THE LINDEL OF PROPERTY AND o-FRAGMENTABILITY

B. CASCALES AND I. NAMIOKA

ABSTRACT. Inthe previous paper, we, together with J. Orihuela, showed that a
compact subseX of the product spack-1, 1)” is fragmented by the uniform
metric if and only if X is Lindelof with respect to the topology(D) of uniform
convergence on countable subsetdXfIn the present paper we generalize the
previous result to the case whel¢ is K-analytic. Stated more precisely, a
K-analytic subspac& of [—1,1]” is o-fragmented by the uniform metric if
and only if (X, v(D)) is Lindelf and, if this is the case thefi, (D))" is

also Lindebf. We give several applications of this theorem in areas of topology
and Banach spaces. We also show by examples that the main theorem cannot
be extended to the cases wheé¥eis éech-analytic and Lindéf or countably
K-determined.

1. INTRODUCTION

In the paper [6], we, together with J. Orihuela, have investigated conditions
for a compact subset’ of the product—1, 1]” to be fragmented by the uniform
metric. We discovered, among others, thatfoto be fragmented by the uniform
metric, it is necessary and sufficient thatis Lindeldf with respect to the topology
~(D) of uniform convergence on countable subset®opfand if this is the case,
then (K, (D))" is Lindelf. Although this topological result provided us with a
number of applications in topology and Banach spaces, we have been keenly aware
of the limitation of K to be compact.

In this paper we present a generalization of the result stated above to the class
of K-analytic spaces. More specifically fa-analytic subsetX in the product
[—1,1]” is o-fragmented by the uniform metric if and only (if, (D)) is Lin-
debf, and if this is the case theiX, y(D))Y is also Lindebf. The proof of this
main theorem, which is far more involved than that for the compact case, is given
in the next section, where the mathematical terms used above are defined.

The subsequent sections are devoted to the applications of the main theorem and
examples. In Section 3, we show that the main theorem gives an easy proof of the
theorem proved by Gul'ko [11] and Orihuela [23].Af is a Corson compact space,
then (C(K),~v(K)) is Lindelf. In this case, [23] proves thaC'(K),v(K))" is
Lindelof for eachn € N, but we can do a bit bette(C'(K),v(K))Y is Lindelof.

The section concludes with an example showing that the converse of the last state-
ment is not true.

In Section 4, we apply the main theorem to investigat@nalytic Tychonoff
spacesX . Specifically we give a number of conditions &nor C'(X), each equiv-
alent to the statement & to beo-scattered. We also give in this section examples
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2 B. CASCALES AND I. NAMIOKA

to show that our main theorem cannot be further generalized to the casesXvhere
is éech-analytic and Lindéf or countablyK -determined.

In Section 5, we consider a class of Banach spaces wider than that of repre-
sentable Banach spaces introduced by Godefroy and Talagrand, [10]. The new
class includes all dual Banach spaces and the class of spaces considered in [6, Sec-
tion 5]. Our main theorem is applied once again to prove that a Banach space in
this class is weakly LindéfF if, and only if, its dual unit ball endowed with the
weak' topology is countably tight and has the property that its separable subsets
are metrizable.

2. 0-FRAGMENTABILITY AND THE LINDELOF PROPERTY FORy(D)

We recall some topological terms. L@, 7) be a topological space and ebe
a metric onT'. Let S be a subset of'. Then we say thatS, 7) (or simply, S) is
fragmented by down toe for somee > 0 if, wheneverA is a non-empty subset
of S, there is ar-open seU in T such thatA N U # () andé-diam(ANU) < e.
The subspaces, ) (or simply, setS) is fragmented by if it is fragmented byd
down to eackx > 0. The spacd’ is o-fragmented by if, for eache > 0, T can
be written asl" = |J,- , T,,, where eacH;, is fragmented by down toe. If the
metric § is that of a norm|| ||, then instead of “fragmented by the metric of the
norm”, we saynorm-fragmentear || ||-fragmented

A topological spacéT’, 7) is said to beK -analyticif there is an upper semi-
continuous set-valued map : NN — 27 such thatF'(s) is compact for each
o € NNandF(NY) := U{F(0) : 0 € NN} = T. Here the set-valued map is
calledupper semi-continuoui$ for eachs € NY and for an open subsét of T
such thatF'(o) C U there exists a neighborhoddof o with F'(V') C U. Our basic
reference fori-analytic spaces is [26]. A subsgtof T is said to bef{-analytic if
S with the relative topologyi.e. (S, 7), is K-analytic. We use repeatedly the fact
that eachi -analytic Hausdorff space is Lind#l(see [26, Theorem 2.7.1]).

Let (M, p) be a metric space with the metpdounded, and leD be an index
set. We consider various topologies on the product spdéein addition to the
product (= pointwise) topology,. If S is a subset ofD, we define the pseudo-
metricdgs on M P by

ds(z,y) = sup{p(z(p),y(p)) : p € S}

for all 2,y € MP. Note thatdp is theuniform metricon M” and we denote it
by d. Throughout this paper, we |€tdenote the family of all countable subsets
of D. Finally we lety(D) denote the topology o/ ” of uniform convergence
on members of. This is the topology of the uniformity generated by the family
{d4 : A € C} of pseudo-metrics.

Using the notation above our main theorem is the following.

Theorem 2.1. Let X be aK-analytic subspace af/” where (MM, p) is a metric
space withp bounded. Then the following statements are equivalent.

(a) The spacé X, 7,) is o-fragmented byl.

(b) For each compact subséf of (X, 7,), (K, 7,,) is fragmented by.

(c) For eachA € C, the pseudo-metric spa¢&’, d4) is separable.

(d) (X,~(D)) is Lindebf.
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Proof. (Easy parts.) (& (b). This follows from [12, Theorem 4.1]. (A simpler
proof in [19].)

(c) = (b). (c) implies that, for each compa&t C X, (K,d4) is separable
wheneverd € C. Then(K, 7,) is fragmented by by e.g.[6, Theorem 2.1].

(d) = (c). This is clear because, # € C, then the topology ofl 4 is weaker
than~(D).

In order to prove (a) (c), we need the following simple lemma.

Lemma 1. Let (7, 7) be metrizable and separable (or more generally, hereditarily
Lindelof) and lety be a metric oril”. Then(T, ) is o-fragmented by if and only
if (T,6) is separable.

Proof. If (T, 6) is not separable, then there existan> 0 and an uncountable
subsetS of T such that(¢,t') > ¢ whenevett, ¢’ are distinct elements of. If
(T, ) is o-fragmented by, thenT can be written a§" = J{T,, : n € N},
where, for each, T,, is fragmented by down toe /2. Choosen so thatT,, N S'is
uncountable. SincéT’, ) is hereditarily Lindebf, there is an uncountable subset
B of T,, N S without ar-isolated point. Because of the propertyof, there is a
7-open subseV of T such thaty N B # () andd-diam (U N B) < ¢/2. Since
B is without ar-isolated point/ N B contain two distinct points, . Recalling
that B C S, we obtaine < §(¢,t') < d-diam(U N B) < ¢/2, a contradiction.
Conversely if(T', §) is separable, then for eaehY” is a countable union of subsets
of §-diameter< . So with any topologyT” is o-fragmented by. O

Proof of (a)=- (c) of Theorem 2.1.

Let A € C and letr : M — M be the restriction map. Thenis continuous
with respect to the product topologies as well as with respediptandd 4 and
these metrics are lower-semicontinuous in respective product topologies. Since
(X, 1p) is K-analytic andr-fragmented byip, by [12, Theorem 5.1](r(X), 7)
is o-fragmented byl 4. Moreover being the continuous image of a Linifedpace,
(r(X),,) is Lindelf. SinceA is countable(M4,7,) is metrizable and there-
fore (r(X), 7,) is metrizable and separable. Hence by Lemm&-1X),d,) is
separable. It follows thatX, d4) is separable.

This completes the proof of the equivalence of (a), (b) and (c) and they are
implied by (d). It remains to prove that (e3> (d). We do this in the next two
sub-sections 2.1 and 2.2.

2.1. Preliminary Remarks. We use the following convention: & = n,no, ...
€ NV and ifk € N, theno|k = ni1,na, ..., ng. Let A be a family of subsets of a
setT'. Then aSouslin(.A)-set is a subsef of 7' that can be represented as

S=J ) S(alk),

oeNN k=1

whereS(c|k) € A for eacho € NY andk € N. The family of all Souslin(.A)-
sets is denoted byouslin(.4). The family Souslin(.A) is closed under countable
intersections and countable unions ([26, Corollary 2.3.3]).Al€onsists ofK-
analytic subsets of a Hausdorff spa@ 7), then eachouslin(.4)-set is again
K-analytic ([26, Theorem 2.5.4]). The intersection ofaanalytic subset of”
and a closed subset ®fis K-analytic ([26, Theorem 2.5.3]).
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We also recall some facts concerning Baire sets. (étr) be a Tychonoff
space. A subsef of T is called azero-se{in T) if Z = f~1(0) for some contin-
uous functionf : T — R. Let Z (or Z(T')) denote the family of all zero-sets in
T. ThenZ is closed under finite unions and countable intersections.: ' — R
is continuous, therf~1(F) € Z for each closed subsét of R. Theo-algebra
generated by is denoted by Bair@’) and elements dBaire(7") are calledBaire
setsin 7. If Z € Z, thenT \ Z is a countable union of members 8f Hence
T\ Z € Souslin(Z). Since the family

{ScCT:5T\S e Souslin(2)}
is ac-algebra, it follows thaBaire(T") C Souslin(Z).

Using the earlier notation, |6t be akK -analytic subset of/”. Then each zero-
set in X, being closed, id{-analytic and therefore each memberSofuslin(Z)
is K-analytic. It follows that each Baire set i is K-analytic hence Lindélf
relative tor,,.

Our proof of (c)=- (d) is by contradiction. So suppose henceforward that (c)
holds and (d) fails for a fixed{-analytic subsetX of (MD,TP), and we agree
upon the following notation. All topological terms (suchsanalytic,Baire(X ),
Lindelof, etc.) are relative t@, unless otherwise specified.

Notation. Givenz € X, S C D ande > 0 we write

Uz, S,¢) :=={y € X : ds(y,x) < e},

V(z,S,e):={ye X :ds(y,x) <e}.
Letd = {U; : j € J} be afamily ofy(D)-open sets inX without a countable
subcover. We may assume that eaghis of the form

Uj =Ul(zj,Aj,e5) ={y € X 1 da,(y,75) < g},
wherez; € X, A; € C, ¢; > 0 foreachj € J. Foreachd € C, let
UA) = J{U;:jeJ A; C A}

ClearlyU(A) c U(A") wheneverA c A’. Sinceld coversX, X = (J{U(A) :
AecC}.

Lemma 2. Under the notation above, the following statements hold.
(i) U(z, A, e) € Baire(X) whenever: € X, A€ C, ¢ > 0.
(i) U(A) € Baire(X) for eachA € C. In particular U(A) is K-analytic and
Lindelof for eachA € C.

(iii) A subsetS of X is covered by a countable subfamilyfif and only if
S Cc U(A) for someA € C.

Proof. (i) SinceU(z,A,e) = H{V(z,A,e — 1/n) : n € N}, it is sufficient
to showV(z, A,e) = ({V(z,{a},e) : a € A} € Baire(X). Sincey —
p(z(a),y(a)) is continuous on( X, 7,), V(z,{a},e) € Z(X), and becausé! is
countableV (z, A, ¢) € Baire(X).

(i) The setU; = U(x;, Aj,¢;) is da-open wheneveAd; C A. Since, by (c),
(X, da) is hereditarily Lindebf, U(A) is a countable union of set$; with A; C
A. Therefore, by (i))[/(A) € Baire(X).
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(iii) If S c U{Uj : j € Jo} for some countable subséj of J, thenS C U(A)
whereA = |J{4, : j € Jo}. Conversely ifS C U(A), then from the proof of (i),
we see thab is covered by a countable subfamilyief O

2.2. Proof of (c) = (d). All the assumptions and notation of sub-section 2.1 are
retained in this section. L&t be the family of all/-analytic subset¥™ of (X, 7,)
such that there is no countable subfamilyibthat coversy’, i.e. forno A € C,
Y Cc U(A). By our assumptionX € Y. If Y € Y, Y Cc Z Cc X andifZ is
K-analytic thenZ € .

We distinguish two cases:

A. For eacht € Y and eacle > 0, thereis aZ € )Y such thatZ C Y and
d-diam(Z) < e.

B. For someZ € Y and some > 0, d-diam(Y) > ¢ wheneverY’ € Y and
Y C Z. (The negation of Casg.)

We show that each case leads to a contradiction.

Lemma 3. CaseA leads to a contradiction.

Proof. Assume Casé. Let G : NN — 2X be a compact-set-valued upper-semi-
continuous map such tha(NY) = X. Recall that ifo = n{,ns,--- € NN and
k € N, then we leb |k = ny,na,...,n, and ifny, ne, ..., ng is a finite sequence
in N, we let[ny,no,...,n;] = {o € NV : glk = ny,na,...,n,}. We note that
[n1,n2,...,n] is a clopen subset afY and the family of the sets of this form
constitutes a base for the topologyNf. For convenience we sfit] = NV. Note
that the set of the forn/([n1, na, ..., ng]) is K-analytic.
By induction, we construct a decreasing sequehRge> Fy D Fy D ... of

closed subsets dfY, 7;,) and a sequence = ny, ny, - - - € NY such that

() FrNG([o|k]) € Y for eachk > 0.

(i) d-diam Fj, < 1/k for eachk > 1.
CONSTRUCTIONTOo start the induction, lety, = X. Clearly (i) holds and (ii)
does not apply. Inductively assume tidgt F, Fs, ..., Fy andng, no, ..., ni have
been constructed. Since

FenG(ny,...omi]) = | Fe NG, ...,k 1)) € D,
i=1
there is ant € N with
F.NnG([n,...,ng, 1)) € V.
By the assumption of Cadk, there is aZ € Y such that
Z C Fp,nG([ni,...,ng, i) and d-diam Z <1/(k+1).

Let Fy.1 = Z C Fy andngy, = i, where the closure is taken {&X, 7,,). Then
d-diam Fy; < 1/(k+1). Clearly F,11 N G([n1,...,ni4+1]) is K-analytic and
containsZ which is a member of’. Hence (i) holds if is replaced byt + 1. This
completes the construction.

By [26, Lemma 3.1.1])(({F} : k € N}) N G(o) # 0. Hence by (ii), the set
(W Fx : k € N} is a singleton{a}. Now there is a4 € C such thatu € U(A).
SinceU(A) is d4-open, there is @ > 0 such that/(a, A,6) C U(A). By (ii),
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there is ak € N such that-diam Fj, < §. ThenF;, C U(a, A,0) C U(A). This
contradicts (i). This completes the proof. a

Before we take up Cad®, we prove the following lemma. Recall that all topo-
logical terms are relative tg, unless otherwise mentioned.

Lemma 4. LetY € ). Then there is a subsét of Y such that
() Qe
(i) If V is an open subset @, 7,) with V-N @ # 0, then for noA € C,
V CU(A).

Proof. Let
Q =Y\ H[inty (U(4) nY): Aec},

whereinty indicates ther,-interior relative toY. Then clearly@ is closed in
(Y, 7,). HenceQ is K-analytic. We show thaf) € ) by contradiction. Suppose
then that) C U(Ay) for someA, € C. Then

(Hinty (U(A)NY): A€C=Y\Q DY \U(4g) =Y N (X \U(Ay)).

By Lemma 2,U(A4p) € Baire (X) and henceX \ U(Agp) € Baire(X). Con-
sequently the seX \ U(Ay) is K-analytic. It follows that the intersectiori N
(X \ U(Ap)) is K-analytic and hence Lindél. Therefore, there is a sequence
{4,, : n € N} in C such that

Y\ U(4g) € | Hinty (U(4) NY) :n e Ny | {U(A) NY 0 e N}

Let B =J{4, :n € {0} UN} € C. ThenY C U(B) contradictingt” € ). This
proves (i).

Next, suppose thdl is an open subset ¢t 7,,) such thaty NV # 0. If the
conclusion of (ii) is not true, thelW C U(Ay) for someA, € C. This implies that
V Cinty (U(Ap)NY) C Y\Qand@QNV = (), contradicting the assumption ]

Lemma 5. CaseB leads to a contradiction.

Proof. Let Z € ) ande > 0 be fixed so that-diam Y > ¢ wheneveY” € ) and
Y c Z. WeletH : NN — 27 be a compact-set-valued upper-semicontinuous map
such that (NY) = Z. All the following construction takes place {Z, 7,).

Let 2N be the set all finite sequence®f 0’s and 1's, and in this case I
denote the length of. N is similarly defined. For each € 2(Y), we construct
a closed subseF(s) of (Z,7,), anf(s) € N® andp(s) € D satisfying the
following conditions.

(i) F(0)=2Z.
(i) For eachs € 2| F(s,0)U F(s,1) C F(s), [((s)] = |s| and £(s,0),
{(s,1) extend((s).
(iiiy For eachs € 2, p(x(p(s)),y(p(s))) > ¢ wheneverr € F(s,0),y €
F(s,1).
(iv) Foreachs € 2N Y (s) := F(s) n H([((s)]) € V.
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CONSTRUCTIONThe construction is by induction ds|. When|s| = 0, we let
F(0) = Z and¢(0) = (. Inductively assume thdt(s), ¢(s) have been constructed
for all s with |s| < n andp(s) for |s| < n — 1 so that (ii),(iii) hold for|s| <n — 1
and (iv) for|s| < n.

Lets € 2N with |s| = n. Then by (iv),Y (s) € V. Hence by Lemma 4, there
exists a subsap of Y(s) such that) € Y and, whenevel is an open subset
of (Y(s),7p) with @ NV # 0, thenV C U(A) forno A € C. By hypothesis
d-diam @ > . So there arey, z; € Q and ap € D such thaip(zo(p), z1(p)) >
€ 4 ¢ for somes > 0. Let

Wo ={z € Y(s) : p(xo(p), z(p)) < 0/2},

Wi =A{z €Y(s): p(z1(p), z(p)) < 0/2}.
Note first that ifx € Wy,y € W, where closures are taken {&,7,), then
p(z(p),y(p)) > e. NextW, is open in(Y(s),7,) andWp N Q # 0. Hence,
forno A € C, Wy C U(A). Similarly for Wy. It follows that Wy N Y (s) is
K-analyticandV, N Y (s) C U(A) forno A € C. HenceW, N Y (s) € ). Now

WonY(s)=WonF(s)NH([{(s)]) = U Wo N F(s)NH([((s), k]).
kEN

Hence for somé, WoNF(s)NH ([¢(s),k] € V. LetF(s,0) = WoNF(s), £(s,0)
= ((s),k andp(s) = p. Then (iv) holds for(s,0). Similarly we letF(s,1) =
Wi N F(s) and choosé(s, 1) to make (iv) hold for(s, 1). Clearly conditions (ii)
and (iii) are satisfied as well. This completes the construction.

Now for eachr € 2N, let /(o) be the unique element WY such that/(c)|n =
{(o|n) for eachn € N. Then by (iv),F (o|n) N H([¢(c)|n]) # 0 for eachn € N.
Therefore, by [26, Lemma 3.1.1],

K(o) = ((\{F(cln) : n € N})n H(((0))

is a non-empty compact subset 8f For eachr € 2~, choose a poink(c) in
K (o), and letB be the countable sép(s) : s € 2N} < D. Then from (ii) and
(iii) it follows that dp(z(0),z(c")) > € whenevers ando’ are distinct elements
of the uncountable spa@. This contradicts (c), which proves Lemma 5. O

The proof of Theorem 2.1 now follows from Lemmas 3 and 5.

The proof of the next corollary is almost the same as the one for Corollary 2.2
in our previous paper [6]. For the convenience of the reader, a part of the proof is
repeated here.

Corollary 2.2. Let X, M, D be as in Theorem 2.1. K satisfies one (hence all) of
the three conditions of the Theorem 2.1, tié&h (D))" is Lindebf.

Proof. We may assume that the metpcof the spaceV/ is bounded by 1. Let
o (MPYN — (MNP be the map defined by(¢)(p)(j) = £(5)(p) for all

¢ e (MP)Np € D,j € N. Clearlyy is a homeomorphism when the product
topology is used throughout. Now the spat®' is metrizable, and we use the
metric peo (m, m') 1= .y 277 p(m(5),m'(4)) for m,m’ € M. Letd,, be the
metric on(M™)P given by

doo(,2") = sup{peo (z(p), 2’ (p)) : p € D} for z,2’ € (MNP,
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Now, by [26, Theorem 2.5.5)X" is K -analytic, hence so ig(X"). We show
that each compact subsetwfX ™) is fragmented byl,. For this it is sufficient to
prove that each set of the forg( K) is fragmented byl.,, whereK = [[{K; :
J € N} with eachK; compact inX. Lete > 0, let C be a non-empty subset &f
and letr; : K — K be thej-th projection. Then, since eadly; is fragmented
by d according to (b) of Theorem 2.1, we can construct inductively a decreasing
sequencéd’ D V5, D ... of non-empty relatively open subsets @fsuch that
d-diam 7;(V;) < /2 for eachj € N. Choosek € N so that2=* < /2, and let
£, € V. Then for eachy € D,

Poo(P(E) (), 0(€)(0)) < Y277 p(EG) ), € (NP + Y 27

j<k j>k+1

<> 279d(m().mi(€) +e/2< /24 e/2 =
J<k
Thusp (V) is a non-empty relatively open subset@(fC) with d.-diameter not
greater them. It follows thate(K) is fragmented byl..
Hence by Theorem 2.15(X"N) is v(D)-Lindelof. So we finish the proof by
noting thaty maps(M P, v (D))N homeomorphically ont¢(M™N)P v (D)). This
fact is shown at the end of the proof of [6, Corollary 2.2]. O

Remark 2.3. In Theorem 2.1 and Corollary 2.2 we have restricted ourselves to
metric spacesM, p) with p bounded, because/fis unbounded, thepcan always

be replaced by’ := pA1 = min{p, 1} without changing the uniformity. However

in applications, there are cases when this replacemerbpp A 1 is not necessary.
More specifically supposeis unbounded, buk c M is so situated that

d(z,y) = sup{p(x(p),y(p)) : p € D} < +o0

for each(z,y) € X x X. In this case the uniformities and the topologiesipf

d4 and~(D) are unaffected by whetheror p’ is used in our definitions. Hence
Theorem 2.1 and Corollary 2.2 continue to hold for the original unbounded metric
p-

Remark 2.4. In Theorem 2.1, the equivalence of (a) and (b) is valid under a less
restrictive assumption than that &f-analyticity. In the unpublished ‘Note of 8
December 1980, D.H. Fremlin defined the notion@#ch-analyticity We shall

not repeat the definition here but refer instead to [12, Section 8]. According to
[12, Theorem 4.1], statements (a) and (b) are equivalent whenassumed to be
Cech-analytic. This gives us hope that Theorem 2.1 may be true Whisronly
assumed to béech-analytic and Lindéf. A counter-example to this conjecture

is discussed in Section 4.

3. CORSON COMPACT SPACES

Let I = [-1,1] and letT" be an arbitrary index set. For anc IT, let us write
supfz) = {y € T': z(v) # 0}. We define two special subsetsiof as follows:

F() = {z € [-1,1)" : supfx) is finite}

and
(I = {z € [-1,1]" : supfz) is countablg.
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Unless otherwise stated, the topology/bfand its subsets is the product (= point-
wise) topologyr,,.

Recall that a compact Hausdorff spakeis said to beCorson compacif K
is homeomorphic to &,-compact subset af(I"). From the definition, it follows
that if A is a countable subset of a Corson compact sgacehen the closure of
A is compact and metrizable. A topological spdtés said to becountably tight
if, whenevers is a subset of andt € S, then for some countable subsebf S,
t € A. One can show easily that the spd2T"), 7;,) defined above is countably
tight, see [13, Lemma 1.6]. Hence the Corson compact sfiaisecountable tight.

As the first application of our main theorem, we show that for any Corson com-
pact spaceX the spacgC(K),v(K)) is Lindebf, wherev(K') stands for the
topology inC'(K) of uniform convergence on countable subsetdsof This re-
sult, which implies thaC),(K) := (C(K), 7,(K)) is Lindelof, was first proved by
Gul'ko [11] by a direct method based on the abundance of retradts i@rihuela
[23] gave a different proof based on Banach space techniquesCJ&d) is Lin-
delof also follows from the result of Alster and Pol [2] obtained independently by
yet a different method.

We need the following simple lemma first. fis a subset of a linear space, the
convex hull and the absolute convex hull ®fare denoted respectively by (%)
and ac@S). The linear span of the sétis denoted by spah

Lemma 6. LetI" be an index set and I be a norm bounded subset®f(I") C
RY. If

(1) acoH)” = acdH) ',
then X := spaIH” s K-analytic with respect to the pointwise topology of
RY. In particular, if H is a norm bounded,-compact subset of*(T") that is

norm-fragmented, thev,parHH lis K-analytic relative tor),.

Proof. Let W = acqH)". ThenW is 7,-compact and the equation (1) im-

plies the equalityX := sparHH I — U, nWH ”. We define the set-valued map
@ : NN — 20%(I) as follows. Forw = (a;) € NV, let

=~ 1

2) e@= (e + B),
whereB denotes the unit ball of*°(I") which is7,-compact. Eachkp(«a) is a non
empty7,-compact set contained ii. Now, we prove that the set-valued mayis
upper semi-continuous relative tp. Let U be ar,-open set such thai(«) C U.
Then by the definition (2) fop(a), we see that there is an € N such that

~ 1
() (@ + B cU.

k=1
Theny([alm]) C U, where[a|m] stands for the open neighborhoodcotlefined
by [a|m] = {8 € NN : 3|m = a|m}. This proves tha’ = ¢(NV) is K-analytic
with respect tar),.

Suppose that! satisfies the assumptions of the second part of the lemma. If

we regardd>(T") as the dual of the Banach spac¢Il’), then, on norm bounded
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subsetsy, is identical with the weaktopology. Now as easily seewf( proof
of [18, Theorem 2.5] := {th : t € [-1,1],h € H} is again norm bounded,

Tp-compact and norm-fragmented. Since @€ = co(H ), we see that! satisfies
equation (1) by applying [18, Theorem 2.3]£h This completes the proof. [

The following proposition is the basis for all the results in this sectiork i
a compact Hausdorff space andsifis a subset of<, then we lety(.S) denote the
topology forC'(K) of uniform convergence on countable subsets of

Proposition 3.1. . Let K be a compact subset &f such thatk’ N F(T') is dense
in K. Then(C(K),y(K N ()N is Lindebf.

Proof. Let D = KN F(T"). Then by hypothesid) is dense inK. For eachy € T,
let 7, : K — I be they-th projection,i.e. 7 (z) = z(y) for x € K, and let
G = {m, : v € T} U{1}. ThenG is a subset of the unit ball @'(K’) separating
points of K. As in [6, Example B and C], we enlarge as follows. First for each
n €N, let

G"={g192--9n:9: € G,i=1,2,...,n} C Bo(k)-

Then for eachx € D, {g € G" : g(z) # 0} is finite, and hencé&™ \ U is finite for
eachr,(D)-neighborhood/ of 0in C(K). LetH = |J{(1/n)G"™ : n € N} U{0}.
Then againd \ U is finite for eachr,(D)-neighborhood/ of 0. It follows thatH

is 7,(D)-compact and each non-zero elemenfbfs isolated. Hencél is also a
norm-fragmented subset 6f( K'). Furthermore by the Stone-Weierstrass theorem

C(K)= sparHH I Since
C(K) c £~°(D) c RP

and the norm o’ (K) is that of¢*°(D), we conclude from Lemma 6 that(K)
is K -analytic relative tor, (D). We claim thatX := C(K) satisfies condition (c)
of Theorem 2.1. In fact, for any countable subdetf D, the closured C K is
metrizable, since it is homeomorphic with a subsef‘dfwhere we have written
S = J{supga) : a € A}. Hence, the Banach spa¢€'(A), || || ) is separable
and from this, we can conclude thaf K') is separable with respect to the pseudo-
metric d4. Consequently by Corollary 2.2 and Remark 23,(K),~v(D))Y is
Lindelof. Note thatD ¢ K N %(I") ¢ K. Hence,D is dense ink N X(I") and
KnX(T)is dense ink. SinceX(I") is countably tight, each element &fN X (T")
is in the closure of a countable subsefaflt follows that onC'( K') the topologies
v(D) andvy(K N %(T)) agree, and hend®' (K), v(K N X(T))N is Lindelbf. O

A compact Hausdorff spack is said to bevaldivia compacif K can be so
embedded in the spa¢é’, 7,,) that K N X(T) is dense inK. The spaces which
satisfy the hypothesis of the previous theorem are Valdivia compact. Obviously
Corson compact spaces are Valdivia compact. The next theorem, stated in the
context of Banach spaces, is due to Orihuela [23].

Theorem 3.2. Let K be a Valdivia compact subset Bf with K N X(I") dense in
K. Then(C(K),v(K N %(I"))N is Lindebf.
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Proof. Let the map

0:[0,1]" x K — I"
be defined by((t4) er, (z4)yer) = (ty2~) er. Thenyis continuous. Therefore
K = ¢([0,1]' x K) is a compact subset ¢1*, 7,) containingk’ and K N F(T")
is dense ink”. Hence by Proposition 3.1C/(K), (K Nx(T'))N is Lindebf. Since
the restriction ma'(K) — C(K) is surjective andy(K N %(I))-y(K N 2(T))
continuous, the conclusion of the corollary follows. O

Remark. As the proof shows, the conclusion of the theorem above is true for any
compact subsek’ of I*'. The assumption ok” being Valdivia compact makes the
spaceC(K),~v(K N X%(T"))) Hausdorff.

The next corollary is an immediate consequence of the previous theorem.

Corollary 3.3. If K is a Corson compact space, thefi(K),v(K))Y is Lindebf.
In particular C,,(K)N is Lindebf.

Example. The converse of the preceding corollary is false. To show this we use
the spaceX used by R. Pol in [24]. The compact Hausdorff spaCés defined as
follows. LetQ = [0,w;), i.e. the set of all countable ordinals, latbe the set of

all limit ordinals inQ2 and letl’ = Q \ A. For each\ € A, choose an increasing
sequencs), : N — I' that converges ta and letS) = {\} Us)(N). The topology

on (2 is defined as follows: each pointIhis open and, for each € A, the family
{Sx\\F : F C T, F isfinite} is a base of open neighborhoods\ofThus the space

Q is locally compact and Haudsorff, and let the spate= Q U {w; } be its one-
point compactification. The spac€ is scattered and is not Eberlein compact
[24]. ConsequentlyX is not Corson compactf, [1]). However(C(X),v(X))N

is Lindelof showing that the converse of the preceding corollary is false. The proof
that (C'(X), (X)) is Lindebf consists of a result from [8, Section 4] as well as
modifications of ones in [24]. Below, we give a general remark and an outline of
the proof. We gratefully acknowledge the helpful exchanges of e-mail concerning
this example with Professor R. Pol.

1. Let K be a compact Hausdorff space and Iet, p) be a metric space, whepds

not necessarily bounded. We &t K, M) denote the space of all continuous maps:
K — M. SinceC(K, M) c M, the various topologies defined at the beginning
of Section 2 can be localized ©(K, M), and Remark 2.3 applies t8(K, M).
Whereas [24] is concerned with the pointwise topology, we are interestgdsin

for C'(K, M) which is, of course, stronger. Throughout this Example only, we
denote(C'(K, M),~v(K)) by C, (K, M). The following general remark is helpful
when modifying the proofs in [24] fo€, (K, M). For a subset of M and a
subsetB of M, we letW (A,B) = {f € C(K,M) : f(A) C B}. Then one can
see easily thathe family of the sets of the fori# (L, U), whereL is a compact
separable subset af and U a non-empty open subset bf, form a subbase for
the topologyy(K'). Hencey(K) depends only on the topology @¥/, p).

2.[24, Lemma 1] can be modified as followlset S be a compact zero-dimensional
space. Then the spacg, (S, R)" is Lindebf if and only if the product, (S, D)N

is Lindebf. Moreover, given a poini € .S, the space’,, (S, D) can be replaced in
this equivalence by the spacg, = {f € C(S,D) : f(p) = 0}. HereD denotes
the two-point spac€0, 1}, the discrete group of order two. The proof follows
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the one for the original lemma. The exponential law involvif@) has already
been alluded to at the end of the proof of Corollary 2.2. Keeping in mind that
~(S) is stronger than the pointwise topology, one can follow the proof in [24] to
conclude tha, (S, P) is Lindelof. Hence, the proof is complete if it is shown that
C,(S,R)N = C,(S,RY) is a continuous image @f, (S, P). As in [24], choose a
continuous, open and onto map P — R. SinceP and PY are homeomorphic,
u gives rise to a continuous, open and onto map P — RY, which induces the
continuous mapg* : C, (S, P) — C,(S,RY) by F*(f) = u* o f. ThatF* is
onto can be seen exactly as in [24]. The second part of the assertion follows from
C’Y(S7D) = (Gp77(s)) x D.
3. Now, let X be the space defined above. As in [24],det= {f € C(X,D) :
f(w1) = 0}, and writeG, = (G,~v(X)). Then for eaclf € G, the sets of the form
{f € G: f|[A = g|A}, with A C X countable, constitute @(X )-neighborhood
base off. This means that o, v(X) coincides with the topology generated by
the G5-subsets of G, 7)), cf. Section 4. We must prove thét%’ is Lindelof. For
this we apply [24, Lemma 3] t6/,, which obviously is an Abelian topological
group, with a suitably chosef. Here we follow [8]. For eachh € A, Sy isa
compact and open subset®t Hence the characteristic functigi of S, is in G.
Define

E={fA\: e A}U{xr: F CT, Fisfinite} C G.
Then a special case of the result in [8, Section 4] shows(thét (X)) is Lin-
delof. Note that each element 6fis the characteristic function of a compact open
subset of?, i.e. the set of the formF'A | J{S) : A € L} whereF andL are finite
subsets of" andA respectively. It follows that each element@fis the finite sum
of elements in&, and therefore the sét satisfies the conditions of [24, Lemma 3].

4. K-ANALYTIC SPACES WITHOUT COMPACT PERFECT SUBSETS

Let (X, 7) be a Tychonoff (completely regular afdd) space, and let’(X, I)
be the space of all continuous functiofis: X — I = [0,1]. Then the map
d: X — XD given by®(x)(f) = f(z) forz € X,f € C(X,I), em-
bedsX topologically in(1¢X:)) 7)) (seee.g. [15]). Herer, denotes the product
(= pointwise) topology as before. Thus may be regarded as a subspacd 8f
with D = C(X, I), and this makes it possible to apply our main theorem and its
corollary to the spac& when itisK-analytic. In the next paragraphs, we interpret
the topological properties mentioned in Theorem 2.1 for our situation here.

The uniform metrial on X is given by

d(z,2") = sup{|f(z) — f(2)] : f € C(X, D)},

for x,2’ € X. Hence ifx # 2/, thend(x, 2’) = 1, i.e. d is thediscrete metric

Given a topological spacgZ, 7), the Gs-topology associated to is the topol-
ogy 75 on Z whose basis is the family of alfs-sets inZ, i.e. the family of sets of
the form("\{U,, : U,, € 7 : n € N}. When no confusion is likely, we simply write
Z for the topological space”Z, 7) and refer tors as itsGs-topology. The proof of
the next lemma is omitted, since it is a verbatim repetition of the short one given
for [6, Lemma 2].

Lemma 7. Let X be a Tychonoff space. Then tGg-topology forX is identical
with~(C(X,I)) on X.
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Letd denote the discrete metric as above for the spAce’). ForS C X, (S, 1)
is fragmented byl down toe, 0 < € < 1, if and only if each non-empty subset of
S contains an isolated poirite. S is scattered Therefore( X, 7) is o-fragmented
by d if and only if X is o-scattered that is X is a countable union of scattered
subsets. One can easily check that each compact sub{s€t of is fragmented by
d if and only if there is no compact perfect subsefofi.e. a compact subset of
without an isolated point). In the context of the present section, Theorem 2.1 and
its Corollary 2.2 can now be translated as:

Theorem 4.1. Let (X, 7) be a K-analytic Tychonoff space. Then the following
statements are equivalent.

(a) The spaceX is o-scattered.

(b) The spaceX does not contain a compact perfect subset.
(c) The spac€ X, 75) is Lindebf.

(d) The spacéX, 75)" is Lindebf.

To the list of conditions of the theorem above, we wish to add several more. For
this we need some more definitions. A Hausdorff topological spaisesaid to be
Fréchet-Urysohif, whenever,S ¢ Z andz € S, z is the limit of a sequence in
S. We use the following simple fact: fof to be FEchet-Urysohn, it is sufficient
that Z be countably tight and each separable subset bé metrizable. A subset
S of Z is said to besequentially closed the limit of each sequence i isin S.

The topological space is said to bequentialf each sequentially closed subset is
closed. The topological spaceis called ak-spaceif a subsetS of 7 is closed
providedS N C'is closed for each compact subgebf 7. The spacé is called

a kr-spaceif a real-valued functiory on Z is continuous whenever its restriction
f|C is continuous for each compact subgséof Z. For a Tychonoff space,
B;(X) denotes the space all functiorison X which is the pointwise limit of a
sequence i’ (X).

Finally we recall two facts. The first one is due to Arkhangelskii, [3, Theorem
II.L1.1]: If Z is a topological space such th&™ is Lindebf for eachn € N,
then(C(Z), 7,) is countably tight The second one is the following simple lemma
guoted from [6].

Lemma 8. Let Z be a Lindedf space, and lelf C C(Z) be equicontinuous. Then
(H,7,) is metrizable.

Corollary 4.2. Let (X, 1) be a K-analytic Tychonoff space. Then each of the
statements of the theorem above is equivalent to each of the following.

(i) For any countable sett ¢ C(X), A (closure inR¥) is Tp-metrizable.
(i) (B1(X),7p) is Fréchet-Urysohn.
(i) (C(X),7p) is Fréchet-Urysohn.
(iv) (C(X),7p) is sequential.
(v) (C(X), ) is ak-space.
(vi) (C(X),Tp)is akr-space.
Proof. We first remark that ifA is a countable subset @f(X) then it is 75-

equicontinuous. Hencd™ (closure inR¥X) is againrs-equicontinuous and is a
subset ofC'( X, 75).
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(c)=(i). This is clear from the remark above and Lemma 8.

(d)=(ii). By (d) and the Arkhangelskii theorem aboV€;(X, 75), 7,,) is count-
ably tight. By the remark at the beginning of the proBf,(X) c C(X,7s) and
so(B1(X), 1) is countably tight. Hence to show (ii), it is sufficient to prove that
A" is 7,-metrizable for each countable subgetf B (X). In fact, because of the
countable tightness, il is a countable subset &f; (X)), then, for some countable
C c C(X), Ac C" andC™ is 7,-metrizable by (i) (which is a consequence of
(c) and hence of (d)). Hencé™ is Tp-metrizable as desired.

(i)=(iii). Since (X, ) is K-analytic, the product spadeX, )" is also K-
analytic (see [26, Theorem 2.5.5]). It follows th@X, 7)" is Lindelof for each
n € N. Hence by the Arkhangelskii theorert¢’(X), 7;,) is countably tight, and
by (i), if A is a countable subset ¢f(X), A N C(X) is 7,-metrizable. This
shows (iii).

The implications (i} (i) = (iv) =(v)=-(vi) are obvious.

To complete the proof we show that (#)b) by contradiction. So we assume
(vi) and that there is a compact perfect sublsatf X and try to reach a contradic-
tion. Letr : (C(X),7,) — (C(K),7,) be the restriction map — f|K. Thenf
is continuous and open. By applying the Tietze extension theorghXtmne can
see thatr is onto. Hencer is a quotient map, and this fact together with (vi) imply
that (C(K), 7,) is akr-space. Sinc® is homeomorphic to the intervgh-1, 1),
(C(K,(-1,1)),7p) is also akr-space. We show that this is not the case.

SinceK is compact and perfect, there is a continuous onto mapg — [0, 1]

(cf. [26, Proposition 5.4.1]). Lex denote the Lebesgue measuré@®ri]. Since the
mapy induces the map of all Radon-probability measuregoonto that of{0, 1],

there exists a Radon-probability measpren K such that\(B) = u(¢~1(B))

for each Borel subse® of [0, 1]. In particularu({z}) = 0 for eachz € K. We
show that the functiow : (C(K, (—1,1)),7,) — R given by

/fdu,

for eachf € C(K,(—1,1)), is continuous when restricted to compact subsets of
(C(K,(—1,1)),7,) butitis notr,-continuous on the whole @' (X, (-1, 1)).

Let H be ar,-compact subset af'( K, (—1,1)) and letC' C H be arbitrary. If
f € C™, then there is a sequen¢g,),, in C' that converges tg pointwise ¢f.

[16, Theorem 2.8.20]). Then by the Dominated Convergence Theorem we have
U(f) = lim, U(f,). It follows that¥(C™) c ¥(C)™. This shows thatt|H is
Tp-continuous.

On the other hand suppose thitis continuous orC(K, (—1,1)) at, say,0.
Then there is a finite subsétof K and are > 0 such that¥(f) < 1/4 whenever
feWw:={geC(K,(-1,1)) : |g(z)| < e foreachr € F}. Sinceu(F) = 0,
there is an open subsEtof K with I C U andu(U) < 1/2. LetL = K\ U.
Then by Urysohn’s lemma, [15, Lemma 4, p. 115], there is a continuous function
h: K —[0,1/2] suchthat|F' = 0andh|L = 1/2. Thenh € W but¥(h) > 1/4
sinceu (L) > 1/2. This contradiction proves that is notr,-continuous. O

Examples. We give examples to show that Theorem 4.1 cannot be generalized
to the case wheréX, ) is a Cech-analytic Lindéf space or a countabl’-
determined space.
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A. éech-analytic Lindéif space, assuming CH.

The following example has been communicated to us by Professor V. Tkachuk
in response to a related question. A similar construction has been used by him
in [21]. We gratefully acknowledge his permission for us to use the example here.
Let L be a Lusin set iR, i.e. a subsef. of R of cardinality continuum such that,
wheneverN is a nowhere dense subset®f L N N is countable. Recall thav
is nowhere dense iR if the interior of its closure iR is empty. Such sek can
be constructed assuming the Continuum Hypothesis (CH)gsp€l7, Theorem
2.1]). Note that if a subset of L is nowhere dense relative Ig then it is nowhere
dense iR and so it is countable. Let be the usual topology @& relativized toL
and letD be a countable dense subse{bf ). Now the family5 of subsets of.
given by

B={{z}:x e L\D}U{U e X:UND #0}

is a base for a unique topologyfor L. Clearly the spacéL, 7) is Hausdorff and
regular. The following are additional properties.

(1) (L,7) is Lindelof. For supposé( is a covering ofLZ by a subfamily of53.
ThenV := {V e U : VN D # 0} has a countable subcoviy of D.
LetW = [JW. ThenW is open dense ifiL, \) and soL \ W is nowhere
dense in(L, \) and hence countable. It follows th&t has a countable
subcover ofL_.

(2) Since(L,7) is regular and Lindélf, it is normal by Tychonoff's Lemma,
see [15, Lemma 3.1]. Thud,, ) is a Tychonoff space.

(3) The spacéL, 7) is o-discrete. In fact\ D is discrete and is countable.

(4) The spac€L,7)is Cech-analytic. A discrete space, beldgch-complete,
is Cech- -analytic. Since the family &fech- -analytic sets is closed under the
Souslin operation,L, 7) is Cech-analytic by (3).

(5) TheGjs-topologyrs is the discrete topology. Hence the spéaters) is not
Lindelof.

In Theorem 4.1, assume only th@k, 7) is aéech—analytic Lindeif space.
Then the equivalence of (a) and (b) still holds because of [12, Theorem 4.1]. How-
ever the example above shows tiiaj = (c) fails. In fact, (2) and (4) show
that(L, 7) is Tychonoff, Lindedf andCech-analytic, and (3) shows that (a) holds.
However (5) shows that (c) fails. Consequently, as pointed outin Remark 2.4, The-
orem 2.1 is not valid wheX is assumed to béech—analytic and Lindéf in lieu
of K-analyticity.

B. CountablyK-determined spaces.

There is another kind of generalization Afanalyticity. A topological space
(T, ) is said to becountablyK -determinedf there is a upper-semicontinuous set-
valued mapF : M — 27 for some separable metric spadesuch that(M) = T
and F'(m) is compact for eactn € M. Obviously any separable metric space is
countablyK -determined. LeB C R be a Bernstein set,e. an uncountable set
B such that each compact subset/®fis countable, see [28, Corollary 1.5.14].
Then(B, 1) is countablyK -determined, where is the relativization of the usual
topology forR. The spacéB, 7) clearly satisfies the condition (b) of Theorem 4.1.
Since each scattered subset Bf, 7) is countable(B, 7) is noto-scattered. Also
the Gs-topology of (B, 1) is discrete, and hend&3, 75) is not Lindebf. Thus
conditions (a) and (c) fail idB, 7).
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Remarks. We add a few comments on known results vis-a-vis our Theorem 4.1
and Corollary 4.2.

(1) The equivalence of (iii), (iv) and (v) is valid for an arbitrary Tychonoff space
(see [3, Section II.3]). Our results show that if we impose the conditionXhist
K-analytic, then any one of (iii), (iv) or (v) implies th& is o-scattered.

(1) The equivalence of (b) and (c) is one of the main results of Blasco in [4]. We
acknowledge that some of the techniques in the proof of our Theorem 2.1 were
inspired by studying his paper.

(1) A topological space is called B-spaceif its G-topology agrees with the
original one. Noble has shown in [20] that the product of a countable family of
Lindelof P-spaces is again Lind&l. Hence the equivalence of (c) and (d) holds
for an arbitrary topological spade, 7).

(1v) A topological spacél is said to beangelicif, wheneverC is a relatively
countably compact subset @7, its closureC is compact and each element@f

is a limit of a sequence if'. It is known that(C'(X), 7,,) is angelic wheneveX

is K-analytic, see [22]. Condition (iii) of Corollary 4.2 shows that there is a big
difference between angelicity andéehet-Urysohn property @ (X).

(v) In[14] Kakol and Lopez-Pellicer state the equivalence (iii), (vi) and condition
(@) below

(&) The spaceX is scattered,

in caseX is éech-complete and Lind#f, see [14, Theorem 2]. Since, in this
case,X is hereditarily Baire, (a) and (a’) are actually equivalent, sgg [12,
Corollary 3.1.2]. Now, one can show thatéech-complete LindéfF space is a
K5 subset of its compactification, henég-analytic. So, Theorem 2 in [14] is
also a consequence of our Theorem 4.1 and Corollary 4.2.

5. APPLICATIONS TOBANACH SPACES

In this section, we abstract some of the arguments in the previous sections in
the setting of Banach spaces. L€tbe a Banach space add* its dual Banach
space. The unit balfz € X : ||z|| < 1} is denoted byBx. Thus the unit ball
of X*is Bx~. If S'is a subset oX*, thens (X, S) denotes the weakest topology
for X that makes each member §f continuous, or equivalently, the topology
of pointwise convergence afi. Dually, if S is a subset ofX, theno(X*, S) is
the topology forX™* of pointwise convergence o$i. In particulare(X, X*) and
o(X*, X) are the weak (w) and weakw*) topologies respectively. Of course,
o(X,S) is always a locally convex topology and it is Hausdorff if and only if
X* = sparSW* and similarly foro(X*,S). WhenS C X*, v(X,S) (or simply
v(S)) is the topology forX of uniform convergence on countable subsets of
The Banach space is said to hareperty (C)(after Corson) if each collection of
(norm) closed convex subsets &f with empty intersection contains a countable
subcollection with empty intersection. A subdgeof X* is said to benormingif
the functionp of X given byp(z) = sup{|z*(z)| : #* € B} is a norm equivalent
to|| ||. This is the case if and only & is norm bounded ankByx- C acoB " for
somek > 0. Without loss of generality we assume that= 1 so that||z|| < p(z)
forxz € X.
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In [10], Godefroy and Talagrand called a Banach spdaepresentable if there
is a countable norming subsBtof X* such that X, o(X, B)) is analytic. In this
section we consider a wider class of Banach spa€esich that X, o (X, B)) is
K-analytic for some norming subsBtof X*.

We need the following lemma that improves Proposition 4.1 in [6].

Lemma 9. Let X be a Banach space anl C X* a norming subset. IX has
property(C'), thenvy(B) is stronger than the weak topology &f.

Proof. We simply have to show that for eacti € By~ ande > 0 the weak open
neighborhood of the origin
V={reX:|z*5 @) <e}={re X :2%(x) <e}n{zre X :2%(x) > —¢},
is a~(B)-neighborhood of the origin or equivalently that the weak open semi-
spaces
Up={re X :a%(x)<e} and Uy ={zxeX:a%(x)> —¢}
arev(B)-neighborhoods of the origin. For eathe B, let
Dy ={z € X : |b"(z)| < e/2}.
Clearly fori € {0, 1},
(Y{Dy:b* € B} C{zeX:|z| <e/2} CU;,

or equivalently(X \ U;) N ({Ds- : b* € B} = 0.
Now fix i € {0, 1}. SinceX has propertyfC') and each entry in the intersection
above is convex closed, there is a countable subbsdtB such that

(X\U) N[ Dy : b € A} =10,
or equivalently
({Dy:b* € A} C U,

which means that
{x e X :sup |b°(x)| < e/2} C Us.
b*cA

This shows thal/; is ay(B)-neighborhood of the origin for eache {0,1}. O

Proposition 5.1. Let X be a Banach space such that, for some norming subsdét
Bx+, (X,0(X, B)) is K-analytic. Then the following statements are equivalent.
(i) X has property(C) and (X, o(X, B)) is o-fragmented by the norm.
(i) (X, w) is Lindebf.
(iii)y (Bx=,w*) is countably tight and itsr*-separable subsets are metrizable.

Proof. (i)=-(i) (X,~(B)) is Lindelbf after Theorem 2.1. By Lemma 9(B) is
stronger than the weak topology, and consequetilyw) is Lindelof.

(i)=(i) Property(C) is obvious. We use [5, Theorem B] or alternatively [7,
Corollary E] to deduce that each( X, B)-compact subset oX is norm frag-
mented. Now, by Theorem 2.(.X, o(X, B)) is o-fragmented.

()&(ii) =(iii) If we assume (i)&(ii) then we know that/(B) is stronger than
the weak topology by Lemma 9 and th&, v(B))" is Lindelf by Corollary 2.2.
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Consequently, being a continuous image of the space/(B))", (X, w)N is Lin-
delof. Hence by Arkhangelskii’s theorem, see sectiofd;, w*) C (C(X,w), 7p)
is countably tight.

We prove that eaclv*-separable subsél of Bx~ is w*-metrizable. Since
Bx+ C acoB" and(X*,w") is countably tightA/ C acoA" for some count-
able subsetd of B. ThenacoA is v(B)-equicontinuous on the Lind&fl space

(X,~(B)). ConsequentlycoA” is v(B)-equicontinuous, and henee -metri-
zable by Lemma 8.

(iii) =(i) By [25, Theorem 3.4], if(Bx~,w*) is countably tight thenX has
property(C). To prove tha( X, o(X, B)) is o-fragmented by the norm, by Theo-
rem 2.1, itis enough to show th@X, d4) is separable for each countable subset
of B, where(X,d,) is a pseudo-metric oX given by

da(x,y) = sup{|a*(2) — 2" (y)| : 2" € A} = sup{[a*(2) — 2" (y)| : 2" € A" }.

But this is obvious sinc& [A" < C(A" ,w*)andC(A"", w*) is norm separable
on account of A" ,w*) being compact and metrizable by (iii). O

It should be noted that-fragmentability can not be dropped in statement (i) of
proposition 5.1. An example follows. Také = JT*, the dual of the James tree
spaceJT andB the unit ball of JT'. In this caser(JT™, B) = w* and we have:

() (X,0(X,B)) iso-compact;
(i) X has propertyC') according to the Example 5.8 of [9];

(i) (X,0(X, B))is noto-fragmented by the norm.€é. J7* has not the RNP)

and(X,w) is not Lindebf.

There are plenty of Banach spac€dgor which there is a norming sét C Bx~
such that the spacgX, o (X, B)) is K-analytic. The following are some of the
examples.

¢ WeaklyK -analytic Banach space#. X is a Banach space thatis-analytic for
its weak topology then for any norming sBt C X* the spac€ X, o(X, B)) is
K-analytic too because it is a continuous imagé Xf w). We refer to the paper
by Talagrand [27] for an account concerning weaklyanalytic Banach spaces.

e Dual Banach spacedt X = Y™ is a dual Banach space, and we wiite= By
then B C Bx- is norming andX = |J, nBy~ is o-compact with respect to
o(X,B).

¢ Representable Banach spacés mentioned earlier the class of Banach spaces
that satisfies condition of Proposition 5.1 includes the class of representable Ba-
nach spaces introduced in [10]. In this paper Godefroy and Talagrand proved that
if X is representable, theiX, w) is Lindelof if and only if X is separable (see the
proof of (1x=(2) of [10, Theo®me 7]). Proposition 5.1 gives an alternative proof

of this fact.

Corollary 5.2 (Godefroy and Talagrand, [10]et X be a representable Banach
space. TherX is weakly Lindedf if, and only if, X is separable

Proof. We prove the non obvious direction. Assume th&t w) is Lindelof. Ac-
cording to the definition of representability, there is a countable norming sisbset
of X* suchthat X, o(X, B)) is analytic. Hence by Proposition 5(IX, o (X, B))
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is o-fragmented by the norm. Sindgis countablg X, o (X, B)) is metrizable and
separable. So by Lemma X, is separable for the norm topology. O

e Banach spaces generated by RN-compact subketsX be a Banach spac®
anorming subset dBy- andH C X ao(X, B)-compact set which is fragmented

by the norm. IfX = spar(H)H | then X is said generated by the RN-compact set

H, see [6]. In this caseX, o(X, B)) is K-analytic by Lemma 6.

Open problems. In Proposition 5.1, can one replace statement (iii) with the
stronger oneyiz. (Bx«, w*) is Corson compagt
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