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Abstract. Banach spaces X with an equivalent σ(X, F )-lower semi-
continuous and locally uniformly rotund norm, for a norming subspace
F ⊂ X∗, are those spaces X that admit countably many families of
convex and σ(X, F )-lower semicontinuous functions {ϕn

i : X → R+; i ∈
In}∞n=1 such that there are open subsets

Gn
i ⊂ {ϕn

i > 0} ∩ {ϕn
j = 0 : j 6= i, j ∈ In}

with {Gn
i : i ∈ In, n ∈ N} a basis for the norm topology of X.

1. Introduction

Let (X, ‖ · ‖) be a normed space. The norm ‖ · ‖ in X is said to be locally
uniformly rotund ( LUR for short) if

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x + xn‖2) = 0 ⇒ lim
n
‖x− xn‖ = 0

for any sequence (xn) and x in X. The construction of this kind of norm
in separable Banach spaces lead Kadets to the proof of the existence of
homeomorphisms between all separable Banach spaces, ([1], Section VI.9).
For a non separable Banach space is not always possible to have such an
equivalent norm, for instance the space l∞ does not have it, see for instance
p.74 in [2]. When such a norm exists its construction is usually based on a
good system of coordinates that we must have on the normed space X from
the very beginning, for instance a biorthogonal system

{(xi, fi) ∈ X ×X∗ : i ∈ I}
with some additional properties such as being a strong Markushevich basis,
[18], p. 21. Sometimes there is not such a system and the norm is con-
structed modelling enough convex functions on the given space X to add
all of them up with the powerful lemma of Deville, see Lemma 1 in Section
3 and Lemma VII 1.1 in [2]. Deville’s lemma has been extensively used by
R. Haydon in his seminal papers [5], [6], as well as in [7]. It is based on
the construction of an equivalent LUR norm on a weakly compactly gen-
erated Banach space by the second named author in [17], where the convex
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functions are measuring distances to suitable finite dimensional subspaces
as well as evaluations on some coordinate functionals in the dual space X∗;
see [18], Theorem 7.3. The method we have developped in [14] is mainly
based on Stone’s theorem about paracompactness of metric spaces. A σ-
discrete basis for the norm topology of a normed space X can be refined
to obtain a σ-slicely isolated network if, and only if, the normed space X
admits an equivalent LUR norm, [14]. Recent contributions show an in-
terplay between both methods, [6, 9, 10]. It is our intention here to show
the connection between both approaches. The linking property will be the
notion of slicely relatively discreteness, or slicely isolatedness, that glues the
discreteness of Stone’s theorem with the linear topological structure of the
dual pair associated to X. Let us recall precise definitions and results:

Definition 1. Let X be a normed space and F be a norming subspace in the
dual X∗. A family B := {Bi : i ∈ I} of subsets in X is called σ(X, F )-slicely
isolated (or σ(X,F )-slicely relatively discrete) if for every

x ∈
⋃
{Bi : i ∈ I}

there exist a σ(X, F )-open half space H and i0 ∈ I such that

H ∩
⋃
{Bi : i ∈ I, i 6= i0} = ∅ and x ∈ Bi0 ∩H.

Our approach for LUR renormings is also based on the topological con-
cept of network. A family N of subsets in a topological space (T, T ) is called
a network for the topology T if for every open set W ∈ T and every x ∈ W
there is some N ∈ N such that x ∈ N ⊂ W . A main result proved with our
approach is the following:

Theorem 1 ([14], Chapter III). Let X be a normed space and F a norming
subspace in the dual X∗. X admits an equivalent σ(X,F )-lower semicontin-
uous and locally uniformly rotund norm if, and only if, the norm topology
has a network N that can be written as N =

⋃∞
n=1Nn where each family

Nn is σ(X,F )-slicely isolated.

The known proofs of the sufficiency part of this result show a difficult
task when they arrive to a convexification process of the sets

⋃Nn needed
to construct a countable family of seminorms, see [14, 16]. We are going
to present here a different approach where the convexification process is
not nedeed any more. We shall do it by developping a connection between
Deville’s master lemma and the σ(X, F )-slicely isolated families in our con-
nection Lemma 2. A straightforward consequence will be a new proof of
the sufficiency part of Theorem 1 presented in Corollary 1. Another result
we shall present here is that we can replace the network with a basis of the
norm topology in the former theorem to obtain:

Theorem 2. Let X be a normed space with a norming subspace F ⊂ X∗.
Then X admits an equivalent σ(X,F )-lower semicontinuous and locally
uniformly rotund norm if, and only if, the norm topology admits a basis
B =

⋃∞
n=1 Bn such that every Bn is σ(X, F )-slicely isolated and norm dis-

crete.
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The notion of slicely discreteness we are using lead us to replace the
diameter by the distance to a weakly compact set in the network hypothesis
of Theorem 1; i.e. the fact that for every ε > 0 and every x ∈ X there is
n ∈ N, N ∈ Nn, with x ∈ N and ‖ · ‖ − diam(N) ≤ ε by a measure of the
ε-weak compactness of the set N . In order to do it we shall deal with spaces
where the dual space has a small density character for the weak* topology:

Theorem 3. Let X be a Banach space and let F ⊂ X∗ be a norming and
weak∗ separable subspace. Let us assume there are σ(X,F )- slicely isolated
families Nn for n = 1, 2, ... such that for every x in X and every ε > 0 there
are n ∈ N, N ∈ Nn and a weakly compact set C ⊂ X such that x ∈ N ⊆
Z + εBX . Then X admits an equivalent σ(X,F )-lower semicontinuous and
locally uniformly rotund norm.

We shall see in this paper that our condition of being slicely isolated
corresponds with the so called rigidity condition inside Deville’s lemma.
Our free-coordinate approach to LUR renormings is explained here with
the construction of convex functions describing slicely isolated families of
sets in a normed space as biorthogonal systems:

Theorem 4. Let X be a normed space and F be a norming subspace in X∗.
Let B := {Bi : i ∈ I} be a uniformly bounded family of subsets of X. Then
the following are equivalent:

(1) The family B is σ(X, F )-slicely isolated
(2) There is a family L := {ϕi : X → R+, i ∈ I} of convex σ(X, F )-lower

semicontinuous functions such that
(a) Bi ⊂ {x ∈ X : ϕi(x) > 0} for every i ∈ I
(b) ϕi(Bj) = {0} whenever i 6= j

Theorems 1, 2 and 4 have the following straightforward consequence:

Theorem 5. A Banach spaces X, with a norming subspace F ⊂ X∗, ad-
mits an equivalent σ(X, F )-lower semicontinuous and locally uniformly ro-
tund norm if, and only if, there are countably many families of convex and
σ(X,F )-lower semicontinuous functions {ϕn

i : X → R+, i ∈ In}∞n=1 such
that there are open subsets

Gn
i ⊂ {ϕn

i > 0} ∩ {ϕn
j = 0 : j 6= i, j ∈ In}

such that {Gn
i : i ∈ In, n ∈ N} is a basis for the norm topology of X.

2. Lower semicontinuous convex functions and LUR
renormings.

Let (X, ‖ · ‖) be a normed space with a norming subspace F ⊂ X∗. Let
us denote by ‖ · ‖F the equivalent norm associated with it:

‖ · ‖F := sup{| 〈·, f〉 | : f ∈ BX∗ ∩ F}.
The former expression is plenty of sense for elements in the bidual X∗∗,
nevertheless it is equal zero on F⊥ ( X∗∗ and it is only seminorm on X∗∗.
We are going to make extensive use of it in what follows.

We shall begin with the construction of convex and lower semicontinuous
functions related to the norm-distance function to a fixed convex set. Such
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a function is convex. Moreover in order to control the lower semicontinuity
too, we need a small modification given in the next result:

Proposition 1. Let X be a normed space and F a norming subspace in the
dual space X∗. If D is a bounded and convex subset of X∗∗ and we define

ϕ(x) := inf {‖x− d‖F : d ∈ D}
Then ϕ is a convex, σ(X, F )-lower semicontinuous, and 1-Lipschitz function
from (X, ‖ · ‖F ) to R+.

Proof.- Convexity and Lipschitz conditions are an easy exercise. Let us
check the lower semicontinuity. So let us fix r ≥ 0 and take a net (xα)α∈A

in X with ϕ(xα) ≤ r for every α ∈ A and let x ∈ X be the σ(X, F )-limit
of the net (xα)α∈A. We will see that ϕ(x) ≤ r too. Let us fix an ε > 0 and
choose c∗∗α ∈ D such that

sup {| 〈xα − c∗∗α , f〉 | : f ∈ BX∗ ∩ F} ≤ r + ε

for every α ∈ A. Since D is weak∗ compact, so bounded, we can find a
cluster point (x∗∗, c∗∗) of the net {(xα, c∗∗α ) : α ∈ A} in X∗∗ × X∗∗ for the
topology σ(X∗∗, X∗). Then we have that x∗∗ does coincide with x when
both linear functionals are restricted to F and thus

〈x− c∗∗, f〉 = 〈x∗∗ − c∗∗, f〉 ≤ r + ε for all f ∈ BX∗ ∩ F

and so ϕ(x) ≤ r + ε. Since the reasoning is valid for every ε > 0 we have
ϕ(x) ≤ r as required. ¤

Definition 2. The function ϕ defined in Proposition 1 shall be called the
‖ · ‖F -distance to the set D.

We now arrive to the following interplay result that contains Theorem 4
in the introduction:

Theorem 6. Let (X, ‖ · ‖) be a normed space and F be a norming subspace
in X∗. Let B := {Bi : i ∈ I} be a uniformly bounded family of subsets of X.
The following are equivelent:

(1) The family B is σ(X, F )-slicely isolated.
(2) There is a family L := {ϕi : X → R+, i ∈ I} of convex σ(X, F )-lower

semicontinuous functions such that

{x ∈ X : ϕi(x) > 0} ∩
⋃
{Bj : j ∈ I} = Bi

for every i ∈ I.
(3) There is a family L := {ψi : X → R+, i ∈ I} of convex σ(X, F )-lower

semicontinuous functions and numbers 0 ≤ α ≤ β such that

ψi(bi) > β ≥ α ≥ ψi(bj)
for every bi ∈ Bi, bj ∈ Bj and i, j ∈ I.

Proof.- Assume that (1) holds. Applying Proposition 1 we may consider
ϕi to be the F - distance to the convex bounded set:

co {Bj : j 6= i, j ∈ I}σ(X∗∗,X∗)
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for every i ∈ I. Fix any i0 ∈ I. The inclusion

{x ∈ X : ϕi0(x) > 0} ∩
⋃
{Bj : j ∈ I} ⊂ Bi0

in the assertion (2) follows immediately from the very definition of ϕi0 .
Let us prove the reverse inclusion. Our hypothesis on the slicely isolated
character of the family B tells us that for the element x ∈ Bi0 there is a
σ(X,F )-open half space H in X with x ∈ H and H ∩ Bi = ∅ for all i ∈ I
with i 6= i0. Let us write H = {y ∈ X : f(y) > µ} where f ∈ BX∗∩F . Then
we have ϕi0(x) ≥ f(x)− µ > 0 and the inclusion is proved.

The condition (2) clearly implies (3) with α = β = 0. Finally, assume (3),
we then have that ψi(y) ≤ α for every y ∈ co {Bj : j 6= i, j ∈ I} by the con-

vexity of the function ψi, and also for every y ∈ co {Bj : j 6= i, j ∈ I}σ(X,F )

by the lower semicontinuity of ψi. Consequently we have

x /∈ co {Bj : j 6= i, j ∈ I}σ(X,F )

for every x ∈ Bi and every i ∈ I. A straightforward application of Hahn-
Banach separation theorem then yields the σ(X, F )-slicely isolated property
for the family B. ¤

A normed space X with a locally uniformly rotund norm decomposes
a σ-discrete basis of the norm topology into a σ-slicely isolated network,
[14, 12]. It is possible to recover the basis from the network and to have the
σ-slicely property as presented in Theorem 2. In order to prove it we need
the following

Proposition 2. Let X be a normed space with a norming subspace F ⊂ X∗.
Given a uniformly bounded and σ(X, F )-slicely isolated family

A := {Ai : i ∈ I}
of subsets in X, there exist decompositions Ai =

⋃∞
n=1 An

i with

A1
i ⊂ A2

i ⊂ · · · ⊂ An
i ⊂ An+1

i ⊂ · · · ⊂ Ai

for every i ∈ I, and such that for every n ∈ N the family

{An
i + B‖·‖F

(0, 1/4n) : i ∈ I}
is σ(X, F )-slicely isolated and norm discrete.

Proof.- For i ∈ I let us denote by ϕi the ‖·‖F -distance to co(Aj : j 6= i)
σ(X∗∗,X∗)

.
Theorem 6 gives us the scalpel to split up the sets of the family using these
convex functions. Indeed, let us define An

i := {x ∈ Ai : ϕi(x) > 1/n}; then
we have Ai =

⋃∞
n=1 An

i . Moreover, if x ∈ An
i + B‖·‖F

(0, 1/4n) then we have

ϕi(x) > 3/(4n)

Indeed, let us write x = y+z, where y ∈ An
i , ‖z‖F < 1/4n. Since ϕi(y) > 1/n

we can select a number ρ with ϕi(y) > ρ > 1/n and we will have for every

fixed c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗,X∗)

that ‖y − c∗∗‖F > ρ. So we can find
some f ∈ BX∗ ∩ F with f(y − c∗∗) > ρ. Now we see that f((y + z)− c∗∗) >

ρ−1/4n and so ‖x−c∗∗‖F > ρ−1/4n for every c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

.
Consequently we see that ϕi(x) ≥ ρ− 1/4n > 3/4n.
On the other hand for y ∈ Aj with j 6= i, we know that ϕi(y) = 0; then for
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x ∈ An
j +B‖·‖F

(0, 1/4n) if we write x = y+z, with y ∈ An
j and ‖z‖F < 1/4n

we have, for every c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗,X∗)

‖x− c∗∗‖F < ‖y − c∗∗‖F + 1/(4n).

From where it follows that

ϕi(x) = inf{‖x− c∗∗‖F : c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)} ≤ 1/(4n)

since ϕi(y) = 0. All together means that the family

{An
i + B‖·‖F

(0, 1/(4n)) : i ∈ I}
verifies the conditions in (3) of the Proposition 6 with the functions ϕi =
ψi, i ∈ I, and constants α = 1/(4n), β = 3/(4n). Thus it is σ(X, F )-slicely
isolated as we wanted to prove.

Moreover the former family is discrete for the norm topology. Indeed for
any z ∈ X, if we fix δ > 0 such that

1/4n + δ < 3/4n− δ

we have that

B‖·‖F
(z, δ) ∩

⋃
{An

i + B‖·‖F
(0, 1/4n) : i ∈ I}

has non empty intersection with at most one member of the family because
every time the intersection is non empty we can see that ϕi(z) > 3/4n− δ if

B‖·‖F
(z, δ) ∩ {An

i + B‖·‖F
(0, 1/4n)} 6= ∅

but ϕi(z) < 1/4n + δ when

B‖·‖F
(z, δ) ∩ {An

j + B‖·‖F
(0, 1/4n)} 6= ∅

for any j 6= i and j ∈ I. This fact can be seen as above writing now z = x+y
with x ∈ B‖·‖F

(z, δ) ∩ {An
i + B‖·‖F

(0, 1/4n)} and ‖y‖F < δ in the first case
and x ∈ B‖·‖F

(z, δ) ∩ {An
j + B‖·‖F

(0, 1/4n)} with ‖y‖F < δ for the second
one. ¤
Our way to prove Theorem 2 pass through the next result strengthening the
network condition of theorem 1:

Theorem 7. Let X be a normed space and F a norming subspace in the
dual space X∗. Let us assume the space X admits an equivalent σ(X, F )-
lower semicontinuous and LUR norm. Then the norm topology of X admits
a network

N =
∞⋃

n=1

Nn

where each family Nn is σ(X,F )-slicely isolated and consists of sets which
are differences of two σ(X,F )-closed and convex subsets of X. Moreover,
for every n ∈ N there is δn > 0 such that Nn + B(0, δn) is norm discrete.

Proof.- Let us take the network M =
⋃∞

n=1Mn of the norm topology
such that every family Mr := {Mr,i : i ∈ Ir} is σ(X, F )-slicely isolated,
see Theorem 1 and Chapter 3 in [14], and let us perform the decomposi-
tion from Proposition 2 for it, i.e. denoting by ϕr,i the ‖ · ‖F -distance to

co{Mr,j : j 6= I}σ(X∗∗,X∗)
, we define
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Nn
r,i =

{
x ∈ co(Mr,i)

σ(X,F )
: ϕr,i(x) > 3/(4n)

}
.

The fact that the family N n
r := {Nn

r,i : i ∈ Ir} is σ(X,F )-slicely isolated
follows from Theorem 6 since the lower semicontinuity and convexity of
the functions ϕr,i tell us that ϕr,j(y) = 0 for every y ∈ co(Mr,i)

σ(X,F )
and

j 6= i, j ∈ Ir. Moreover, we easily get that for every 0 < µ we have ϕr,i(z) >
3/(4n) − µ whenever z ∈ Nn

r,i + B‖·‖F
(z, µ), and ϕr,i(z) < µ whenever z ∈

Nn
r,j + B‖·‖F

(z, µ). Let us choose δn such that 0 < 2δn < 3/4n − δn; then
we have that the norm open sets {Nn

r,i + B‖·‖F
(0, δn) : i ∈ Ir} are pairwise

disjoint and they form a norm discrete and σ(X,F )-slicely isolated family by
Theorem 6. Moreover, each set Nn

r,i is the difference of convex and σ(X, F )-

closed subsets of X: co(Mr,i)
σ(X,F )

and {x ∈ X : ϕr,i(x) ≤ 3/(4n)}. The
union of all these families:⋃

{N n
r : r, n = 1, 2, ...}

is clearly the network we are looking for. Indeed, given x ∈ X there is
r ∈ N and i ∈ Ir such that x ∈ Mr,i ⊂ x + B‖·‖F

(0, ε
3). Then for n ∈ N big

enough we have x ∈ Nn
r,i, x ∈ co(Mr,i)

σ(X,F ) ⊂ x + B‖·‖F
(0, 2ε

3 ) and we have

x ∈ co(Nn
r,i)

σ(X,F )
+ B‖·‖F

(0, δn) ⊂ x + B‖·‖F
(0, ε) if we take the integer n

big enough again. ¤
We now arrive to:
Proof of Theorem 2.- Necessity. From the proof of Theorem 7 we

continue with the notation and observe that when we add open balls of
sufficiently small radii to elements of the network provided above we will
have a basis of the norm topology we are looking for. Indeed

∞⋃
n,r

{Nn
r,i + B‖·‖F

(0, δn) : i ∈ Ir}

is such a basis of the norm topology. Indeed, for a given x ∈ X and ε > 0
we find some p ∈ N and i ∈ Ip with x ∈ Np,i ⊂ B(x, ε/2). There is m0 ∈ N
such that x ∈ Nm

p,i whenever m ≥ m0. It now follows that for m big enough
we have Nm

p,i + B‖·‖F
(0, δm) ⊂ B(x, ε) since x ∈ Np,i ⊂ B(x, ε/2) and δm

goes to zero when m goes to infinity. The sufficiency follows from Theorem
1. Moreover, the needed implication will be proved in the next section, see
Corollary 1. ¤

3. The connection lemma

Now we are in position to present our main result here. For a slicely
isolated family of sets it is always possible to construct an equivalent norm,
such that, the premise for the LUR condition on the new norm for a sequence
and a point x implies that the sequence is eventually in the same set of the
family to which the limit point x belongs. The construction is done applying
Deville’s master lemma, p. 279 in [2]:

Lemma 1 (Deville’s master lemma). Let (X, ‖·‖) be a normed space, let I be
a set and let (ϕ)i∈I and (ψ)i∈I be families of non-negative convex functions
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on X which are uniformly bounded on bounded subsets of X. For every
x ∈ X, m ∈ N and i ∈ I define

(1) θm(x) = sup
{
ϕi(x)2 + 2−mψi(x)2 : i ∈ I

}
,

(2) θ(x) = ‖x‖2 +
∞∑

m=1

2−m(θm(x) + θm(−x)).

Then the Minkowski functional of the set {x ∈ X : θ(x) ≤ 1} is an equiv-
alent norm ‖| · |‖ on X such that if a sequence (xn) and a pointx ∈ X satisfy
the LUR condition:

lim
n

(2‖|xn|‖2 + 2‖|x|‖2 − ‖|xn + x|‖2) = 0,

then there is a sequence (in) in I such that:

lim
n

ϕin(x) = lim
n

ϕin(xn) = lim
n

ϕin((x + xn)/2) = sup {ϕi(x) : i ∈ I} (3)

lim
n

[
1
2
(ψ2

in(xn) + ψ2
in(x))− ψ2

in(
1
2
(xn + x))] = 0. (4)

Our main lemma here reads as follows:

Lemma 2 (Connection lemma). Let (X, ‖·‖) be a normed space and F be a
norming subspace in X∗. Let B := {Bi : i ∈ I} be a uniformly bounded and
slicely isolated family of subsets of X for the σ(X, F )-topology. Then there
is an equivalent and σ(X, F )-lower semicontinuous norm ‖ · ‖B on X such
that for every i0 ∈ I, every x ∈ Bi0, and every sequence (xn)n∈N in X the
condition

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0

implies that:
(1) There is n0 ∈ N such that

xn,
1
2
(xn + x) /∈ co

⋃
{Bi : i 6= i0, i ∈ I}

σ(X,F )

for all n ≥ n0

(2) For every positive δ there is nδ ∈ N such that

xn ∈ co(Bi0) + δBX
σ(X,F )

whenever n ≥ nδ.

Proof.- Let us fix an index i ∈ I and define the nonnegative, convex and
σ(X,F )-lower semicontinuous function ϕi as the ‖ · ‖F - distance to

co ∪ {Bj : j 6= i, j ∈ I}σ(X∗∗,X∗)
.

Let us choose a point ai ∈ Bi and set Di = coBi and Dδ
i = Di + B(0, δ),

where we denote by B(0, δ) the open ball {x ∈ X : ‖x‖F < δ}, for every
δ > 0 and i ∈ I. We denote by pi,δ the Minkowski functional of the convex

body Dδ
i

σ(X,F ) − ai. Then we define the norm pi by the formula

p2
i (x) =

∞∑

q=1

1
q22q

pi,1/q(x)2



DEVILLE’S MASTER LEMMA AND STONE’S DISCRETENESS IN RENORMING THEORY9

for every x ∈ X. It is well defined and σ(X, F )-lower semicontinuous. In-

deed, since B(0, δ) + ai ⊂ Dδ
i

σ(X,F )
we have for every x ∈ X, and δ > 0,

that pi,δ(δx/‖x‖F ) ≤ 1, thus δpi,δ(x) ≤ ‖x‖F and hence the above series
converges. Finally we define the nonnegative, convex and σ(X, F )-lower
semicontinuous function

ψi(x) := pi(x− ai)

for every x ∈ X. We are now in position to apply Deville’s master Lemma
for our ϕi’s and ψi’s to get an equivalent and σ(X,F )-lower semicontinuous
norm ‖ · ‖B on X. Take i0 ∈ I, x ∈ Bi0 and a sequence (xn) in X satisfying

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0

implies the existence of a sequence of indexes (in) in I such that (3) and (4)
in Lemma 1 hold. Our hypothesis on the slicely isolated character of the
family B tell us after Theorem 6 that since the point x belongs to the set Bi0

of the family B, we have ϕi0(x) > 0, but ϕi(x) = 0 for all i ∈ I with i 6= i0.
From the assertion (3) from Lemma 1 it now follows that there exists a
positive integer n0 such that in = i0, ϕio(xn) > 0 and ϕi0(

1
2(x+xn)) > 0 for

all n ≥ n0, from where the conclusion (1) of our lemma follows. Moreover,
the equation (4) in Lemma 1 is now in form

lim
n

[2−1(ψ2
i0(xn) + ψ2

i0(x))− ψ2
i0(2

−1(xn + x))] = 0,

and so by the usual convexity argument, and for every q ∈ N, we have that

lim
n

[2−1((pi0,1/q(xn−ai0))
2+(pi0,1/q(x−ai0))

2)−(pi0,1/q(2
−1(xn+x)−ai0))

2] = 0,

and consequently

lim
n

pi0,1/q(xn − ai0) = pi0,1/q(x− ai0).

Fix a positive number δ and then q ∈ N such that 1/q < δ. Since x −
ai0 ∈ D

1/q
i0

− ai0 we have that pi0,1/q(x − ai0) < 1 because D
1/q
i0

− ai0 is
norm open. Therefore, there is nδ ∈ N such that for n ≥ nδ we have

that pi0,1/q(xn − ai0) < 1 and thus xn − ai0 ∈ Dδ
i0

σ(X,F ) − ai0 , that is

xn ∈ (co(Bi0) + B(0, δ))
σ(X,F )

, which is (2) for ‖ · ‖F . Since the proof is
valid for all δ > 0 and ‖ · ‖F is an equivalent norm the proof is over. ¤

A direct consequence of the connection lemma is a straightforward proof
of the renorming implication in Theorem 1

Corollary 1. In a normed space (X, ‖·‖), with a norming subspace F in X∗,
we have an equivalent σ(X,F )-lower semicontinuous and locally uniformly
rotund norm whenever X admits a network for the norm topology which is
σ-slicely isolated family for σ(X,F ), i.e. there are σ(X,F )-slicely isolated
families

Nn : n = 1, 2, ...

such that for every x in X and every ε > 0 there are n ∈ N and N ∈ Nn

with the property that x ∈ N ∈ Nn and ‖ · ‖ − diam(N) < ε.



10 J. ORIHUELA AND S. TROYANSKI

Proof.- It is not a restriction to assume that every family Nn is uniformly
bounded since we can make intersections with countably many balls cen-
tered in the origin and covering X without losing the character of slicely
isolatedness and the network condition of the whole family. So we can con-
sider the norms say ‖ · ‖Nn constructed using the connection lemma for each
family Nn and to define the new norm by the formula:

‖x‖2
N :=

∞∑

n=1

cn‖x‖2
Nn

for every x ∈ X, where the sequence (cn) is chosen accordingly for the
convergence of the series. This is possible because all the norms ‖ · ‖Nn are
equivalent to the original one and hence there are numbers dn such that

‖ · ‖Nn ≤ dn‖ · ‖,
so it is enough to take cn := 1

d2
n2n . Consider x and a sequence (xn)n∈N in X

such that
lim
n

(
2 ‖xn‖2

N + 2 ‖x‖2
N − ‖xn + x‖2

N
)

= 0.

Fix an ε > 0. We know that there is q ∈ N and N0 ∈ Nq with x ∈ N0 ⊂
x + εBX . The condition

lim
n

(
2 ‖xn‖2

N + 2 ‖x‖2
N − ‖xn + x‖2

N
)

= 0

implies that

lim
n

(
2 ‖xn‖2

Nq
+ 2 ‖x‖2

Nq
− ‖xn + x‖2

Nq

)
= 0

by convexity arguments. The connection lemma now says that for every
positive δ there is nδ ∈ N such that

xn ∈ co(N0) + δBX
σ(X,F )

whenever n ≥ nδ. Thus ‖xn − x‖ ≤ ε + δ for n ≥ nδ and limn xn = x in
(X, ‖ · ‖) as we wanted to prove.

¤
Let us present now the renorming Theorem 1 as developed in Chapter 3

of [14]:

Theorem 8. For a normed space (X, ‖·‖), and a norming subspace F ⊂ X∗,
the following conditions are equivalent each to other:

(1) The space X admits an equivalent σ(X,F )-lower semicontinuous
LUR norm.

(2) There are σ(X,F )-slicely isolated families Nn, n = 1, 2, ... such that⋃
n∈NNn is a network for the norm topology.

(3) For every ε > 0 we can write X =
⋃

n∈NXε
n where for every n ∈ N

and every x ∈ Xε
n there is an σ(X,F )-open half space H ⊂ X such

that x ∈ H and diam(Xε
n ∩H) < ε

Proof.- (1) ⇒ (3) can be found in Theorem 2 of [16], in the Main Theorem
of [11], see Lemma 14 and implication c) ⇒ b) in page 629, as well as in
Theorem 3.1 of [14].
(3) ⇒ (2) can be found in Proposition 2.24 of [14]. For completeness we
prove the latter. Take any p ∈ N. Using Stone’s theorem, Theorem 4.4.1 in
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[3], when starting from a cover of X by open sets of diameter less than 1/p,
we get norm-discrete families Bp

i , i ∈ N of open sets such that the family
Bp

1 ∪ Bp
2 ∪ · · · covers X, that each element of this family has diameter less

than 1/p, and moreover that inf{‖b− b′‖ : b ∈ B, b′ ∈ B′} > 1/2i whenever
i ∈ N and B, B′ are distinct elements of Bp

i . Define now

Ni,p,n = {X1/2i

n ∩B : B ∈ Bp
i }, i, p, n ∈ N.

Fix any i, p, n ∈ N. We shall show that Ni,p,n is a σ(X, F )-slicely isolated
family. So, take any N ∈ Ni,p,n and then any x ∈ N . Find B ∈ Bp

i so

that N = X
1/2i

n ∩ B. Find a σ(X,F )-open half space H ⊂ X such that
x ∈ H and diam(X1/2i

n ∩ H) < 1/2i. Consider any B′ ∈ Bp
i distinct from

B. We want to prove that (X1/2i

n ∩ B′) ∩ H = ∅. So, assume that there
is y ∈ (X1/2i

n ∩ B′) ∩ H. Then y ∈ X
1/2i

n ∩ H, and hence ‖y − x‖ < 1/2i.
However we also have that ‖y− x‖ > 1/2i, a contradiction. We thus proved
that the family Ni,p,n is σ(X,F )-slicely isolated. It remains to prove that
the union

⋃{Ni,p,n : i, p, n ∈ N} is a network for the norm topology in X.
So fix any x ∈ X and ε > 0. Take p ∈ N so big that ε > 1/p. Find i ∈ N
and B ∈ Bp

i so that x ∈ B. Find then n ∈ N so that x ∈ X
1/2i

n . Thus

x ∈ X
1/2i

n ∩B ∈ Ni,p,n and diam(X1/2i

n ∩B) < 1
p < ε.

Finally we observe that (2) ⇒ (1) is the content of Corollary 1. ¤

Remark 1. Our approach in the proof of (3) ⇒ (2) in Theorem 8 does not
need any convexification argument as the ones based on Bourgain Namioka
supper-lemma, [16, 4], or those developped in [14]. The convex structure
here is inside the proof of the connection lemma; it is in the fact that the
functions used there are already convex. Since the functions ϕi and ψi are
convex, as they have been defined, we get free of charge the construction of
the equivalent norm using now Deville’s master Lemma. With our approach
here the convexification can be described on the elements of the σ-slicely (for
σ(X,F )) isolated network fo the norm topology as differences of σ(X, F )-
closed convex sets. In all previous approaches this was done on the sets Xε

n

from the above decomposition X =
⋃

n∈NXε
n.

The main results in the work [4] provides extensions of corollary 1 when
the Kuratowski index of non-compactness is used instead of the diameter.
We are going to go further when the dual unit ball is weak* separable as
an application of our connection lemma above, but using a more general
measure of non-compactness. Actually we are going to present the proof of
a theorem in the introduction:
Proof of Theorem 3.- Without any lost of generality we can, and we do
assume, that every family Bn is uniformly bounded since the intersection of
a slicely isolated family of sets with a fixed ball is slicely isolated too. Let us
construct, with the use of the connection lemma, equivalent σ(X, F )-lower
semicontinuous norms ‖ · ‖Nn , for every n ∈ N, which verify the conclusion
of Lemma 2 for the families Nn. We pick a countable weak∗ dense set
T =: {tn : n = 1, 2, ...} in F . Define then a new, equivalent norm ‖| · |‖ on
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X by the formula

‖|x|‖2 :=
∞∑

m=1

cm(‖x‖2
Nm

+ 〈x, tm〉2)

for every x ∈ X, where the sequence (cn) is chosen so that the above series
converges. Consider any x ∈ X and any sequence (xn) in X satisfying the
premise

lim
n

(
2 ‖|xn|‖2 + 2 |‖x|‖2 − ‖|xn + x|‖2

)
= 0.

We shall show first that the set {x1, x2, ...} is weakly relatively compact. To
do so, fix any ε > 0. From the assumptions, find m ∈ N, N ∈ Nm, and a
weakly compact set C ⊂ X so that x ∈ N ⊂ C + εBX . The connection
lemma yields n ∈ N such that

{xn, xn+1, ...} ⊂ coN + εBX
σ(X,F ) ⊂

and we may continue, using Krein-Shmulyan theorem, in the following chain
of inclusions:

⊂ co(C + εBX) + εBX
σ(X,F ) ⊂ coC + 2εBX .

Hence
{x1, x2, ...}w∗ ⊂ {x1, x2, ..., xn} ∪ coC + 2εBX

w∗

⊂ {x1, x2, ..., xn} ∪ coC + 2εBX∗∗ ⊂ X + 2εBX∗∗ .

Here ε > 0 was arbitrary, so {x1, x2, ..., xn, ...} is a relatively weakly compact
set. Moreover, by the convexity arguments again we have that limn 〈xn, t〉 =
〈x, t〉 for every t ∈ T . Thus, every σ(X, X∗) cluster point y of the sequence
{xn : n = 1, 2, ...} does coincide with x on the σ(X∗, X)-dense subset T of
X∗, so they coincide in all X∗ and x = y. The sequence (xn) itself is
σ(X,X∗) convergent to x by its weak relative compactness. We conclude
that the new norm ‖|·|‖ is weakly locally uniformly rotund and σ(X, F )-lower
semicontinuous. From results in [12] we will have a LUR renorming on X.
The fact that it can be obtained σ(X,F )-lower semicontinuous also follows
from analysis in [14]. Indeed, the main lemma in Section 3, Chapter 3 of
[14], tell us that the weak topology has a σ(X, F )-slicely isolated network,
so a metric finer than the weak topology with a σ(X, F )-slicely isolated
network can be cosntructed on X, see Theorem 3.21 in [14], from where it
follows that the same is valid for the norm topology, see Corollary 3.23 in
[14]. Thus the space X admits an equivalent σ(X, F )-lower semicontinuous
LUR norm. ¤

Let us finish with an open question:
Question.-
Given a scattered compact space K, is there any characterization of the
LUR renormability of C(K) by means of any σ-discreteness property for
the family of all clopen subsets of K? Indeed, we know that if A is the
familly of all clopen subsets of the scattered compact spaces K and C(K)
admits an equivalent pointwise lower semicontinuous and LUR norm, then
the family of clopen sets is a countable union A =

⋃
n∈NAn of families such

that every An provides a set of characteristic functions {1A : A ∈ An} which
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is pointwise slicely discrete, but it is unknown what else is needed to have a
reverse implication true.
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