ABSOLUTELY SUMMING OPERATORS AND INTEGRATION OF
VECTOR-VALUED FUNCTIONS

JO¥ RODRGUEZ

ABSTRACT. Let(Q2, 3, 1) be a complete probability space and X — Y an abso-

lutely summing operator between Banach spaces. We prove that for each Dunford inte-
grable (i.e. scalarly integrable) functigh: Q& — X the compositioru o f is scalarly
equivalent to a Bochner integrable function. Such a composition is shown to be Bochner
integrable in several cases, for instance, wifeis properly measurable, Birkhoff inte-
grable or McShane integrable, as well as whéris a subspace of an Asplund generated
space or a subspace of a weakly Lirafedpace of the formC'(K). We also study the
continuity of the composition operatgr— w o f. Some other applications are given.

1. INTRODUCTION

An operator (i.e. linear and continuous map) between Banach spaces is said to be ab-
solutely summing if it takes unconditionally convergent series to absolutely convergent
ones. Since absolutely summing operators improve summability properties of sequences,
it is not surprising that they also improve the integrability of vector-valued funcf{ib®s
p. 56]. This fact was first noticed by Diestel [11], who proved that, given a complete prob-
ability space(€2, 3, i), if an operator between Banach spagesX — Y is absolutely
summing then for eachktrongly measurabl@ettis integrable functiof : Q& — X the
compositionu o f is Bochner integrable and the linear map

(P, X), |- lp) — (L', Y), - 0), fuof,

is continuous, wher®,, (1, X) denotes the space of all strongly measurable Pettis inte-
grable functions fronf2 to X and|| - || p is the so-called Pettis seminorm (see below for
the definitions). Diestel also showed that the converse holds true for atomldsster,
Belanger and Dowling [2] proved that the composition of any bounded Pettis integrable
function, defined on perfectcomplete probability space, with an absolutely summing
operator isscalarly equivalento a Bochner integrable function. The boundedness as-
sumption has recently been removed by Marraffa [30], who has also obtained the analogue
of the aforementioned Diestel’'s result fdicShane integrabl&unctions defined on a com-

pact Radon probability space. We also mention that BI§H6] studied similar questions

in the setting of weak Baire measures in Banach spaces.

The aim of this paper is to go a bit further when studying the composition of an “in-
tegrable” vector-valued function and an absolutely summing operator. Our discussion in-
volves non-separable Banach spaces and notions of integral (intermediate between those
due to Bochner and Pettis) that have caught the attention of many authors pretty recently,
like the Birkhoff, Talagrand and McShane integrals. We next summarize the content of this
work.
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Let (02, %, 1) be a complete probability space amd X — Y an absolutely summing
operator between Banach spaces. WEig:, X) to denote the space of all Dunford in-
tegrable (i.e. scalarly integrable) functions fréimto X. In Section 2 we prove that for
eachf € D(u, X) the compositioru o f is scalarly equivalent to a Bochner integrable
functionuy (Theorem 2.3), even for non-perfect Moreover, the linear map

(D X), |- lp) — (LM, Y), - M), f ey,

is shown to be continuous (Corollary 2.5). Our views also allow us to give an affirmative
answer to an open question posed in [26] concerning the image measuré of a weak
Baire measure on X that is “weakly summable” (Proposition 2.7).

Section 3 is devoted to study conditions on eitfier D(u, X) or X that ensure us that
uo f is Bochner integrable. Our Lemma 2.2 states thgf is Bochner integrable whenever
u o f is strongly measurable. Since the last requirement follows automatically provided
thatu(X) is separable, in Sub-Section 3.1 we pay attention to Banach spaces for which
all the absolutely summing operators defined on them have separable range. We show in
Theorem 3.3 that this property is shared by a wide class of Banach spaces including, for
instance, those that are isomorphic to subspaces of weakly bindietlermined spaces of
the formC'(K) (e.g. weakly countabljC-determined spaces), as well as those that are iso-
morphic to subspaces of Asplund generated spaces (e.g. Asplund spaces). Sub-Section 3.2
deals with the composition of a properly measurable function and an absolutely summing
operator. It turns out (Corollary 3.6) that such a composition is Bochner integrable when-
ever the function is Dunford integrable (e.g. Talagrand integrable). As an application we
show that the composition of a Dunford integrable function with values in a subspace of a
weakly Lindebf space of the forn'(K) and an absolutely summing operator is always
Bochner integrable (Proposition 3.9). We complete Section 3 by establishing the Bochner
integrability of the composition of Birkhoff and McShane integrable functions with abso-
lutely summing operators (Sub-Sections 3.3 and 3.4, respectively). Finally, in Section 4
we give two examples making clear that the composition of a Dunford integrable function
and an absolutely summing operator is not Bochner integrable in general.

For all unexplained terminology we refer to our standard references [12] (absolutely
summing operators), [13] (vector measures), [17, 18] (Banach spaces and related com-
pact spaces) and [36] (Pettis integral). All our vector spaces are assumed to be real. For
a complete probability spadél, 3, 1) we denote byC! () the space of all-integrable
real-valued functions defined éhandL* (1) for the corresponding Banach space of equiv-
alence classes with its usual nofm||;. A setH C £!(u) is uniformly integrableff it is
| - l.-bounded and for each>> 0 there is§ > 0 such thasup,,c4 [ |h| du < € when-
everu(E) < 0. GivenA € X, we write 4 to denote the restriction qf to theo-algebra
{ECA:EeX}.

Now let Z be a Banach space. As usuBl; is the closed unit ball of andZ* stands
for the topological dual ofZ. We denote byw andw* the weak and weaktopologies
on Z andZ*, respectively. A seB C By~ is normingiff ||z|| = sup{|z*(2)| : z* € B}
for everyz € Z.

We denote byL!(u, Z) the Banach space of all Bochner integrable functions ffom
to Z (functions that are equat-a.e. are identified), endowed with the nojfm||;. Recall
that a functionf : Q@ — Z is Bochner integrabléff it is strongly measurabléi.e. f
is the u-a.e. limit of a sequence of simple functions) aftl|; := [, [|f|| du < co. A
function f : Q@ — Z is Dunford integrable(or scalarly integrable) iff the real-valued
functionz* o f is u-integrable for every* € Z*. In this case there is a finitely additive
vector measurey : ¥ — Z** such thavy(E)(z*) = [, 2" o f duforeveryE € ¥ and
z* € Z*. Moreover,

19 = sup{ [ 1o fldu: 2 € Bz} < o
Q
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and therefore/; is bounded. When; takes its values i¥ thenf is calledPettis integrable

(in this caseyy is a countably additive vector measure). The set of all Pettis integrable
functionsf : Q — Z for whichvy(X) = {v;(E) : E € ¥} is norm relatively compact
will be denoted byP.(u, Z). Two functionsf,g : Q@ — Z are said to bescalarly
equivalentff for eachz* € Z* we have:* o f = 2* o g p-a.e.

Our compact topological spaces are assumed to be Hausdorff. For a compadkspace
we denote by’ (K) the Banach space of all real-valued continuous functions definéd on
with the supremum norm. For ea¢he K the Dirac delta); € Bok)- is defined by
5:(f) = f(¢t) foreveryf € C(K). Throughout this pape¥/ ™ (K) stands for the set of all
(completions of) non-negative Radon (i.e. finite and inner regular with respect to compact
sets) measures dorel(K). Givenv € M1 (K), thesupportof v is

supp(v) := K\U{U C K: U open v(U) =0}.

It is easy to check that(K \ supp(r)) = 0 and thatv(U N supp(v)) > 0 whenever
U C K is open and/ N supp(v) # 0.

2. SCALAR EQUIVALENCE TO BOCHNER INTEGRABLE FUNCTIONS AND CONTINUITY
OF THE COMPOSITION OPERATOR

It is well known [12, p. 34] that an operator between Banach spaceX — Y is
absolutely summing if and only if is 1-summingi.e. there is a constait > 0 such that

> (@) | < Csup{ > la* @) : «* € Bx- |
i=1 i=1

for every finite collectionzy,...,z, € X. In this case, the smallest constant> 0
satisfying the inequality above will be denotedbf). It is easy to check that

1) i”u(ml)H < 27(u) sup{HZmi ;S cC {1,...,n}}
i=1 ieS

for every finite collectioney, ..., z, € X.

As a consequence, the composition of a bounded vector measure with an absolutely
summing operator always has bounded variation (see Lemma 2.1 below). Recall that,
given a finitely additive vector measuredefined on an algebtd (of subsets of a se?)
with values in a Banach spacé, thetotal variationof v is defined by

[v|(Q) := sup{z lW(E)|: {Eh,...,E,}is afinite partition of2 in A} € [0, 0]
i=1

Lemma 2.1. Let .4 be an algebra of subsets of a $¢tandu : X — Y an absolutely
summing operator between Banach spaces.:l1f4 — X is a bounded finitely additive
vector measure, then the composition v has bounded variation, i.¢u o v|(Q2) < occ.

Proof. Given any finite partition of) in A, say{F,..., E,}, inequality (1) applies to
deduce

S Jluo v(E)|| < 2m(u) sup{HZV(Ei) LSl ,n}}
i=1 i€S
< 2m(u)sup{|lv(A)]: A€ A} < o0.
Thereforeu o v has bounded variation, as required. O

Let h be a strongly measurable Dunford integrable function defined on a complete prob-
ability space(2, X, 1) with values in a Banach space It follows from Proposition 1
in [31] that |v4[(Q2) = [, [|A]| di (maybe infinite). This fact will be used in the proof of
the following result.
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Lemma 2.2. Let (2, X, 1) be a complete probability space,: X — Y an absolutely
summing operator between Banach spaces And? — X a Dunford integrable func-
tion. Letg : Q — Y be scalarly equivalentto o f. Theng is Bochner integrable if and
only if g is strongly measurable.

Proof. Assume thay is strongly measurable. Singkis Dunford integrable, the same
holds foruo f, with 1,0 = u** ovy, whereu** : X** — Y** is the second adjoint af.
Hencey is also Dunford integrable ang, = v,y = v** o v;. According to the comment
preceding this lemmay,|(Q) = [, [lg|l du. On the other hand, sinaeis absolutely
summing,u** is absolutely summing too, see [12, Proposition 2.19], hence Lemma 2.1
applied tov; andu** ensures that** o vy = v, has bounded variation. Consequently,
Jo llgll die < oo and thereforg is Bochner integrable. The proof is over. O

Theorem 2.3. Let (9, 3, 1) be a complete probability space,: X — Y an absolutely
summing operator between Banach spaces aAnd2? — X a Dunford integrable func-
tion. Thenu o f is scalarly equivalent to some Bochner integrable functiof2 — Y.

Proof. Sinceu is absolutely summing, is weakly compact, see [12, Theorem 2.17], and
thereforeu(X) is a weakly compactly generated Banach space in whichf takes its
values. Every weakly compactly generated Banach space is weakly &findeke [18,
Chapter 12]) and, therefore, measure-compact in its weak topology. Thus the scalarly
measurable functiono f is scalarly equivalent to a strongly measurable gné) — Y/,

see [16, Proposition 5.4]. An appeal to Lemma 2.2 now ensures ug tisaBochner
integrable and the proof is complete. O

Remark. As we mentioned in the introduction, the same conclusion was obtained in [2]
(in the case of bounded functions) and [30, Proposition 3] for Pettis integrable functions
and perfect measures.

We next discuss the continuity of the “composition” operator associated with an abso-
lutely summing operator. Léf2, ¥, 1) be a complete probability space and X — Y
an operator between Banach spaces.\kbe a linear subspace of(u, X ) such that for
eachf € M the composition: o f is scalarly equivalent to a Bochner integrable function
uy : @ — Y. Then we can consider the map

i (M- lp) — (L Y, - 1)
that sends eacfi € M to the equivalence class af. Observe thati,, does not depend
on the particular choice of the;'s, because two scalarly equivalent strongly measurable
functions must coincidg-a.e., see [13, Corollary 7, p. 48]. For the same reagan,is
linear.

Lemma 2.4. With the notations above, the map, has closed graph.

Proof. Fix a sequencéf,,) in M such thatlim,, || f.||p = 0 and there is a Bochner in-
tegrable functiom, : Q@ — Y with lim,, ||uy, — hl[y = 0. By passing to a further
subsequence, we can suppose without loss of generalityithat converges ta p-a.e.,
see [14, Proposition 14, p. 130]. Sinkds strongly measurable, in order to check that
h = 0 p-a.e. it suffices to show that for eagh € Y* we havey* o h = 0 u-a.e. To this
end, fixy* € Y*. Sincelim,, || f||p = 0, we have

lim/|y*ouf"|du:hm/|y*ouofn|du:0
noJQ nJQ

and therefore Fatou’s lemma yields |y* o h| diu = 0, hencey* o h = 0 p-a.e. Since
y* € Y*is arbitrary,h = 0 u-a.e. Thugin, has closed graph, as required. O

Although the normed spaces obtained (by identifying scalarly equivalent functions)
from D(u, X) andP,,(u, X) are not complete in general, see [27, 38], they are always
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ultrabornological [10], hence barrelled and therefore every linear map defined on them
with values in a Banach space is continuous whenever it has closed graph. (For a detailed
account of the theory of barrelled locally convex spaces we refer the reader to [4].) Bearing
in mind Theorem 2.3, we can now deduce the following

Corollary 2.5. Let(Q2, %, 1) be a complete probability space and X — Y an abso-
lutely summing operator between Banach spaces. Then the linear map

p () (D, X), |- 11p) — (L, V), |- 1)
is continuous.

Proof. Write E to denote the barrelled normed space obtained D, X), || - ||p) by
identifying scalarly equivalent functions. Singg, x)(f) = 0 wheneverf is scalarly
null, there is a linear maff’ : £ — L'(u,Y) such thatl o I = Up(u,x), Where
I:D(u, X) — E maps each function to its equivalence class. Singg, x) has closed
graph (by Lemma 2.4), the same holds1oand thereford" is continuous. Thedp, x)
is continuous too and the proof is finished. O

In the same manner we obtain

Corollary 2.6. Let(Q, 3, u) be a complete probability space and X — Y an opera-
tor between Banach spaces such thatf is Bochner integrable for everfy € P,,, (1, X).
Then the linear map

wp, (u,x) (P, X), - lp) — (L' (1, Y), |- [11)
is continuous.

Remark. Under the hypotheses of Corollary 2.6 and the additional assumption of the
continuity ofup,_ (. x) (Which we have shown to be redundant), it was proved in [11] that
u must be absolutely summing (with(u) = ||tp,, (., x) ) provided thaj is atomless.

We end up this section with an application of Theorem 2.3 to Baire measures in Ba-
nach spaces. Recall that the Bair@lgebra of a Banach spaéé endowed with its weak
topology, denoted bBaire(X, w), is exactly the smallest one for which each € X*
is measurable, see [16, Theorem 2.3]. As a consequengeisif scalarly measurable
function defined on a complete probability spa€k X, 1) with values inX, then f is
¥-Baire( X, w) measurable and we can consider itmage probability measure, o f~*
on Baire(X,w). There are non-trivial relationships between some “smoothness” proper-
ties of uo f~! and properties of like Pettis integrability and scalar equivalence to strongly
measurable functions, see [16, 32, 36] and the references therein.

Heilid studied in [26] the class of those probability measureBaine( X, w) for which
the identity maplx : X — X is Dunford integrable (called by himveakly summable
measurep Section 8.2 of that paper dealt with the image measure induced by an absolutely
summing operator. A weakly summable measuis calledabsolutely summabléthere
is an extension of . to Borel(X, || - ||) such that/x is Bochner integrable with respect
to 1. It was shown in [26, Theorem 8.2.4] that, given an absolutely summing operator
between Banach spaces: X — Y and a probability measurg on Baire(X, w) for
which Ix € P.(u, X), the image measuneo u~! is absolutely summable. The question
of whether the same happens for an arbitrary weakly summable measias left open
in [26, 8.2.5]. We next give an affirmative answer to this question.

Proposition 2.7. Letu : X — Y be an absolutely summing operator between Banach
spaces and: a weakly summable measure Baire(X,w). Thenu o u~! is absolutely
summable.

Proof. It is easy to check that o w~! is a weakly summable measure. Wrleto de-
note theu-completion ofBaire(X, w) and letji be the complete extension pfto X. By
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Theorem 2.3 applied tdy the operator: (viewed as a function from the complete prob-
ability space(X, Y, ji) to Y) is scalarly equivalent to some Bochner integrable function
g : X — Y. Sincey is strongly measurableg,is X-Borel(Y, || - ||) measurable and there

is a separable closed subspagec Y such thati(¢g~!(Yy)) = 1, see [6, Appendix E].
According to Pettis’ Measurability Theorem [13, Theorem 2, p. 42], the last condition
ensures that the scalarly measurable funcfipnis strongly measurable with respect to
fiog~1. Sinceu andg are scalarly equivalent, we haje v~ = 1o g~! onBaire(Y, w),

and thereforgi o g~ is an extension ofi o u~* to Borel(Y, || - ||) for which Iy is strongly
measurable. On the other hand, sigde Bochner integrable, we have

/ lo(@) diz) < .
X

By a standard change of variable we get

[ dog)w) = [ o)l dite) < <.
hencely is Bochner integrable with respectjio g—! and the proof is over. O

3. BOCHNER INTEGRABILITY OF THE COMPOSITION

3.1. Absolutely summing operators with separable range.As our Lemma 2.2 shows,

the composition of a Dunford integrable functignvith an absolutely summing operator

is Bochner integrable whenevero f is strongly measurable. By Pettis’ Measurability
Theorem [13, Theorem 2, p. 42], the last condition holds if the rangeisfseparable.
Thus it is natural to look for Banach spac&ssatisfying that each absolutely summing
operator defined oX has separable range. In Theorem 3.3 below we show that a wide
class of Banach spaces enjoy this property.

For a compact spads and anyv € M T (K), the “identity” operator
ju : C(K) — L*(v)

(that maps each function to its equivalence class) is absolutely summing, see [12, 2.9], and
has dense range, see [6, Proposition 7.4.2]. Moreover, thanks to Pietsch’s Factorization
Theorem [12, Corollary 2.15], given an absolutely summing summing opetatefined
on C(K) with values in another Banach spacethere existz € M+ (K) and an operator
v: L'(v) — Y such thatu = v o j,.. As a consequence, it turns out tiiatk) satisfies
that each absolutely summing operator defined on it has separable range if and only if
L'(v) is separable for every € M*(K).

Following [15], we say that a compact spa&e belongs to the clasd/S iff each
v € M+ (K) is separable(i.e. L' (v) is separable). The clagd S is closed under sub-
spaces, continuous images and countable products, see [15], and it contains the following
compacta:

(a) Metrizable compactabecause thd.' space associated to a non-negative finite
measure defined on a countably generateadgebra is always separable, see [6,
Proposition 3.4.5].

(b) Corson compacta with property (MRecall that a compact spadé hasprop-
erty (M) (see [1, Section 3]) iffupp(v) is separable for eache M+ (K). Thus
(a) and the elementary fact that any separable Corson compact space is metriz-
able (see [18, Exercise 12.56]) imply thetS contains all Corson compacta with
property (M). These are exactly those Corson compactar which Be(k)- is
also Corson (equivalently,(K) is weakly Lindebf or C(K) has property (C)
of Corson), see [1, Theorem 3.5]. In particular, all Eberlein compacta and, more
generally, all Gul'’ko compacta, belong d.S (see Chapter 7 in [17]).

(c) Rosenthal compact@ourgain, see [39, Theorem 2] for a proof).

(d) Linearly ordered compactaee [15, Theorem 1.0].
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(e) Zero-dimensional compacfd for whichC'(K) is weakly Lindgdf, see Lemma 3.5
in [19].
() Radon-Niko§tlm compactde.g. scattered, see [17, Chapter 1]), as we next show.

Lemma 3.1. Let K be a Radon-Nikagin compact space. Théf belongs tal/.S.

Proof. We denote by the original topology oK. SinceK is a Radon-Nikogim com-
pact, there is a lower semicontinuous metfion K, whose corresponding topology is
finer than¥, such thati is fragmentedy d (i.e. for everys > 0 and every non-empty set
H C K there is a non-empty relatively open subsetowith d-diameter less thay), see
[7, Section I.5]. Fixv € M*(K) andn € N. By [28, Theorem 4.1] there is@&compact
setF,, C K suchthav (K \ F,,) < 1/n. Since the topology induced ks finer thanz,
the setF;, is compact and metrizable when endowed with the restrictich. dt follows
from (a) above thak' (v, ) is separable. Hendg, := {hxr, : h € L'(v)} is a separable
subset ofLL} (v) (wherey 4 is the characteristic function of a sétC K). Consequently,
U,—, E, is separable. Sindém,, v(K \ F,,) = 0, the set J,~_, E, is dense inL! () and
thereforeL!(v) is separable. The proof is finished. O

Under some additional set-theoretic assumptions we can say more about the Slass
Solving a long-standing problem posed by Haydon, Fremlin showed in [22] that under
Martin’s Axiom (MA) and the negation of the Continuum Hypothesis (CH), any compact
space not belonging td/.S can be mapped continuously orfég 1] (the converse holds
without further assumptions). It follows that all compact spaces with countable tightness
(e.g. Corson compacta or, more generally, angelic compacta, as well as compac#sSpaces
for which C'(K) has property (C), see [19]) belong 36.S whenever both MA ane:CH
are assumed. On the other hand, under CH there are examples of Corson compacta not be-
longing toM S, see [33§5] (the Kunen-Haydon-Talagrand space) and [1, Section 3]. For
more information on separable Radon measures on compact spaces and related questions
we refer the reader to [1, 15, 19, 22, 29, 34] and the references therein.

We now introduce the Banach space counterpart of the 8l&$sWe say that a Banach
spacebelongs to the clasaAS iff it is isomorphic to a subspace @f(L), whereL is a
compact space belonging 3d.S. Bearing in mind that any Banach spa¥és isometric to
a subspace af'(Bx~), it follows from (b) above that all weakly countablg-determined
(e.g. weakly compactly generated) Banach spaces belangSqthey have Gul'’ko com-
pact dual unit ball, see [17, Chapter 7]). On the other hand, taking into account (f) and
the fact thatB x- is a Radon-Nikofim compactum wheneveX is an Asplund generated
Banach space (i.e. there exist an Asplund Banach spaamed an operator front to X
with dense range), see [17, Chapter 1], we conclude that all Asplund generated spaces (and
their subspaces) belong fo1S. Moreover, under MA anehCH, the classMS contains
all Banach spaces with angelic dual unit ball, as well a§’élk’) spaces with property (C)
(and their subspaces).

The following easy observation will be used in the proofs of Theorem 3.3 and Proposi-
tion 3.9.

Lemma 3.2. Let L be a compact space anXl a closed subspace 6f(L). Then there is a
continuous mapping fromh onto aw*-compact norming sek’ C Bx-.

Proof. Notice thatD := {0, : t € L} is aw*-compact subset aB¢ (.- that is home-
omorphic toL. The restriction mapping : Bo(r)- — Bx- is w*-w*-continuous and
mapsD onto aw*-compact norming sek := {d;|x : t € L} C Bx-. Hence there is a
continuous map froni onto K and the proof is over. O

From now on, given a Banach spakeand aw*-compact horming sek’ C Bx-, we
denote byix the natural isometry fronX into C(K) given byig (z)(z*) := x*(x).

Theorem 3.3. Let X be a Banach space.
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(i) If X belongs toMS, then each absolutely summing operator defined{ohas
separable range.

(i) Assume thaX = C(L) for some compact spade If each absolutely summing
operator defined oX has separable range, thdhbelongs tal/ S.

Proof. Part (i) has already been established at the beginning of this section. For the proof
of (i) we can suppose without loss of generality thais a closed subspace 6f L), where

L is a compact space belongingéS. According to Lemma 3.2, there is a continuous
mapping fromL onto aw*-compact norming sek’ C Bx-. As we already mentioned,

M S is closed under continuous images, heAckelongs taV/ S. Now letu : X — Y be

an absolutely summing operator between Banach spaces. Pietsch’s Factorization Theorem,
see [12, Theorem 2.13], ensures us the existence af M*(K), a closed subspace

Z C L'(v) and an operatar : Z — Y such thatj, (ix (X)) C Z andu = v o j, o ix.
SinceL!(v) is separable, the same holds foand therefore:(X) is separable. The proof

is complete. O

Corollary 3.4. Let (2,3, 1) be a complete probability space amd: X — Y an ab-
solutely summing operator between Banach spaceX’ Wbelongs toMS, thenu o f is
Bochner integrable for every € D(u, X).

Remark. Our Corollary 3.4 improves thié part of [30, Corollary 7], where an analogous
result is proved for Pettis integrable functions in the particular case of a Radon probability
measurg: on a compact spade and a superreflexive (hence reflexive) Banach space

3.2. Properly measurable functions. We next study the composition of properly mea-
surable functions with absolutely summing operators. Properly measurable vector-valued
functions and stable families of real-valued measurable functions were thoroughly studied
in [36], mostly in connection with the Pettis integral. Recall that a farkilgf real-valued
functions defined on a complete probability spé@eX, 1) is stableiff for each A € ¥

with ;(A) > 0 and each pair of real numbess< (3 there exist;,! € N such that

pia (U (b < al x {h > 8Y) 0 A1) < p(a)+,
heH

wherepy; is the product of + [ copies ofu. In particular,H is made up of measurable
functions. A well-known result of Talagrand [36, Theorem 9-5-2] statesithiatc R is
stable, then the identity maji, ¥,) — (H,%,,) is continuouswhere¥,, is the topol-
ogy of pointwise convergence afig, is the topology of convergence in measure. Under
Axiom L (a weakening of MA, see [36, p. 14] for the definition), every pointwise relatively
compact sequence of real-valued measurable functions defined on a perfect complete prob-
ability space is stable, see [36, Section 9.3].

Recall that a functiorf defined onQ2 with values in a Banach space is properly

measurabléff the family

Zy={z"of: " € Bx+}
is stable. In view of the above, such a function belong®tfu, X) wheneverZ; is a
uniformly integrable subset at! (1), see [36, Theorem 6-1-2].

Inspired by some ideas in [2], in Theorem 3.5 below we apply a result of Talagrand
(Theorem 10-2-1 in [36]) linking stability and joint measurability in order to study the
Bochner integrability of the composition of vector-valued functions that are “almost” prop-
erly measurable with absolutely summing operators.

Theorem 3.5. Let (2, %, 1) be a complete probability spac& a Banach space and
f 2 — X a Pettis integrable function. Let us consider the following statements:

(i) there is aw*-compact norming sek’ C By~ such that for eaclv € M+ (K) the
family {z* o f : z* € supp(v)} is stable;
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(i) there is aw*-compact norming sek C Bx- such that for eaclv € M T (K) the
function

fk: OQx K —R, [g(wz"):=(x"0/f)w),

is ;1 x v-measurable;
(iii) for each absolutely summing operatordefined onX the composition: o f is
Bochner integrable.

Then (i)=(ii)=(iii). Moreover, under Axiom L all the statements are equivalent provided
that . is perfect (in this case, (i) and (ii) hold for any*-compact norming sék’ C Bx+).

Proof. Assume that (i) holds, fix € M*(K) and write ' := supp(v). The function
frlaxr : Q@ x F — R is measurable in the first variable and continuous in the second
one. Since, in addition, the family

{fxlaxr(,z")=a"o f: " € F}

is stable, Theorem 10-2-1 in [36] applies to conclude fhdi«  is 1 X vp-measurable.
Thereforefk is u x v-measurable. This proves the implication=ifjii).

Let us turn to the proof of (i (ii)). Fix a w*-compact norming sek’ C Bx- satis-
fying the conditions in (ii) and consider an absolutely summing operattefined onX
with values in another Banach spake By Lemma 2.2, in order to check thato f is
Bochner integrable it suffices to check that f is strongly measurable.

By Pietsch’s Factorization Theorem there exist M *(K), a closed subspacé C
L'(v) and an operator : Z — Y such thatj, (ix (X)) C Z andu = v o j, o ik.
Write F' := supp(v) and consider the restriction operatr: C(K) — C(F') and
a linear isometryl : L'(vp) — L'(v) such thatj, = I o j,, o R. The function
g:= Roigof:Q — C(F)is Pettis integrable. SincE is the support of, Rosenthal’s
theorem (see [36, Theorem 12-1-5]) ensures that every weakly compact suli&dt jof
is separable. In particular, (X) is separable (the range of any countably additive vector
measure defined oneaalgebra is relatively weakly compact, see [13, Corollary 7, p. 14]).
Then there is a sequence of simple functieps Q@ — C(F') such that

(@) {hos,: he Bewy-, n € N}isuniformly integrable,

(B) for eachh € C(F)* we havelim,, ho s, = ho g p-a.e.,
see [36, Theorem 5-3-2]. Defing = g — s, for everyn € N and notice that the family
F = {6y 0 gy : z* € F, n € N} is uniformly integrable, byd) and the fact thaZ, is
uniformly integrable (becausgis Pettis integrable, see [36, Theorem 4-2-2]).

Since f is u x v-measurable, the restrictiofk |ox r IS 1 X vp-measurable. On the
other hand, givem € N, it is easy to see that the function

AxF—R, (w,a")— (dz+ 038,)(w),
is 1 x vp-measurable. Therefore the same holds for the function
OxF —R, (w,2) = (0gx 0 gn)(w) = fr(w,2") = (dp= 0 5,)(w).

Since the familyF is || - [|1-bounded, we have

/F(/Q (8- © gn)(@)] dp(w) ) du(a”) < oo,

and therefore we can apply Fubini’s theorem obtaining

@ [ ([ 16 0010 dute)) an //| 0 9n) (@) d(a”) ) dp(w)

for everyn € N. DefineG, € L'(vp) by G, (2*) = [, (0= © gn)(w)| du(w). Since
F is uniformly integrable and for each* < F we havelim,, 6.« o g, = 0 u-a.e.
(by (8)), Vitali's convergence theorem implies th@#,,) converges pointwise t0, and
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thus Lebesgue’s dominated convergence theorem applied to the uniformly bounded se-
quenceG,,) yieldslim,, |G, ||1 = 0. Now (2) applies to conclude that

lim /Q ( /F (52 0 g)(@)] di(a")) dp() = 0.

Therefore the sequendél,,) in £* () defined byH, (w) = [} |(6z= © gn)(w)| dv(z*)
converges t@ in the norm|| - ||;. Thus there is a subsequer(dén ) converging td) u-a.e.
Define the operataf := I o j,,. : C(F) — L'(v) and observe that

(@9, )@) = [ 160 © 60)@)] dv(a”) = Hyy(w) for everyws € Qand € I

Thuslimy, ||Q o s,,, — Q o g|| = 0 u-a.e. and therefor€ o g is strongly measurable. To
finish the proof of (ii}=(iii) notice that@ o g takes its values it and thatvoQog = uo f,
thuswu o f is also strongly measurable, as required.

Finally, assume thaf satisfies (iii), and fixany w*-compact norming sek’ C Bx-«
andv € M*(K). Let us defineF’ := supp(v) and consider the restriction operator
R : C(K) — C(F). The compositionj,,. o R o ik is absolutely summing, hence
g := jupoRoifo f is strongly measurable, i.g.is ¥ — Borel(L! (vr), || - |[1)-measurable
and essentially separably valued (see [6, Appendix E]). If we assume, in additiop, that
is perfect and Axiom L holds, then the criterion in [36, Theorem 10-2-4] can be applied to
fxlaxr to deduce thafz* o f : * € F'} is stable. The proof is over. O

Corollary 3.6. Let(Q2, X, 1) be a complete probability space,; X — Y an absolutely
summing operator between Banach spaces anf) — X a function.

(i) If fis properly measurable, themno f is strongly measurable.
(i) If fis properly measurable and Dunford integrable, then f is Bochner inte-
grable.

Proof. The proof of (i) is as follows. Sincéis scalarly measurable, there is a non-negative
measurable functioh on €2 such that for each* e BX* we havelz* o f| < h py-a.e. (see

e.g. [32, Proposition 3.1]). Fix € Nand defined,, := {w € Q: n—1 < h(w) <n} € %.

Then the family of restrictions’y| , is a stable unlformly integrable subset®f(u4, ),
hencef|4, is Pettis integrable, by [36, Theorem 6-1-2], and an appeal to Theorem 3.5
ensures that o f|4, is strongly measurable. Sinee € N is arbitrary, it follows that

u o f is strongly measurable, as required. Part (ii) now follows immediately from (i) and
Lemma 2.2. (|

Recall that a functiorf defined on a complete probability spd€k X, 1) with values in
a Banach spac¥ is Talagrand integrablg24] iff f satisfies théaw of large numberghat
is, there existdim,,(1/n) >°i, f(w;) (in norm) for almost everyw;);en € QF, where
QN is given its product probability. Equivalently,is properly measurable arid|| has an
integrable majorant, see [37]. Every Talagrand integrable function is Pettis integrable.

Corollary 3.7. Let(Q, %, 1) be a complete probability space and X — Y an abso-
lutely summing operator between Banach spaces: 2 — X is a Talagrand integrable
function, thenu o f is Bochner integrable.

As we have already mentioned, under Axiom L, every pointwise relatively compact
sequence of real-valued measurable functions defined a perfect complete probability space
is stable. Since stability is preserved by taking pointwise closures, we get the following

Corollary 3.8 (Axiom L). Let (2, X, 1) be a perfect complete probability space and let
u : X — Y be an absolutely summing operator between Banach spaces, Wkeres
w*-separable. Them o f is Bochner integrable for every € D(u, X).
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For the proof of the following proposition it is useful to recall that property (M) is
preserved by continuous mappings. Indeedglet. — K be a continuous surjection
between compact spaces, whédrdas property (M), and fix € M™(K). Then there
existsy’ € M+ (L) such that'(¢~1(B)) = v(B) for everyB € Borel(K), see e.g. [36,
1-2-5]. Sincesupp(’) is separable, the same holds true §¢supp(v’)) = supp(v). It
follows that K has property (M).

Proposition 3.9. Let (£2, X, 1) be a complete probability space and X — Y an ab-
solutely summing operator between Banach spaces, whiégsdsomorphic to a subspace
of a weakly Lindéif space of the form?'(L). Thenu o f is Bochner integrable for every
f € D(u,X).

Proof. Obviously we can suppose without loss of generality fias a subspace af'(L).
Now Lemma 3.2 can be applied to findi&-compact norming seét’ C Bx - and a contin-
uous map fromL onto K. SinceC'(L) is weakly Lindebf, it has property (C). It follows
from a result of Pol (see [18, Exercise 12.31]) tliahas property (M), and therefore the
same also holds for its continuous imaggsee the comments preceding this proposition).

Fix f € D(u, X). SinceC(L) is weakly Lindebf, X is weakly Lindebf too and
therefore X is measure-compact in its weak topology. Hence the scalarly measurable
function f is scalarly equivalent to a strongly measurable ane ) — X, see [16,
Proposition 5.4]. By Lemma 2.2 the compositior h is Bochner integrable, so in order
to finish the proof it suffices to check thato (f — k) is Bochner integrable. Define
h' := f — h and observe that each countable subséef;pfis stable (becausé is scalarly
null). Since stability is preserved by taking pointwise closures/rths property (M)h/
fulfills condition (i) in Theorem 3.5 and thereforeo i’ is Bochner integrable. The proof
is over. O

3.3. Birkhoff integrable functions. The notion of integrability introduced by Garrett
Birkhoff in [3] (that lies strictly between Bochner and Pettis integrability) has been widely
studied pretty recently in [5, 20, 35]. Recall that a functfon? — X defined on a com-
plete probability spacg?, 3, 1) with values in a Banach spaééis Birkhoff integrableff

for everye > 0 there is a countable partitigi®,,) of 2 in £ such that

IS A £ (1) = 7 iAW) £ (1)

for arbitrary choices,,, t;, € A,, the series involved being unconditionally convergent. It
was proved in [20] that every Birkhoff integrable function is properly measurable. Thus,
according to Corollary 3.6, the composition of such a function with an absolutely summing
operator is Bochner integrable. We provide in Theorem 3.11 a simpler proof of this fact
that is based on the following well-known lemma (whose proof we include here for the
sake of completeness).

<e

Lemma 3.10. Let f : & — X be a function defined on a complete probability space
(©, %, u) with values in a Banach space. The following conditions are equivalent:
(i) fis strongly measurable;
(i) for eache > 0 and eachE € ¥ with u(E) > 0 thereisB C E, B € ¥ with
p(B) > 0, such thasup, ¢ | £(£) = f(#')]| <e.

Proof. Itis known (see [13, Corollary 3, p. 42]) that (i) is equivalent to
(iii)y for eache > 0 there exist a countable partitiof®,,) of Q in ¥ and a sequence
(x,,) in X such that the functiop : @ — X given byg = >, z,,x, Satisfies
If =gl <ep-ae.
Therefore, it suffices to check that (ii) and (iii) are equivalent. The implication=(ii)
is straightforward. Conversely, assume that (ii) holds and fix 0. LetS. be the (non-
empty) set of all countable familigd”,,) made up of pairwise disjoint elements®fwith
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w(E,) > 0such thatup, ., [|f(t) — f(t')|| < e for everyn. Itis easy to see that

S., with the order given by the inclusion, satisfies that every totally ordered subset has an
upper bound (use that any family of pairwise disjoint elements with positive measure
must be countable). An appeal to Zorn’s lemma yields a maximal elefdentc S.. By
maximality and (i) we have/(Q2\ U, A,,) = 0. DefineE; := Q\ U, A, andE, ;1 := 4,

for everyn. Fix t, € E, and definex,, := f(t,) for everyn. Nowg = > z,xg,
satisfies the requirement in (iii) and the proof is finished. d

Theorem 3.11. Let (2,X, 1) be a complete probability space and: X — Y an
absolutely summing operator between Banach spaceg. :If0Q — X is a Birkhoff
integrable function, them o f is Bochner integrable.

Proof. By Lemma 2.2, in order to prove thab f is Bochner integrable it suffices to check
thatu o f is strongly measurable. To this end, we will apply the characterization isolated
in Lemma 3.10. Fix > 0 andA € X with ;4(A4) > 0. Since the restrictiotf| 4 is Birkhoff
integrable, there is a countable partitiofy,,) of A in ¥ such that

2 () | 3 ((An) £ (t) — (A 1(21) | < 2
n=1
for arbitrary choices,,, ¢/, € A,, and everym € N. Then inequality (1) on page 3 yields
Do u(An)lluo f(tn) —uo f(t)] <<
n=1

for arbitrary choices,,, t!, € A,, and everyn € N. It follows that there is somd,, with
1(Ayn) > 0 for whichsup, ;e 4 [[uo f(t) —uo f(t')]| <e. Anappeal to Lemma 3.10
ensures that o f is strongly measurable and the proof is over. O

Remark. The same result was obtained in [30, Corollary 8] in the particular case of a
compact Radon probability space.

3.4. McShane integrable functions. In this subsection we prove that the composition of
a McShane integrable function with an absolutely summing operator is always Bochner
integrable (Theorem 3.13). The McShane integral of vector-valued functions has caught
the attention of many authors in recent years, see [9, 20, 21, 24] and the references therein,
and to recall its definition we need some terminology.

Let (©2, %, X, ) be a quasi-Radon probability space [23, Chapter 41](Q2eX, i) is a
complete probability space afdC X is a topology orf2 such that:

() w(E)=sup{u(C): C C E, C closed foreveryE € %;
(i) p(UgG) = sup{u(G) : G € G} for every (non-empty) upwards directed family
GCgx.

(For instance, every Radon probability space is quasi-Radon, see [23, 4164¢Nek-
alized McShane partitioof 2 is a sequencé(E;, s;) }ieny Where{E; },cn is a family of
pairwise disjoint measurable sets such @\ J, . E:) = 0 ands; € Q for everyi € N.
A partial McShane partitiorof € is a countable collectiofi(E;, s;) }icr Where{E;}icr
is a family of pairwise disjoint measurable sets and: € for everyi € 1. A gaugeon 2
is a functiond : © — ¥ such thatv € §(w) for everyw € €2, and a partial McShane
partition {(E;, s;) }scr 0of Q is subordinateto ¢ iff F; C 4(s;) for everyi € I. Recall that
for every gauge) on () there is a generalized McShane partition{bsubordinate td,
see [21, 1B(d)].

A function f defined on(2 with values in a Banach spacé is McShane integrable
with McShane integrat € X, see [21, 1A], iff for everys > 0 there is a gaugé on (2
such that

lim sup HZ w(E;) f(si) — :EH <e
" i=1
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for every generalized McShane partitib(Z;, s;) };en Of © subordinate td. In this con-
text, every Birkhoff integrable function is McShane integrable, see [20, Proposition 3], and
every McShane integrable function is Pettis integrable, see [21, 1Q] (and the respective
integrals coincide).

The following stronger notion (which appears naturally in the proof of Theorem 3.13)
was studied in [8]. A functiory : Q — X is variationally McShane integrabléf it is
Pettis integrable and for evety> 0 there is a gaugé on Q2 such that

DN f(s0) = vy (B <

for every generalized McShane partitidtZ;, s;) };cn of Q subordinate t@. For our pur-
poses here, the key fact is theatery variationally McShane integrable function is strongly
measurablesee [8, Lemma 3]. The proof of this result given in [8] relies on the norm rel-
ative compactness of the range of the indefinite integral of any McShane integrable func-
tion f, which Fremlin deduced in [21, 3E] from the fact that each countable subggt of

is stable (see [21, 3C]). In Proposition 3.12 below we give a short and more elementary
proof of Fremlin’s result that does not involve techniques of stable families of measurable
functions.

Proposition 3.12. Let(£2, T, ¥, 1) be a quasi-Radon probability spack,a Banach space
and f : @ — X a McShane integrable function. Thep(X) is norm relatively compact.

Proof. Notice that ifg = Z?zl xiX 4, IS a simple function, then

vy () = {Z (AN Az Ae z}

is totally bounded. Thus in order to prove the proposition it suffices to check the following:
(+) for everye > 0 there is a simple functiog : Q@ — X such that
sup [[vp(E) —vy(E)| <e.
Eex

To prove (+) fixe > 0. By the Henstock-Saks lemma [21, 2B] there is a gauga 2
such that

® IS utr s — v (1)
i=1 =1

for every partial McShane partitiof( F;, ¢;) : 1 < i < p} of Q subordinate téd. On the
other hand, sincey is absolutely continuous with respectip see [36, 4-2-2], there is
n > 0 such that

<3
-2

(4) lvp(A)|| < = foreveryA € ¥ with u(A) <.

| ™

Fix a generalized McShane partitigQF;, s;) }.cn Of Q subordinate té. Choosen € N
large enough such that( \ ;- E;) < n and defineg := > | f(si)x,. We claim
that

(5) sup [|vy(E) —vy(E)|| <e.
Ecx

Indeed, givenE € %, the collection{(E; N E,s;) : 1 < ¢ < n} is a partial McShane
partition of(2 subordinate t@ and (3) implies

IS0t (e ()] < 5

=1
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which, in view of (4) and the choice of, yields

[Svceun st i) < o (21, (U )|
S B vy (50 (()5))] <

From the equality ., u(E;NE)f(s;) = vy(E) we obtain||vs(E) —vy(E)| < e. Since
E € ¥ is arbitrary, (5) holds and the proof is complete. d

Theorem 3.13. Let (2, T, 3, 1) be a quasi-Radon probability space and X — Y
an absolutely summing operator between Banach spaces: {8 — X is a McShane
integrable function, them o f is Bochner integrable.

Proof. We claim thatu o f is variationally McShane integrable. Indeed, on the one hand,
u o f is McShane integrable and so it is Pettis integrable. On the other hand cgiven
the Henstock-Saks lemma [21, 2B] ensures the existence of a gauge such that

‘ q

> (uENF () - vp(F) | <2
i=1

for every partial McShane partitiof( F;, ¢;) : 1 < i < ¢} of Q subordinate ta@. It follows

from inequality (1) on page 3 that

P

for every partial McShane partitiof( E;, s;) : 1 < i < p} of Q subordinate t@. Since

e > 0 is arbitrary,u o f is variationally McShane integrable and, in particular, strongly
measurable. An appeal to Lemma 2.2 establishesuthat is Bochner integrable and the
proof finishes. O

ZHu (o £)(5:) = vuos (E:)

u(p(E;) f(si) — vi(Ey)) H < 2m(u)e

Remark. Our Theorem 3.13 generalizes tifigpart of [30, Theorem 5], where an analo-
gous result is proved for compact Radon probability spaces.

Combining Theorem 3.13 with Theorem 3.5 we can deduce the following (partial) ex-
tension of [21, 3C]:

Corollary 3.14 (Axiom L). Let(2,%,%, 1) be a perfect quasi-Radon probability space,
X a Banach space and : @ — X a McShane integrable function. Then for each
v € M (Bx-) the family{z* o f : z* € supp(v)} is stable.

The results in [9] on the coincidence of Pettis and McShane integrability (that remain
valid for functions defined on arbitrary quasi-Radon probability spaces) allow us to obtain
the following proposition.

Proposition 3.15. Let (22, %, 3, ) be a quasi-Radon probability space and X — Y
an absolutely summing operator between Banach spaces.ukhfis McShane integrable
for everyf € D(u, X).

Proof. Fix a Dunford integrable functioff : @ — X. Sincew is absolutely summing,

u is also 2-summing (see [12, Theorem 2.8]) and therefore [12, Corollary 2.16] applies
to ensure the existence of ¢ M (Bx-) and an operatos : L?(v) — Y such that

u =wvojoipg,., wherej : C(Bx-) — L*(v) is the “identity” operator (that maps
each function to its equivalence class). Sifice ... o f is Dunford integrable and?(v)

is reflexive, j o ip,. o f is Pettis integrable. Using the fact that Pettis and McShane
integrability coincide for functions with values in superreflexive spaces [9] we infer that
joig,. o fis McShane integrable. Therefote> f is McShane integrable and the proof

is over. O
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4. EXAMPLES

We end up the paper with two examples showing that the composition of a Dunford
integrable function with an absolutely summing operator is not always Bochner integrable.

The first one uses the Pettis integrable function whose indefinite integral does not have
norm relatively compact range that Fremlin and Talagrand constructed in [25].

Example 4.1. There exist a complete probability spa¢e, A, ), a Pettis integrable func-
tion f : Q@ — ¢°° and an absolutely summing operatordefined or/>° with values in
another Banach spacg such thatu o f is not Bochner integrable.

Proof. The cardinality of a se$' will be denoted by} S|. In the sequel we identiffP(N)
(the set of all subsets &f) with {0, 1} in the standard way

a CN «— x, € {0,1}" (the characteristic function af).

Let us denote by{0, 1}, ¥, 1) the complete probability space obtained after completing
the usual product probability measure {i 1}". From now on the terrmeasurablewill
refer to this measure space. Recall that a free fiiter {0, 1}" is non-measurable if and
only if u*(F) = 1, see [36, Proposition 13-1-1].

Let us recall the definition of the so-call@dlagrand’s measure spac¢go, 1}, 3, 77)
(see sections 13-1 and 13-2 in [36]). ThealgebraX (that containsT) is made up of
all the setsA C {0, 1} for which there existB € ¥ and a non-measurable free filter
F c {0,1}" such thatA N F = B N F. The measurg is a (complete) extension of
defined onX by saying thatii(4) = u(B) wheneverA € 3, B € X and there is a
non-measurable free filtdf C {0,1}N suchthatdA N F = BN F.

The completion of the product probability spade, 1} x {0, 1}, ¥ @ %, i x i) will
be denoted by, A4, #). It was shown in [25, 2C] (alternatively see [36, Theorem 4-2-5])
that the function

f:Q—>€OO7 f(a7b>::Xa_Xb7
is Pettis integrable with respectéqand that/;(.A) is not norm relatively compact).

Fix any measurable finitely additive functionat P(N) — [0, 1] with A\(N) = 1 and

vanishing on all finite sets. For instance, we can take

)\(a):hmHmEa: mgn}\7

n n

see [23, 464J(b)]. Denote BN the Stone-Cech compactification Nf(with the discrete
topology) and letv be the unique element dff ™ (3N) such thatfﬁN Xa dv = A(a) for
everya C N (from now on we identify> and C(5N)). Let us consider the absolutely
summing operaton, = j, : £ — L(v). We will check thathe composition o f is
not strongly measurable with respectto

To prove this, fixA € ¥ ® 3 with (i x 1)(A) = 1. Then there is/ C N such that
(A% =1, whereA? = {a C N : (a,d) € A}. From the definition of: it follows that
there existB € ¥ and a non-measurable free filt€rc {0, 1} such thatd?NF = BNF
andu(B) = u(A?) = 1. SinceF is non-measurable, we hawg(F) = 1 and therefore
p*(B N F) = 1. On the other hand, sinceis a measurable bounded finitely additive
functional vanishing on finite sets, for ealt N we have

A(b)

(6) AManb) = 5 for p-almost alla C N,

see [25, 1J]. The fact that (BN F') = 1 and (6) can now be used to construct by transfinite
induction a sefa, : « < w1} C BN F = A%N F such that

@) )\(ﬂaa> :%

acl
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for every non-empty finite sdt C w,. Finally, for each pairy, 3 < wy, a # 3, we have
(aa,d), (ag,d) € A, and (7) yields

[(wo f)(aa;d) = (uo f)as, d)|| = /;m |f (e, d) = flag, d)| dv
1

= / |X(la - Xa5| dv = / X(aaag) dv = )‘(aaAaﬁ) = 5
BN BN

Hence(u o f)(A) is not separable. Sincé was arbitrarily chosen among all the elements
of ¥ ® ¥ of measurel, we infer thatu o f is not strongly measurable with respectto
The proof is finished. O

Recall that a cardinai is of measure zerd there is no probability measugeon P (k)
(the set of all subsets af such thaj({«}) = 0 for everya < «. Itis consistent with ZFC
that every cardinal is of measure zero. For a detailed account on measure zero cardinals
we refer the reader to [28438] and the references therein.

Example 4.2. Assume that there is a cardinathat is not of measure zero. Then there exist
a complete probability spacg?, ¥, 1), a Dunford integrable functiorf : Q — ¢!(k)
and an absolutely summing operator. /!(x) — ¢2(k) such thatu o f is not Bochner
integrable.

Proof. There is a probability measureon P (k) such thau({«}) = 0 for everya < .
Definef : k — (1(k) by f(a) := e,, Wheree, (8) = d, 5 (the Dirac delta) for every

a, B < k. Clearly f is bounded and scalarly measurable, hence Dunford integrable. On the
other hand, it is well known that the “identity” operator. ¢/!(x) — ¢?(x) is absolutely
summing, see [12, Theorem 3.4]. Finally, observe titato f)(a) — (uo f)(8)| = V2
whenevery, 5 < k, o # 3. Hence for eactd C x with pu(A4) > 0 the set(u o f)(A) is

not separable (becauskis uncountable) and therefoteo f is not strongly measurable.
The proof is finished. O
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