ALUR DUAL RENORMINGS OF BANACH SPACES

SEBASTIAN LAJARA

ABSTRACT. We give a covering type characterization for the class of dual Ba-
nach spaces with an equivalent ALUR dual norm.

Let K be a closed convex subset of a real Banach sp&cé - ||), ande > 0. An
elementr € K is called an:

(1) e-very strong extreme point oK if there exists a positive real numbér
such tha‘g[o1 | f(t) —z||dt < e wheneverf is a Bochner integrable function
from [0, 1] into K such that] fol f(t)dt — z|| < 4. In this case we will say
thatx is an(e, 0)-very strong extreme point df .

(2) e-denting point ofK if x & conv(K \ B(x; e))H'”, or equivalently, if there
is an open half spacd C X suchthatr € H and||-||—diam(HNK) < €
(recall that an open half space &f is a set of the forny—!(a, oo), with
f € X*anda € R).

The element is called a very strong extreme (resp. denting) poinkaf it is an
e-very strong extreme (resp-denting) point ofK, for everye > 0. Recall also
thatz is a point of continuity o< if the identity mapid : (K, weak) — (K, ||-])
is continuous at. The above notions were characterized in the following

Proposition 1 (Lin-Lin-Troyanski, [4]). Letz be an element in a bounded closed
convex seK of a Banach space. The following are equivalent:

(1) z is a very strong extreme point &f.
(2) z is a denting point ofx.
(3) z is an extreme point and a point of continuity /6f

We say that the spac¥ (or the norm ofX) is average locally uniformly rotund
(ALUR for short) if every point of the unit sphere df is a very strong extreme
point of the unit ball. This property was introduced in [9].

The spaceX is rotund if the points of the unit sphere are extreme points of the
unit ball. The spaceX is said to have the Kadec property when the weak and the
norm topologies coincide on the sphere, this is equivalent to say that the points of
the unit sphere are points of continuity of the unit ball. Thus, from Proposition 1 it
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follows that a Banach space is ALUR if, and only if, it is rotund and has the Kadec
property.

On the other hand, the spa&ehas theGG property (introduced in [2]) if all the
points on the unit sphere are denting points of the unit ball. Proposition 1 also gives
the equivalence between ALUR agdproperty.

Recall also thaf is locally uniformly rotund (LUR for short) if for every point
x and every sequence,, ), in the unit sphere ok such thatim,, || £ = 1 we
havelim,, ||z, — z|| = 0.

It is easy to see that a LUR norm is rotund and has the Kadec property; in
particular, every LUR Banach space is ALUR. In [9] it is shown that the converse
is true up to renormings, i.e., that every ALUR space admits an equivalent LUR
norm. This result suggests the following question:

If a dual Banach space is ALUR, does it necessarily admit an equivalent LUR
dual norm?

This problem has a negative answer. In [8] it was shown that the dual of the
James Tree spacEl’ has an equivalent dual norm with the Kadec property, and
sinceJT is separable, the spadd™ admits also an equivalent rotund dual norm
(see e.qg. [1, p. 48]). The sum of these two norms is a dual norm which shares both
properties, and consequentl{7™* is ALUR dual renormable. On the other hand,
it is known (see e.g. [1, p. 43 and 51]) that the dual of a separable Banach’$pace
is separable ifX* admits an equivalent LUR dual norm. A§™ is nonseparable,
this space does not admit any LUR dual norm.

Another counterexample to the above question may be found in [3], where it
was provided an example of Banach space of continuous funati¢ifg, with T
a scattered compact (more precisely, a tree), such@k®)* has an equivalent
rotund dual norm and’(Y') does not admit any Fréchet differentiable norm. The
duals of C(K') spaces withK" scattered are isometric to(K), in particular they
have the Kadec property. ConsequerdlY)* is ALUR dual renormable. Never-
theless, this space does not have any LUR dual norm (in that €4%8, should
admit a Fréchet differentiable norm, see e.g. [1, p. 43)).

Therefore, the class of LUR dual renormable Banach spaces is strictly con-
tained in the class of ALUR dual renormable Banach spaces. The aim of this note
is to characterize dual Banach spaces with equivalent ALUR dual norms. LUR
renormable Banach spaces were characterized in [5] and [7], in terms of countable
decompositions of such spaces. In [7] it was also provided a characterization in
the dual case, showing in particular that a dual Banach space admits an equivalent
LUR dual norm if, and only if, it has an equivalent dual-Kadec norm (weak star
and norm topologies coincide on its unit sphere). In this work we give a covering
type characterization for the class of ALUR dual renormable Banach spaces.
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Theorem 1. For a dual Banach spacgX, || - ||) the following assertions are equiv-
alent:

(1) X admits an equivalent ALUR dual norm.
(2) For eache > 0 there is a countable decomposition

X =JXne

in such a way that every € X, . is ane-very strong extreme point of
2 *
conv(Xp )
(3) For eache > 0 there is a countable decomposition

X =JXne
n

w*

in a such way that each € X, . is ane-denting point otonv (X, ()
In order to prove the Theorem, we shall need two results. The first shows a con-
nection between the modulus of dentability and very strong extremality defined
above.

Lemma 1. Let K be a closed convex set of a Banach spacelhen every-very
strong extreme point dk is ane-denting point of this set.

Proof. Let x be an(e, d)-very strong point ofi, for somed > 0. Suppose
thatx is not ane-denting point of . Then, there exist a finite sétand subsets
{a;}ier € RT and{z;}ie;r € K suchthaty ,a; = 1, ||z — >, asas < 6,
and||lx; — z|| > e for everyi € I. Let us denote by\ de Lebesgue measure on
[0, 1], let{A; }icr be a partition of0, 1] with \(A;) = a; for every: € I, and set
f = > icrwixa;- Clearly, f is a Bochner integrable function with values i
such that| fol ft)dt —z|| = || >, a;x; — x| < 6. Sincex is an(e, 6)-very strong
extreme point ofK” we get tha‘g[o1 | f(t) — z||dt < e. But

1
/ 1£(t) — z||dt = Z/ s — alldt = aillw; — x| > > ae=e
0 i A i i
a contradiction. Soy is ane-denting point ofi.
Lemma 2. Let (X, || - ||) be a Banach space and denote By its unit ball. Let

€,d,n > 0 such that) < min{e, g}. If x is an (e, §)-very strong extreme point of
||z|| Bx, then it is a2e-very strong extreme point ¢f z|| + n) Bx.

Proof. Let f : [0,1] — (]|z|| + n)Bx be a Bochner integrable function such
that

1
e - /0 f()de] < n
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Ed]

and letg = Hx”Jrnf. Theng is a Bochner integrable function with values in
|lz||Bx, and from the last inequality it follows that

! 1
o= [ gtontt = it + el — [ o) <20 <

Sincex is an (e, 0)-very strong extreme point of the sgt| Bx it follows that
fol lg(t) — z||dt < e, and consequently,

1 1
/Olf(t)—wldté/o lo(t) = ol + H/ lg@®)ldt < e+ < 2

as we wanted.
Proof of Theorem 1. (1) = (2) We may assume that the norm &fis ALUR,
and let us fixe > 0. For every positive rational numberefine

X, = {x € X : zis ane-very strong extreme point ofBx }

Sincer By is w*-compact andX,. . C mw* C rBx we get that every
x € X, is ane-very strong extreme point of the Seinv(Xm)w*. It remains to
prove that

x={0yu |J X

reQt

Letz € X \ {0}. As the norm ofX is ALUR there is§ > 0 such thatz is an
(5,0)-very strong extreme point of the sgt|Bx. Letn be a positive number
such that) < min{§, 2} and||z|| + n is a rational, and set = ||z|| + . Then,
from Lemma 2 it follows that: is an (e, n)-very strong extreme point of the set
|z||Bx + nBx = rBx. Sox € X, .
(2) = (3) This implication follows inmediately from Lemma 1.
(3) = (1) According to Proposition 1 it is enough to construct®ran equiva-
lent dual rotund norm with the Kadec property. We follow some arguments of [6]
and [7]. For eachn € N, lete,, = % There is a decomposition

X =JXnen

w*

in such a way that each € X,, ., is ane,,-denting point ofconv(X,,,,) . Let
{A;}) be an enumeration of the SW* + 5Bx : myn,p € N},

Note that each;, is convex, weak star closed and has non empty interior in the
norm topology. Observe also thatifis ane-denting point of a se#l, thenz is a
2e-denting point ofd 4 6 Bx for enough smald > 0. Therefore, for every € X

and everye > 0 there exists: € N such thatr is an interiore-denting point of

Ay. For everyk, takeay, € int(Ay) and letFy, be the Minkowski functional ofiy,
respect tay;. Let (\;)r be a sequence of positive real numbers such that the series

F?(x) |$|!2+ZAka ) + F(—x))
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converges uniformly on bounded sets dd= {x € X : F(z) < 1} contains0
as an interior point. Clearly' is a convexw™*-lower semicontinuous function, so
that B is a convex andv*-closed set, and consequently, its Minkowski functional
|| - ||| defines an equivalent dual norm &h
Now, we prove that the nortf| - ||| is rotund and has the Kadec property.
Suppose that| - ||| is not rotund. Then there arg, x5 € X with

(1) llanlll = lleall = IE2)
and

2 |x1 — 2| > 2¢, for somee > 0
We can findk € N such that

3) TLET2 it (Ay)

and% is ane-denting point ofd;. SinceF' is uniformly continuous on bounded
sets, from (1) we have
r1 + 22
5 )
and using a convex argument (see [1, Fact Il. 2.3]), it follows that

F(x1) = F(z2) = F(

T+ T2

5 )
From this and (3) we havey(z;) < 1, thatis,z; € Ay, fori =1,2. LetH C X
be a weak open half space such the§™2 € H and|| - || — diam(A; N H) < e.
Because of (2) we have, € X \ H,i = 1,2, and by the convexity oK \ H it
follows that®$22 € X \ H, a contradiction. S¢| - ||| is a rotund norm.

It remains to prove thdt| - ||| has the Kadec property. Note first that sirfcés
uniformly continuous on bounded sets we have

Fk(l'l) = Fk(w2) = Fk(

(4) lim F(x,) = 1 wheneverx,)aca C X is a net such thdim |||z,||| = 1
(0% 6

Let (za)aca C X be anetand € X such that||z,||| = |||z]|| = 1 for everyq,
andxz, — « in the weak topology o . Then, by the weak lower semicontinuity
of ||| - ||| we deduce thaf|2=F2||| — 1, and from (4) we get

To + X

F(xzy) — landF(

) —1
Using again the convex arguments it follows that
(5) Fy(xo) — Fy(x), for everyk € N

Lete > 0. As before we také, € N and a weak open half spaé¢é C X such
thatz € int(Ag,) N H and|| - || — diam (A, N H) < e. Because of (5) there is
ap € A such thatFy, (z,) < 1, and therefore:, € Ay,, for everya > «ay. Since
H is a weak open neighbourhood:oive may also assume thag € H for every
a > ap, and consequentlyz, — z|| < ¢, as we wanted.
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