N. It follows that there is someAn with
µ(An) > 0 for which supt,t′∈An

‖u ◦ f(t) − u ◦ f(t′)‖ ≤ ε. An appeal to Lemma 3.10
ensures thatu ◦ f is strongly measurable and the proof is over. �

Remark. The same result was obtained in [30, Corollary 8] in the particular case of a
compact Radon probability space.

3.4. McShane integrable functions. In this subsection we prove that the composition of
a McShane integrable function with an absolutely summing operator is always Bochner
integrable (Theorem 3.13). The McShane integral of vector-valued functions has caught
the attention of many authors in recent years, see [9, 20, 21, 24] and the references therein,
and to recall its definition we need some terminology.

Let (Ω,T,Σ, µ) be a quasi-Radon probability space [23, Chapter 41], i.e.(Ω,Σ, µ) is a
complete probability space andT ⊂ Σ is a topology onΩ such that:

(i) µ(E) = sup{µ(C) : C ⊂ E, C closed} for everyE ∈ Σ;
(ii) µ(

⋃
G) = sup{µ(G) : G ∈ G} for every (non-empty) upwards directed family

G ⊂ T.

(For instance, every Radon probability space is quasi-Radon, see [23, 416A].) Agener-
alized McShane partitionof Ω is a sequence{(Ei, si)}i∈N where{Ei}i∈N is a family of
pairwise disjoint measurable sets such thatµ(Ω\

⋃
i∈N Ei) = 0 andsi ∈ Ω for everyi ∈ N.

A partial McShane partitionof Ω is a countable collection{(Ei, si)}i∈I where{Ei}i∈I

is a family of pairwise disjoint measurable sets andsi ∈ Ω for everyi ∈ I. A gaugeonΩ
is a functionδ : Ω −→ T such thatω ∈ δ(ω) for everyω ∈ Ω, and a partial McShane
partition{(Ei, si)}i∈I of Ω is subordinateto δ iff Ei ⊂ δ(si) for everyi ∈ I. Recall that
for every gaugeδ on Ω there is a generalized McShane partition ofΩ subordinate toδ,
see [21, 1B(d)].

A function f defined onΩ with values in a Banach spaceX is McShane integrable,
with McShane integralx ∈ X, see [21, 1A], iff for everyε > 0 there is a gaugeδ on Ω
such that

lim sup
n

∥∥∥ n∑
i=1

µ(Ei)f(si)− x
∥∥∥ ≤ ε
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for every generalized McShane partition{(Ei, si)}i∈N of Ω subordinate toδ. In this con-
text, every Birkhoff integrable function is McShane integrable, see [20, Proposition 3], and
every McShane integrable function is Pettis integrable, see [21, 1Q] (and the respective
integrals coincide).

The following stronger notion (which appears naturally in the proof of Theorem 3.13)
was studied in [8]. A functionf : Ω −→ X is variationally McShane integrableiff it is
Pettis integrable and for everyε > 0 there is a gaugeδ onΩ such that

∞∑
i=1

‖µ(Ei)f(si)− νf (Ei)‖ ≤ ε

for every generalized McShane partition{(Ei, si)}i∈N of Ω subordinate toδ. For our pur-
poses here, the key fact is thatevery variationally McShane integrable function is strongly
measurable, see [8, Lemma 3]. The proof of this result given in [8] relies on the norm rel-
ative compactness of the range of the indefinite integral of any McShane integrable func-
tion f , which Fremlin deduced in [21, 3E] from the fact that each countable subset ofZf

is stable (see [21, 3C]). In Proposition 3.12 below we give a short and more elementary
proof of Fremlin’s result that does not involve techniques of stable families of measurable
functions.

Proposition 3.12. Let(Ω,T,Σ, µ) be a quasi-Radon probability space,X a Banach space
andf : Ω −→ X a McShane integrable function. Thenνf (Σ) is norm relatively compact.

Proof. Notice that ifg =
∑n

i=1 xiχAi is a simple function, then

νg(Σ) =
{ n∑

i=1

µ(Ai ∩A)xi : A ∈ Σ
}

is totally bounded. Thus in order to prove the proposition it suffices to check the following:
(+) for everyε > 0 there is a simple functiong : Ω −→ X such that

sup
E∈Σ

‖νf (E)− νg(E)‖ ≤ ε.

To prove (+) fixε > 0. By the Henstock-Saks lemma [21, 2B] there is a gaugeδ on Ω
such that

(3)
∥∥∥ p∑

i=1

µ(Fi)f(ti)− νf

( p⋃
i=1

Fi

)∥∥∥ ≤ ε

2

for every partial McShane partition{(Fi, ti) : 1 ≤ i ≤ p} of Ω subordinate toδ. On the
other hand, sinceνf is absolutely continuous with respect toµ, see [36, 4-2-2], there is
η > 0 such that

(4) ‖νf (A)‖ ≤ ε

2
for everyA ∈ Σ with µ(A) ≤ η.

Fix a generalized McShane partition{(Ei, si)}i∈N of Ω subordinate toδ. Choosen ∈ N
large enough such thatµ(Ω \

⋃n
i=1 Ei) ≤ η and defineg :=

∑n
i=1 f(si)χEi

. We claim
that

(5) sup
E∈Σ

‖νf (E)− νg(E)‖ ≤ ε.

Indeed, givenE ∈ Σ, the collection{(Ei ∩ E, si) : 1 ≤ i ≤ n} is a partial McShane
partition ofΩ subordinate toδ and (3) implies∥∥∥ n∑

i=1

µ(Ei ∩ E)f(si)− νf

(
E ∩

( n⋃
i=1

Ei

))∥∥∥ ≤ ε

2
,
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which, in view of (4) and the choice ofn, yields∥∥∥ n∑
i=1

µ(Ei ∩ E)f(si)− νf (E)
∥∥∥ ≤ ∥∥∥νf

(
E \

( n⋃
i=1

Ei

))∥∥∥
+

∥∥∥ n∑
i=1

µ(Ei ∩ E)f(si)− νf

(
E ∩

( n⋃
i=1

Ei

))∥∥∥ ≤ ε.

From the equality
∑n

i=1 µ(Ei∩E)f(si) = νg(E) we obtain‖νf (E)−νg(E)‖ ≤ ε. Since
E ∈ Σ is arbitrary, (5) holds and the proof is complete. �

Theorem 3.13. Let (Ω,T,Σ, µ) be a quasi-Radon probability space andu : X −→ Y
an absolutely summing operator between Banach spaces. Iff : Ω −→ X is a McShane
integrable function, thenu ◦ f is Bochner integrable.

Proof. We claim thatu ◦ f is variationally McShane integrable. Indeed, on the one hand,
u ◦ f is McShane integrable and so it is Pettis integrable. On the other hand, givenε > 0,
the Henstock-Saks lemma [21, 2B] ensures the existence of a gaugeδ onΩ such that∥∥∥ q∑

i=1

(
µ(Fi)f(ti)− νf (Fi)

)∥∥∥ ≤ ε

for every partial McShane partition{(Fi, ti) : 1 ≤ i ≤ q} of Ω subordinate toδ. It follows
from inequality (1) on page 3 that

p∑
i=1

∥∥∥µ(Ei)(u ◦ f)(si)− νu◦f (Ei)
∥∥∥ =

p∑
i=1

∥∥∥u
(
µ(Ei)f(si)− νf (Ei)

)∥∥∥ ≤ 2π(u)ε

for every partial McShane partition{(Ei, si) : 1 ≤ i ≤ p} of Ω subordinate toδ. Since
ε > 0 is arbitrary,u ◦ f is variationally McShane integrable and, in particular, strongly
measurable. An appeal to Lemma 2.2 establishes thatu ◦ f is Bochner integrable and the
proof finishes. �

Remark. Our Theorem 3.13 generalizes theif part of [30, Theorem 5], where an analo-
gous result is proved for compact Radon probability spaces.

Combining Theorem 3.13 with Theorem 3.5 we can deduce the following (partial) ex-
tension of [21, 3C]:

Corollary 3.14 (Axiom L). Let (Ω,T,Σ, µ) be a perfect quasi-Radon probability space,
X a Banach space andf : Ω −→ X a McShane integrable function. Then for each
ν ∈M+(BX∗) the family{x∗ ◦ f : x∗ ∈ supp(ν)} is stable.

The results in [9] on the coincidence of Pettis and McShane integrability (that remain
valid for functions defined on arbitrary quasi-Radon probability spaces) allow us to obtain
the following proposition.

Proposition 3.15. Let (Ω,T,Σ, µ) be a quasi-Radon probability space andu : X −→ Y
an absolutely summing operator between Banach spaces. Thenu◦f is McShane integrable
for everyf ∈ D(µ, X).

Proof. Fix a Dunford integrable functionf : Ω −→ X. Sinceu is absolutely summing,
u is also 2-summing (see [12, Theorem 2.8]) and therefore [12, Corollary 2.16] applies
to ensure the existence ofν ∈ M+(BX∗) and an operatorv : L2(ν) −→ Y such that
u = v ◦ j ◦ iBX∗ , wherej : C(BX∗) −→ L2(ν) is the “identity” operator (that maps
each function to its equivalence class). Sincej ◦ iBX∗ ◦ f is Dunford integrable andL2(ν)
is reflexive,j ◦ iBX∗ ◦ f is Pettis integrable. Using the fact that Pettis and McShane
integrability coincide for functions with values in superreflexive spaces [9] we infer that
j ◦ iBX∗ ◦ f is McShane integrable. Thereforeu ◦ f is McShane integrable and the proof
is over. �
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4. EXAMPLES

We end up the paper with two examples showing that the composition of a Dunford
integrable function with an absolutely summing operator is not always Bochner integrable.

The first one uses the Pettis integrable function whose indefinite integral does not have
norm relatively compact range that Fremlin and Talagrand constructed in [25].

Example 4.1. There exist a complete probability space(Ω,A, θ), a Pettis integrable func-
tion f : Ω −→ `∞ and an absolutely summing operatoru defined oǹ ∞ with values in
another Banach spaceY such thatu ◦ f is not Bochner integrable.

Proof. The cardinality of a setS will be denoted by|S|. In the sequel we identifyP(N)
(the set of all subsets ofN) with {0, 1}N in the standard way

a ⊂ N ←→ χa ∈ {0, 1}N (the characteristic function ofa).

Let us denote by({0, 1}N,Σ, µ) the complete probability space obtained after completing
the usual product probability measure on{0, 1}N. From now on the termmeasurablewill
refer to this measure space. Recall that a free filterF ⊂ {0, 1}N is non-measurable if and
only if µ∗(F ) = 1, see [36, Proposition 13-1-1].

Let us recall the definition of the so-calledTalagrand’s measure space({0, 1}N,Σ, µ̄)
(see sections 13-1 and 13-2 in [36]). Theσ-algebraΣ (that containsΣ) is made up of
all the setsA ⊂ {0, 1}N for which there existB ∈ Σ and a non-measurable free filter
F ⊂ {0, 1}N such thatA ∩ F = B ∩ F . The measurēµ is a (complete) extension ofµ
defined onΣ by saying that̄µ(A) = µ(B) wheneverA ∈ Σ, B ∈ Σ and there is a
non-measurable free filterF ⊂ {0, 1}N such thatA ∩ F = B ∩ F .

The completion of the product probability space({0, 1}N×{0, 1}N,Σ⊗Σ, µ̄× µ̄) will
be denoted by(Ω,A, θ). It was shown in [25, 2C] (alternatively see [36, Theorem 4-2-5])
that the function

f : Ω −→ `∞, f(a, b) := χa − χb,

is Pettis integrable with respect toθ (and thatνf (A) is not norm relatively compact).
Fix any measurable finitely additive functionalλ : P(N) −→ [0, 1] with λ(N) = 1 and

vanishing on all finite sets. For instance, we can take

λ(a) = lim
n

|{m ∈ a : m ≤ n}|
n

,

see [23, 464J(b)]. Denote byβN the Stone-Cech compactification ofN (with the discrete
topology) and letν be the unique element ofM+(βN) such that

∫
βN χa dν = λ(a) for

everya ⊂ N (from now on we identifỳ ∞ andC(βN)). Let us consider the absolutely
summing operatoru = jν : `∞ −→ L1(ν). We will check thatthe compositionu ◦ f is
not strongly measurable with respect toθ.

To prove this, fixA ∈ Σ ⊗ Σ with (µ̄ × µ̄)(A) = 1. Then there isd ⊂ N such that
µ̄(Ad) = 1, whereAd = {a ⊂ N : (a, d) ∈ A}. From the definition of̄µ it follows that
there existB ∈ Σ and a non-measurable free filterF ⊂ {0, 1}N such thatAd∩F = B∩F
andµ(B) = µ̄(Ad) = 1. SinceF is non-measurable, we haveµ∗(F ) = 1 and therefore
µ∗(B ∩ F ) = 1. On the other hand, sinceλ is a measurable bounded finitely additive
functional vanishing on finite sets, for eachb ⊂ N we have

(6) λ(a ∩ b) =
λ(b)
2

for µ-almost alla ⊂ N,

see [25, 1J]. The fact thatµ∗(B∩F ) = 1 and (6) can now be used to construct by transfinite
induction a set{aα : α < ω1} ⊂ B ∩ F = Ad ∩ F such that

(7) λ
( ⋂

α∈I

aα

)
=

1
2|I|
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for every non-empty finite setI ⊂ ω1. Finally, for each pairα, β < ω1, α 6= β, we have
(aα, d), (aβ , d) ∈ A, and (7) yields

‖(u ◦ f)(aα, d)− (u ◦ f)(aβ , d)‖ =
∫

βN
|f(aα, d)− f(aβ , d)| dν

=
∫

βN
|χaα

− χaβ
| dν =

∫
βN

χ(aα4aβ) dν = λ(aα4aβ) =
1
2
.

Hence(u ◦ f)(A) is not separable. SinceA was arbitrarily chosen among all the elements
of Σ ⊗ Σ of measure1, we infer thatu ◦ f is not strongly measurable with respect toθ.
The proof is finished. �

Recall that a cardinalκ is of measure zeroif there is no probability measureµ onP(κ)
(the set of all subsets ofκ) such thatµ({α}) = 0 for everyα < κ. It is consistent with ZFC
that every cardinal is of measure zero. For a detailed account on measure zero cardinals
we refer the reader to [23,§438] and the references therein.

Example 4.2.Assume that there is a cardinalκ that is not of measure zero. Then there exist
a complete probability space(Ω,Σ, µ), a Dunford integrable functionf : Ω −→ `1(κ)
and an absolutely summing operatoru : `1(κ) −→ `2(κ) such thatu ◦ f is not Bochner
integrable.

Proof. There is a probability measureµ onP(κ) such thatµ({α}) = 0 for everyα < κ.
Definef : κ −→ `1(κ) by f(α) := eα, whereeα(β) = δα,β (the Dirac delta) for every
α, β < κ. Clearlyf is bounded and scalarly measurable, hence Dunford integrable. On the
other hand, it is well known that the “identity” operatoru : `1(κ) −→ `2(κ) is absolutely
summing, see [12, Theorem 3.4]. Finally, observe that‖(u ◦ f)(α) − (u ◦ f)(β)‖ =

√
2

wheneverα, β < κ, α 6= β. Hence for eachA ⊂ κ with µ(A) > 0 the set(u ◦ f)(A) is
not separable (becauseA is uncountable) and thereforeu ◦ f is not strongly measurable.
The proof is finished. �
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