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SPACES

JOSÉ RODRÍGUEZ

Abstract. We show that some classical results on universal Pettis integrabil-
ity in dual Banach spaces can be formulated in terms of the Birkhoff integral,

thanks to the link between Birkhoff integrability and the Bourgain property.

1. Introduction and preliminaries

It is well known that a bounded function f : [0, 1] −→ R is Riemann integrable
if and only if for each ε > 0 there is a finite partition of [0, 1] into intervals, say
I1, . . . , In, such that

n∑
i=1

λ(Ii) sup(f(Ii))−
n∑

i=1

λ(Ii) inf(f(Ii)) ≤ ε

(where λ denotes the Lebesgue measure); in this case, the Riemann integral of f is
the only point in the intersection⋂{[ n∑

i=1

λ(Ii) inf(f(Ii)),
n∑

i=1

λ(Ii) sup(f(Ii))
]

:

{I1, . . . , In} is a finite partition of [0, 1] into intervals
}

.

As Fréchet [11] pointed out, the Lebesgue integral can be obtained in a similar
fashion by replacing the intervals with arbitrary Lebesgue measurable sets. In-
spired by these ideas, Birkhoff [3] proposed the following definition of integral for
functions defined on a complete probability space (Ω,Σ, µ) with values in a Banach
space (Y, ‖ · ‖).

Definition 1. Let f : Ω −→ Y be a bounded function. We say that f is Birkhoff
integrable if for each ε > 0 there is a finite partition of Ω in Σ, say A1, . . . , An,
such that ∥∥∥ n∑

i=1

µ(Ai)f(ti)−
n∑

i=1

µ(Ai)f(t′i)
∥∥∥ ≤ ε

for arbitrary choices ti, t
′
i ∈ Ai, 1 ≤ i ≤ n. In this case, the Birkhoff integral of f

is the only point in the intersection⋂{
co

{ n∑
i=1

µ(Ai)f(ti) : ti ∈ Ai for every 1 ≤ i ≤ n
}

:

{A1, . . . , An} is a finite partition of Ω in Σ
}

.
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In fact, the Birkhoff integral can also be defined for non necessarily bounded
functions, namely, by replacing finite partitions by countable ones and requiring that
the countable Riemann sums obtained in this way are unconditionally convergent,
see [3]. However, as regards Birkhoff integrability, in this paper we shall deal with
bounded functions only.

It is worth mentioning that Birkhoff integrability lies strictly between Bochner
and Pettis integrability (see [3], [20] and [21]), and that the Birkhoff integral of any
Birkhoff integrable function coincides with its Pettis integral. Moreover, Birkhoff
and Pettis integrability are equivalent for functions with values in separable Banach
spaces (see [20]).

Unlike the Bochner and Pettis integrals, the Birkhoff integral had hardly been
studied until a few years ago, in spite of playing a relevant role in the setting of
vector integration, see [5], [12], [26] and [27]. In [5] (joint work with B. Cascales)
we have analyzed the Birkhoff integrability of a vector-valued function f : Ω −→ Y
in terms of the pointwise compact family of real-valued functions

Zf = {〈y∗, f〉 : y∗ ∈ BY ∗} ⊂ RΩ

and certain distinguished subfamilies of Zf ; for instance, when Y is the dual of a
Banach space X, one can also look at the subfamily

Zf,BX
= {〈f, x〉 : x ∈ BX} ⊂ RΩ.

The following characterization (see [5, Corollary 2.5]) will play a fundamental role
in the sequel. It is an improvement of a classical result of Riddle and Saab [23],
who proved the implication (ii)⇒(i) with ‘Pettis’ instead of ‘Birkhoff’.

Theorem 1. Let f : Ω −→ X∗ be a bounded function. The following conditions
are equivalent:

(i) f is Birkhoff integrable;
(ii) Zf,BX

has the Bourgain property.

Recall that a family H ⊂ RΩ has the Bourgain property [23] if for every ε > 0
and every A ∈ Σ with µ(A) > 0 there are A1, . . . , An ⊂ A, Ai ∈ Σ with µ(Bi) > 0,
such that for each h ∈ H there is some 1 ≤ i ≤ n such that

sup(h(Ai))− inf(h(Ai)) ≤ ε.

This notion has been widely studied, mostly in connection with the Pettis integral
theory (see [17] and [18] for an overview); it is also related to some topological
properties of operators from L1[0, 1] into Banach spaces, see [13, Chapter IV].

The aim of this paper is to show how Theorem 1 can be applied in order to
replace Pettis integrability with Birkhoff integrability in some well known results
concerning the universal Pettis integrability of bounded functions f : K −→ X∗,
where K is a compact Hausdorff topological space (as usual, the term ‘universal’
means ‘with respect to each Radon probability measure on K’). Functions that
are universally Pettis integrable have been studied widely during many years, see
amongst others [1], [2], [14], [15], [22], [23], [24], [31] and [32]. For a detailed survey
on this topic, we refer the reader to [18, Section 7].

We next summarize the content of this work.
In Section 2 we discuss the universal integrability of w∗-continuous functions.

Our Proposition 1 shows that a w∗-continuous function f : K −→ X∗ is universally
scalarly measurable if and only if it is universally Birkhoff integrable; the latter is
the case if and only if the family Zf,BX

does not contain `1-sequences (for the
supremum norm). As a consequence we infer that X does not contain subspaces
isomorphic to `1 if and only if the ‘identity’ function I : (BX∗ , w∗) −→ X∗ is
universally Birkhoff integrable (see Theorem 2).
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In Section 3 we consider w∗-Luzin measurable functions to obtain some other
nice applications of Proposition 1. We prove that a bounded universally scalarly
measurable function f : K −→ X∗ is universally Birkhoff integrable provided that X
admits a projectional generator and f takes its values in a w∗-separable subset of X∗

(see Corollary 1); remember that both additional hypotheses hold automatically
whenever X is separable.

On the other hand, our Theorem 3 states that if X admits a projectional gen-
erator and (BX∗ , w∗) has the so-called property (M) then, for a given Radon prob-
ability measure µ on K, any bounded universally scalarly measurable function f :
K −→ X∗ is w∗-scalarly equivalent (with respect to µ) to some bounded universally
Birkhoff integrable function f0 : K −→ X∗; when no assumptions are made on X,
we just get an f0 which is Birkhoff integrable with respect to µ (see Theorem 4).

All unexplained notation and terminology can be found in our standard refer-
ences [9], [10] and [32].

Throughout this paper K is a compact Hausdorff topological space and X is a
real Banach space. As usual, C(K) stands for the Banach space of all real-valued
continuous functions on K endowed with the supremum norm ‖ · ‖∞.

Given a Banach space (Y, ‖ · ‖), we write BY = {y ∈ Y : ‖y‖ ≤ 1} and we denote
by w∗ the weak* topology on Y ∗ (the topological dual of Y ). By a ‘subspace’ of Y
we mean a norm closed linear subspace. A bounded sequence (yn) in Y is called
`1-sequence if there exists a constant δ > 0 such that δ(

∑n
i=1 |ai|) ≤ ‖

∑n
i=1 aiyi‖

for every n ∈ N and every a1, . . . , an ∈ R.
For our purposes it is not necessary to introduce the definition of projectional

generator in a Banach space, due to Orihuela and Valdivia [19] (cf. [10, Section 6.1]).
We just need to recall Lemma 1 below, which follows from a standard argument
used in the construction of projectional resolutions of the identity in non-separable
Banach spaces with a projectional generator (cf. [10, Section 6.1]).

Lemma 1. Suppose that X admits a projectional generator. Let S be a w∗-separable
subset of X∗. Then there exist two subspaces X0, X1 ⊂ X such that

(i) X0 is separable;
(ii) X = X0 ⊕X1;
(iii) x∗(x) = 0 for every x∗ ∈ S and every x ∈ X1.

It is well known that every weakly Lindelöf determined (e.g. weakly compactly
generated and, more generally, weakly countably K-determined) Banach space ad-
mits a projectional generator (cf. [10, Proposition 8.3.1]).

A compact Hausdorff topological space L has the property (M) if every Radon
probability measure on L has separable support. Remember that the class of weakly
Lindelöf determined Banach spaces Y for which (BY ∗ , w∗) has the property (M)
is bigger than the class of weakly countably K-determined Banach spaces (cf. [10,
Chapter 7]).

2. Universal integrability of w∗-continuous functions

Our starting point is the following lemma. The topology on RK of pointwise
convergence is denoted by Tp(K).

Lemma 2. Let H ⊂ C(K) be a uniformly bounded family. The following conditions
are equivalent:

(i) H has the Bourgain property with respect to each Radon probability measure
on K;

(ii) the Tp(K)-closure of H is made up of universally measurable functions;
(iii) H does not contain `1-sequences.
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Proof. The equivalence (ii)⇔(iii) is well known and goes back to Rosenthal [28]
and Bourgain, Fremlin and Talagrand [4] (cf. [9, Theorem 3.11] or [32, 14-1-7]).
The implication (iii)⇒(i) is a particular case of a result of Musial (cf. [17, Proposi-
tion 12.2] or [18, Proposition 4.15]). Finally, (i)⇒(ii) follows from two elementary
facts (cf. [23]): (a) the Bourgain property is preserved by taking pointwise clo-
sures and (b) every family with the Bourgain property is made up of measurable
functions. The proof is complete. �

Proposition 1. Let f : K −→ X∗ be a w∗-continuous function. The following
conditions are equivalent:

(i) f is universally Birkhoff integrable;
(ii) f is universally scalarly measurable;
(iii) Zf,BX

⊂ C(K) does not contain `1-sequences.

Proof. This is an immediate consequence of Theorem 1 and Lemma 2 applied to
the family Zf,BX

, bearing in mind that the closure of Zf,BX
in (RK ,Tp(K)) is

exactly Zf (by Goldstine’s theorem). �

Haydon [14] (cf. [9, Theorem 6.9]) showed that X does not contain subspaces
isomorphic to `1 if and only if the ‘identity’ mapping I : (BX∗ , w∗) −→ X∗ is
universally Pettis integrable (resp. universally scalarly measurable). Now we can
replace Pettis integrability with Birkhoff integrability in Haydon’s result, as follows.

Theorem 2. The following conditions are equivalent:

(i) X does not contain subspaces isomorphic to `1;
(ii) for each compact Hausdorff topological space L, every w∗-continuous func-

tion f : L −→ X∗ is universally Birkhoff integrable;
(iii) the ‘identity’ mapping I : (BX∗ , w∗) −→ X∗ is universally Birkhoff inte-

grable;
(iv) for each compact Hausdorff topological space L, every w∗-continuous func-

tion f : L −→ X∗ is universally scalarly measurable;
(v) the ‘identity’ mapping I : (BX∗ , w∗) −→ X∗ is universally scalarly measur-

able.

Proof. (i)⇒(ii) Our proof is by contradiction. Suppose that f is not universally
Birkhoff integrable. By Proposition 1, there exist a sequence (xn) in BX and a
constant δ > 0 such that, for every finite sequence a1, . . . , am ∈ R, we have

δ
( m∑

n=1

|an|
)
≤

∥∥∥ m∑
n=1

an〈f, xn〉
∥∥∥
∞

=
∥∥∥〈f,

m∑
n=1

anxn〉
∥∥∥
∞
≤ sup

t∈K
‖f(t)‖ ·

∥∥∥ m∑
n=1

anxn

∥∥∥.

This implies that `1 embeds into X, a contradiction.
(ii)⇒(iii) and (iv)⇒(v) are obvious, since I is w∗-continuous.
(iii)⇒(v) is a consequence of the scalar measurability of any Birkhoff integrable

function defined on a complete probability space.
(v)⇒(i) is part of the aforementioned Haydon’s characterization.
(v)⇒(iv) Let f be a w∗-continuous function defined on a compact Hausdorff

topological space L with values in X∗. We may and do assume without loss of
generality that f(L) ⊂ BX∗ . Fix a Radon probability measure µ on L. Since f
is Borel(L)-Borel(BX∗ , w∗)-measurable, we can consider the image measure µf−1

induced on Borel(BX∗ , w∗). By the w∗-continuity of f , the completion of µf−1,
say ν, is a Radon probability measure on (BX∗ , w∗). Thus I is scalarly measurable
with respect to ν and, therefore, f is also scalarly measurable with respect to µ (as
can be easily seen). The proof is complete. �
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Obviously, the proof of (v)⇒(iv) in the previous theorem can be avoided by
establishing (i)⇒(iv) with the help of Proposition 1.

A well known result due to Musial, Ryll-Nardzewski, Janicka and Bourgain (cf.
[9, Theorem 6.8] or [32, 7-3-8]) states that X does not contain subspaces isomorphic
to `1 if and only if X∗ has the so-called weak Radon-Nikodým property (WRNP) [16],
that is, for each complete probability space (Ω,Σ, µ) and every countably additive
and µ-continuous measure ν : Σ −→ X∗, with σ-finite variation, there is a Pettis
integrable function f : Ω −→ X∗ such that ν is the indefinite integral of f . It
is remarkable that in the previous characterization one can replace ‘Pettis’ with
‘Birkhoff’ (see [5, Theorem 3.8]). Theorem 2 now provides another approach to
the latter statement. We first need to introduce some terminology.

Given a complete probability space (Ω,Σ, µ) and a lifting ρ on L∞(µ), a standard
way to ‘regularize’ a bounded w∗-scalarly measurable function f : Ω −→ X∗ is to
consider the associated function ρ(f) : Ω −→ X∗ given by

〈ρ(f)(t), x〉 = ρ(〈f, x〉)(t), t ∈ Ω, x ∈ X.

Plainly ρ(f) is also bounded and w∗-scalarly measurable. It is worth mentioning
that ρ(f) is Σ-Borel(X∗, w∗)-measurable and that the completion of the image
measure µf−1 induced on Borel(X∗, w∗) is a Radon probability measure (these
facts are due to Sentilles [29], cf. [9, pp. 67–71]).

Let us turn to the promised ‘alternative’ proof of Theorem 3.8 in [5]. Consider a
complete probability space (Ω,Σ, µ) and a countably additive measure ν : Σ −→ X∗

such that |ν|(E) ≤ µ(E) for every E ∈ Σ, where |ν| denotes the variation of ν.
(Recall that the proof can be reduced to this case.) Fix any lifting ρ on L∞(µ). It
is known (cf. [9, Proposition 6.7]) that there is a bounded w∗-scalarly measurable
function f : Ω −→ X∗ (in fact, f(Ω) ⊂ BX∗) such that

(a) f = ρ(f), hence f is Σ-Borel(X∗, w∗)-measurable and the completion ϑ of
the image measure µf−1 induced on Borel(BX∗ , w∗) is a Radon probability
measure;

(b) ν(E)(x) =
∫

E
〈f, x〉 dµ for every E ∈ Σ.

Assume now that X does not contain subspaces isomorphic to `1. Then Theo-
rem 2 applies to conclude that the ‘identity’ mapping I : BX∗ −→ X∗ is Birkhoff
integrable with respect to ϑ. To see that f is Birkhoff integrable with respect
to µ it suffices to bear in mind that, given a finite partition {A1, . . . , An} of BX∗

in Borel(BX∗ , w∗), the collection {f−1(A1), . . . , f−1(An)} is a partition of Ω in Σ
such that{ n∑

i=1

µ(f−1(Ai))f(ti) : ti ∈ f−1(Ai)
}
⊂

{ n∑
i=1

ϑ(Ai)x∗i : x∗i ∈ Ai

}
.

Finally, notice that property (b) ensures that ν is the indefinite integral of f .

3. Applications

We begin by recalling a measurability notion which will play an important role
throughout this section.

Definition 2. Let f : K −→ X∗ be a function and µ a Radon probability measure
on K. We say that f is w∗-Luzin measurable (with respect to µ) if for every ε > 0
there is a compact set F ⊂ K with µ(K \ F ) ≤ ε such that the restriction f |F is
w∗-continuous.

The following lemma isolates a useful sufficient condition for w∗-Luzin measur-
ability.
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Lemma 3. Suppose that X admits a projectional generator. Let µ be a Radon
probability measure on K and f : K −→ X∗ a function such that

(i) f is w∗-scalarly measurable (with respect to µ);
(ii) f(K) ⊂ S for some w∗-separable set S ⊂ X∗ (notice that this condition

holds automatically whenever X is separable).
Then f is w∗-Luzin measurable (with respect to µ).

Proof. By Lemma 1, there exist a separable subspace X0 ⊂ X and a subspace
Y0 ⊂ X∗ which is isomorphic to X∗

0 and contains S ⊃ f(K). Thus we can suppose
without loss of generality that X is separable.

Fix a countable dense set {xn}n∈N ⊂ BX . Then we have ‖x∗‖ = supn∈N |x∗(xn)|
for every x∗ ∈ X∗, hence the function t 7→ ‖f(t)‖ is µ-measurable. Therefore, we
can assume further that f is bounded.

Fix ε > 0. Given n ∈ N, the bounded function 〈f, xn〉 is µ-measurable, hence
the classical Luzin’s theorem (cf. [6, Theorem 7.4.3]) ensures the existence of a
compact set Fn ⊂ K with µ(K \ Fn) ≤ ε/2n such that the restriction 〈f, xn〉|Fn

is continuous. Let us consider the compact set F =
⋂

n∈N Fn. Clearly, we have
µ(K \ F ) ≤ ε and 〈f, xn〉|F is continuous for every n ∈ N. We claim that f |F
is w∗-continuous. Indeed, given x ∈ X, there is a sequence (zk) in span{xn}n∈N
converging to x in norm. Since f is bounded, the sequence of continuous functions
(〈f, zk〉|F ) converges uniformly to 〈f, x〉|F . It follows that 〈f, x〉|F is continuous too
and the proof is finished. �

We now deal with integrability properties of w∗-Luzin measurable functions.

Proposition 2. Let f : K −→ X∗ be a bounded universally scalarly measurable
function and µ a Radon probability measure on K. If f is w∗-Luzin measurable
(with respect to µ), then f is Birkhoff integrable (with respect to µ).

Proof. Fix ε > 0 and a compact set F ⊂ K with µ(K \ F ) ≤ ε such that f |F is
w∗-continuous. Since f |F is universally scalarly measurable, Proposition 1 can be
applied to deduce that f |F is Birkhoff integrable with respect to the restriction of µ
to the σ-algebra of the sets of the form F ∩A, where A belongs to the domain of µ.
As ε > 0 is arbitrary and f is bounded, it follows that f is Birkhoff integrable with
respect to µ. �

By putting together Lemma 3 and Proposition 2 we get the following corollary,
which improves a result of Riddle, Saab and Uhl [24]. They proved the same state-
ment with ‘Pettis’ instead of ‘Birkhoff’ in the particular case of weakly compactly
generated Banach spaces.

Corollary 1. Suppose that X admits a projectional generator. Let f : K −→ X∗

be a bounded function with values in some w∗-separable subset of X∗. Then f is
universally Birkhoff integrable if and only if f is universally scalarly measurable.

Corollary 2. Suppose that X is separable. Let f : K −→ X∗ be a bounded function.
Then f is universally Birkhoff integrable if and only if f is universally scalarly
measurable.

Corollary 2 says, in particular, that universal Pettis integrability and universal
Birkhoff integrability are equivalent for bounded functions with values in the dual
of separable Banach spaces. Without the separability hypothesis this equivalence
is not true in general, see [23] and [27].

In Corollary 1, the assumption ‘with values in some w∗-separable subset of X∗’
can not be removed even for universal Pettis integrability, as Plebanek has shown
in [22] (under the continuum hypothesis, with an example where X is weakly com-
pactly generated). Without that assumption we still have the following
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Theorem 3. Suppose that X admits a projectional generator and that (BX∗ , w∗)
has the property (M). Let f : K −→ X∗ be a bounded universally scalarly measurable
function and µ a Radon probability measure on K. Then there exists a bounded
universally Birkhoff integrable function f0 : K −→ X∗ that is w∗-scalarly equivalent
to f (with respect to µ).

Proof. We may and do assume that f(K) ⊂ BX∗ . Fix a lifting ρ on L∞(µ) and
define g = ρ(f) : K −→ X∗. We already know that g is Borel(X∗, w∗)-measurable
and that the completion of the image measure µg−1 on Borel(BX∗ , w∗) is a Radon
probability measure. Since (BX∗ , w∗) has the property (M), there is a w∗-separable
set S ∈ Borel(BX∗ , w∗) such that µ(g−1(S)) = 1.

Lemma 1 now ensures the existence of two subspaces X0, X1 ⊂ X such that X0

is separable, X = X0 ⊕ X1 and x∗(x) = 0 for every x∗ ∈ S and every x ∈ X1.
Hence we can find two subspaces Y0, Y1 ⊂ X∗ such that

• X∗ = Y0 ⊕ Y1;
• Yi is isomorphic to X∗

i for i = 0, 1;
• S ⊂ Y0;
• x∗(x) = 0 for every x∗ ∈ Y0 (resp. x∗ ∈ Y1) and every x ∈ X1 (resp.

x ∈ X0).
Write f = f0 + f1, where each fi : K −→ Yi ⊂ X∗. Since f is bounded and

universally scalarly measurable, the same holds true for both f0 and f1, as can be
easily seen. Bearing in mind the separability of X0, Corollary 2 can be applied to
conclude that f0 is universally Birkhoff integrable. In order to finish the proof we
only have to check that f and f0 are w∗-scalarly equivalent (with respect to µ).
Fix x ∈ X and write x = x0 + x1, where x0 ∈ X0 and x1 ∈ X1. Since f and g are
w∗-scalarly equivalent, we have 〈f, x〉 = 〈g, x〉 µ-a.e. and 〈f0, x〉 = 〈f, x0〉 = 〈g, x0〉
µ-a.e. On the other hand, recall that we have µ(g−1(S)) = 1, hence 〈g, x0〉 = 〈g, x〉
µ-a.e. It follows that 〈f, x〉 = 〈f0, x〉 µ-a.e., as required. �

The previous theorem with ‘Pettis’ instead of ‘Birkhoff’ was proved in the par-
ticular case of weakly compactly generated Banach spaces by Stefánsson [31]. His
proof does not make use of liftings and relies on the following fact: (+) Let (Ω,Σ, µ)
be a complete probability space, X a weakly compactly generated Banach space and
f : Ω −→ X∗ a w∗-scalarly integrable function. Then Zf,BX

is ‖ · ‖1-separable.
This result was proved by Stefánsson [30] using the factorization theorem of Davis,
Figiel, Johnson and Pelczynski [7]. A different method now allows us to extend (+)
to the class of Banach spaces considered in Theorem 3.

Lemma 4. Suppose that X admits a projectional generator and that (BX∗ , w∗) has
the property (M). Then every Radon probability measure on BX∗ has w∗-metrizable
support.

Proof. Fix a Radon probability measure ν on BX∗ and let S be its support. Since
(BX∗ , w∗) has the property (M), S is w∗-separable. By Lemma 1, there exist two
subspaces X0, X1 ⊂ X such that X0 is separable, X = X0 ⊕ X1 and x∗(x) = 0
for every x∗ ∈ S and every x ∈ X1. Notice that the mapping π : S −→ BX∗

0
,

π(x∗) = x∗|X0 , is injective and w∗-w∗-continuous, hence π establishes a w∗-w∗-
homeomorphism between the compact space S and its image π(S). Since BX∗

0
is

w∗-metrizable, we conclude that S is w∗-metrizable. �

Proposition 3. Suppose that X admits a projectional generator and that (BX∗ , w∗)
has the property (M). Let (Ω,Σ, µ) be a complete probability space and f : Ω −→ X∗

a w∗-scalarly integrable function. Then Zf,BX
is ‖ · ‖1-separable.

Proof. We begin with the following:
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Particular case.- Suppose that there is a constant M > 0 such that for each
x ∈ BX we have |〈f, x〉| ≤ M µ-a.e. Then we can consider the operator (i.e.
linear and continuous map) φ : X −→ L∞(µ) that maps each x ∈ X to the
equivalence class of 〈f, x〉. Recall that the ‘identity’ operator ξ : L∞(µ) −→ L1(µ)
is absolutely summing (cf. [8, 2.9]), that is, it takes unconditionally convergent
series to absolutely convergent ones. Hence the same holds for the composition
ξ ◦ φ. On the other hand, by Lemma 4, each Radon probability measure ν on BX∗

has w∗-metrizable support and, in particular, the space L1(ν) is separable (cf. [6,
Proposition 3.4.5]). Therefore, by Pietch’s factorization theorem (cf. [8, 2.13]),
every absolutely summing operator defined on X has separable range, see [25]. In
particular, ξ ◦ φ has separable range, as required.

General case.- Since Zf,BX
is a pointwise bounded family of measurable func-

tions, there is a non-negative measurable function h on Ω such that for each x ∈ BX

we have |〈f, x〉| ≤ h µ-a.e. (cf. [17, Proposition 3.1]). Fix n ∈ N and define
An = {t ∈ Ω : n − 1 ≤ h(t) < n} ∈ Σ. In view of the Particular case, the family
of restrictions {〈f, x〉|An

: x ∈ BX} is ‖ · ‖1-separable. Since n ∈ N is arbitrary and
Ω =

⋃∞
n=1 An, we conclude that Zf,BX

is ‖·‖1-separable. The proof is complete. �

Given a bounded universally scalarly measurable function f : K −→ X∗ and a
Radon probability measure µ on K, Bator [2] proved that there exists a bounded
function g : K −→ X∗ such that f and g are w∗-scalarly equivalent and Zg,BX

has
the Bourgain property (with respect to µ); in view of Theorem 1, the function g is
Birkhoff integrable (with respect to µ). The same happens with ρ(f) for any lifting
ρ on L∞(µ), as we show in Theorem 4 below.

Lemma 5. Let (Ω,Σ, µ) be a complete probability space and ρ a lifting on L∞(µ).
Let H ⊂ L∞(µ) be a family with the Bourgain property. Then {ρ(h) : h ∈ H} has
the Bourgain property too.

Proof. Given E ∈ Σ, we define Eρ = E ∩ {t ∈ Ω : ρ(χE)(t) = 1} ∈ Σ. Fix
ε > 0 and A ∈ Σ with µ(A) > 0. Since H has the Bourgain property, there are
A1, . . . , An ∈ Σ, Ai ⊂ A with µ(Ai) > 0, such that for each h ∈ H there is some
1 ≤ ih ≤ n such that sup(h(Aih

))− inf(h(Aih
)) ≤ ε. Notice that Aρ

i ⊂ A and that
µ(Aρ

i ) = µ(Ai) > 0 for every 1 ≤ i ≤ n.
Fix h ∈ H and set Mh = sup(h(Aih

)) and mh = inf(h(Aih
)). Since mhχAih

≤
hχAih

≤ MhχAih
, we have

mhρ(χAih
) = ρ(mhχAih

) ≤ ρ(hχAih
) = ρ(h)ρ(χAih

) ≤ ρ(MhχAih
) = Mhρ(χAih

).

Therefore, mh ≤ ρ(h)(t) ≤ Mh for every t ∈ Aρ
ih

and, consequently, we obtain
sup(ρ(h)(Aih

)) − inf(ρ(h)(Aih
)) ≤ Mh − mh ≤ ε. It follows that {ρ(h) : h ∈ H}

has the Bourgain property. The proof is over. �

Theorem 4. Let f : K −→ X∗ be a bounded universally scalarly measurable
function. Let µ be a Radon probability measure on K and ρ a lifting on L∞(µ).
Then ρ(f) is Birkhoff integrable (with respect to µ).

Proof. By the aforementioned result of Bator, there exists a bounded function
g : K −→ X∗ such that Zg,BX

has the Bourgain property and g is w∗-scalarly
equivalent to f (with respect to µ). The latter condition ensures that ρ(f) = ρ(g).
On the other hand, since Zg,BX

has the Bourgain property, the same holds for
the family {ρ(〈g, x〉) : x ∈ BX} = Zρ(f),BX

(Lemma 5). An appeal to Theorem 1
establishes that ρ(f) is Birkhoff integrable (with respect to µ). �
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versations on the subject of this paper.
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