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LUR renormings through Deville’s Master Lemma

J. Orihuela and S. Troyanski

Abstract. A completely geometrical approach for the construction of locally uniformly rotund norms
and the associated networks on a normed space X is presented. A new proof providing a quantitative
estimate for a central theorem by M. Raja, A. Moltó and the authors is given with the only external use of
Deville-Godefory-Zizler decomposition method.

Renormamientos LUR a través del Lema Maestro de Deville

Resumen. Presentamos una aproximación completamente geométrica para la construcción de normas
localmente uniformemente convexas y sus network asociadas en un espacio normado X . Se da una nueva
demostración, con estimaciones cuantitativas, de un resultado central de M. Raja, A. Moltó y los autores
usando únicamente el método de descomposición de Deville-Godefroy-Zizler.

1 Introduction
Let (X, ‖ · ‖) be a normed space. The norm ‖ · ‖ inX is said to be locally uniformly rotund (LUR for short)
if [

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0
]

=⇒ lim
n
‖x− xn‖ = 0

for any sequence (xn) and x in X . The construction of this kind of norms in separable Banach spaces lead
Kadec to the proof of the existence of homeomorphisms between all separable Banach spaces, [1]. For a
non separable Banach space is not always possible to have such an equivalent norm: the space l∞ does not
have it, see for instance p. 74 in [2]. When such a norm exists its construction is usually based on a good
system of coordinates that we must have on the normed space X from the very beginning, for instance a
biorthogonal system,

{ (xi, fi) ∈ X ×X∗ : i ∈ I }

with some additional properties such as being a strong Markushevich basis, [20]. Sometimes there is
not such a system and the norm is constructed providing enough convex functions on the given space X
adding all of them up with the powerful lemma of Deville, see lemma VII 1.1 in [2]. Deville’s lemma has
been extensively used by R. Haydon in his seminal papers [6], [7], as well as in [8]. It is based on the
construction of an equivalent LUR norm on a weakly compactly generated Banach space by the second
named author in [19], where the convex functions are distances to suitable finite dimensional subspaces
as well as evaluations on some coordinate functionals in the dual space X∗; see [20, Theorem 7.3]. We
have been able to show the connection between biorthogonal systems and LUR renormings in [17]. Using
Deville’s lemma we have proved the following:

Presentado por / Submitted by Manuel Valdivia Ureña.
Recibido / Received: 2 de marzo de 2009. Aceptado / Accepted: 4 de marzo de 2009.
Palabras clave / Keywords: LUR renorming, decomposition method, network, completion, slice localization
Mathematics Subject Classifications: Primary: 46B20; 46B26. Secondary: 46B03, 54C08
c© 2009 Real Academia de Ciencias, España.

75



J. Orihuela and S. Troyanski

Theorem 1 ([17]) Let X be a Banach space and F ⊂ X∗ a norming subspace in the dual space X∗. X
has an equivalent σ(X,F )-lower semicontinuous and locally uniformly rotund norm if, and only if, there
are countably many families of convex and σ(X,F )-lower semicontinuous functions {ϕni : X → R+ :
i ∈ In }∞n=1 such that there are open subsets

Gni ⊂ {ϕni > 0} ∩ {ϕnj = 0 : j 6= i, j ∈ In }

with {Gni : i ∈ In, n ∈ N } a basis for the norm topology of X .

The method to prove Theorem 1 is mainly based on Stone’s theorem about paracompactness of metric
spaces, [16]. The σ-discrete basis for the norm topology of a normed space X can be refined to obtain the
basis described in Theorem 1. More recent contributions show an interplay between this method and the
one based on Deville’s lemma,[7, 11, 12]. It is our intention here to give a straightforward proof of the
main renorming construction in [13, 18]. This result is in the core of the theory, and we shall prove it with
a geometrical approach based just on Deville’s lemma, without any use of paracompactness at all. Indeed,
the Theorem we are going to prove reads as follows:

Theorem 2 ([18, 13]) Let X be a normed space and F a norming subspace in the dual X∗. X admits
a σ(X,F )-lower semicontinuous and equivalent locally uniformly rotund norm if, and only if, there is a
sequence (An) of subsets of X such that for every x ∈ X and every ε > 0 there is a σ(X,F )-open half
space H and a positive integer p with x ∈ Ap ∩H and diam(Ap ∩H) ≤ ε.

The known proofs of this result go through a delicate process of convexification of the sets An needed
to construct a countable family of seminorms, and they involve Stone’s theorem if additional information on
the structure of the sets An is required, see [16, 18, 17]. We are going to present here a different approach
where either Stone’s theorem or the convexification process are not needed any more. We shall do it by
developing our main result here with the use of Deville’s Master Lemma only, indeed we are going to prove
the following localization result showing that for any family of slices of a bounded set A of a normed space
X , we can always construct an equivalent norm such that the LUR condition for a sequence (xn), and a
fixed point x in A, implies that the sequence eventually belongs to slices containing the point x,too. When
the involved slices have small diameter, then the sequence is eventually close to x. If the diameter can be
made small enough, then the sequence (xn) converges to x and the norm will be locally uniformly rotund
at the point x. The precise statement reads as follows:

Theorem 3 (Slice Localization Theorem) Let X be a normed space with a norming subspace F in
X∗. Let A be a bounded subset in X and H a family of σ(X,F )-open half spaces such that for every
H ∈ H the set A ∩ H is non empty. Then there is an equivalent σ(X,F )-lower semicontinuous norm
‖ · ‖H,A such that for every sequence (xn)n∈N in X and x ∈ A ∩H for some H ∈ H, if

lim
n

(
2‖xn‖2H,A + 2‖x‖2H,A − ‖x+ xn‖2H,A

)
= 0,

then there is a sequence of open half spaces {Hn ∈ H : n = 1, 2, . . . } such that

1. There is n0 ∈ N such that x, xn ∈ Hn for n ≥ n0 if xn ∈ A.

2. For every δ > 0 there is some nδ such that

x, xn ∈ (co(A ∩Hn) +B(0, δ))
σ(X,F )

for all n ≥ nδ .

We use standard notation in the geometry of Banach spaces and topology that can be found in [9, 4]
and [3, 10]. In particular, BX (resp. SX ) is the unit ball (resp. the unit sphere) of a normed space X . If F
is a subset of X∗, then σ(X,F ) denotes the topology of pointwise convergence on F . Given x∗ ∈ X∗ and
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x ∈ X , we write 〈x∗, x〉 and x∗(x) to indistinctively denote the evaluation of x∗ at x. If D is a subset of a
normed space X we denote by co(D) the convex hull of D. If x ∈ X and δ > 0 we denote by B(x, δ) the
norm open ball centered at x of radius δ. A subspace F ⊂ X∗ is said to be a norming subspace in the dual
space X∗ when

‖x‖F := sup{ 〈x, f〉 : f ∈ BX∗ ∩ F }

define an equivalent norm on X . When the original norm coincides with ‖ · ‖F , the subspace F is called
1-norming.

2 The tool

A main result here is Theorem 3 above. It is a refinement of the Connection Lemma we developed in [17].
The difference in the present context is that we do not have any rigidity condition here for the family of
slices. In [17] we have slices describing a discrete family of sets. Here we have, instead, an arbitrary family
of slices without any additional assumption at all. We need the following definition:

Definition 1 ([17]) Let X be a normed space and F a norming subspace in the dual space X∗. For a
bounded and convex subset C of X∗∗ we define

F − dist(x,C) := inf
{

sup
{
|< x− c∗∗, f >| : f ∈ BX∗ ∩ F

}
: c∗∗ ∈ C

}
.

It has been proved in [17] that the F−dist(·, C) is a convex, σ(X,F )-lower semicontinuous and 1-Lipschitz
map from X to R+. We are going to make extensive use of this kind of functions in our construction of the
LUR norm.
PROOF OF THEOREM 3. We shall consider σ(X,F )-lower semicontinuous and convex functions (ϕH)
and (ψH) for every H ∈ H defined as follows:

ϕH(x) := F − dist
(
x,Hc ∩ co(A)

σ(X∗∗,X∗)
)

for every x ∈ X , where we denote by Hc the closed half space equal to the complementary of the open
half space H . Let us choose a point aH ∈ H ∩ A and set DH = co(H ∩ A) for every H ∈ H, and
Dδ
H := DH + B(0, δ), where B(0, δ) := {x ∈ X : ‖x‖ < δ } for every δ > 0 and H ∈ H. We are

going to denote by pδH the Minkowski functional of the convex body Dδ
H

σ(X,F )
− aH . Then we define the

σ(X,F )-lower semicontinuous norm pH by the formula

pH(x)2 =
∞∑
n=1

1
n22n

(
p
1/n
H (x)

)2

for every x ∈ X . Finally we define the nonnegative, convex, and σ(X,F )-lower semicontinuous function
ψH as ψH(x)2 := pH(x − aH)2 for every x ∈ X . We are now in position to apply R. Deville’s Master
Lemma, see [2, lemma VII.1.1, p. 279], to get an equivalent norm ‖ · ‖H,A on X such that the condition

lim
n

(
2 ‖xn‖2H,A + 2 ‖x‖2H,A − ‖xn + x‖2H,A

)
= 0

for a sequence {xn : n ∈ N } and x in X implies that there exists a sequence of indexes (Hn) in H such
that

1. limn ϕHn
(x) = limn ϕHn

(xn) = limn ϕHn
((x+ xn)/2) = sup {ϕH(x) : H ∈ H} and

2. limn

[
(1/2)ψ2

Hn
(xn) + (1/2)ψ2

Hn
(x)− ψ2

Hn
((xn + x)/2)

]
= 0
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If the given point x belongs to one of the open half spaces H0 ∈ Hε then we have that ϕH0(x) > 0 and
so we have that:

sup {ϕH(x) : H ∈ Hε} ≥ ϕH0(x) > 0,

condition 1 provide us with an integer n0 such that

ϕHn
(x) > 0, ϕHn

(xn) > 0, ϕHn

(
(x+ xn)/2

)
> 0

whenever n ≥ n0, from where our conclusion 1 in the Theorem follows. Moreover, condition 2 above and
standard convexity arguments imply now that for every positive integer q we have that

lim
n

[
(1/2)

(
p
1/q
Hn

(xn − aHn
)
)2 + (1/2)

(
p
1/q
Hn

(x− aHn
)
)2 − (p1/q

Hn
((xn + x)/2− aHn

)
)2] = 0,

consequently,
lim
n

[
p
1/q
Hn

(xn − aHn)− p1/q
Hn

(x− aHn)
]

= 0, ∀q ∈ N−

If we fix a positive number δ, an open half space H ∈ H and y ∈ A ∩H we have that

y − aH + (y − aH)δ‖y − aH‖−1 ∈ B(0, δ) + (y − aH) ⊂ Dδ
H − aH ,

thus [
(1 + δ)‖y − aH‖−1

]
(y − aH) ∈ (Dδ

H − aH)

and therefore
pδH(y − aH) <

[
(1 + δ‖y − aH‖−1

]−1

since Dδ
H − aH is a norm open set.

Let us choose now the integer q such that 1/q < δ, and take an integer n ≥ n0.We know that x ∈ A∩Hn

since ϕHn
(x) > 0 and the given point x belongs to A. Therefore

p
1/q
Hn

(x− aHn) <
[
(1 + (1/q)‖x− aHn‖−1

]−1
,

and we can find a number 0 < ξ < 1 such that

p
1/q
Hn

(x− aHn) < 1− ξ,

for all n ≥ n0, by the boundness of A. If we now take the integer n big enough to have

p
1/q
Hn

(xn − aHn
) < 1− ξ,

we arrive to the fact that xn−aHn
∈ Dδ

Hn
−aHn

, and indeed xn ∈ (co(A ∩Hn) +B(0, δ))
σ(X,F )

, so the
proof is over. �

Thus, given any family of slices on a given set A of a normed space, we have seen how it is always
possible to construct equivalent norms such that the LUR condition on a given sequence (xn) and a fixed
point x implies that the sequence eventually belongs to halfspaces of the given family containing the point
x too.

3 LUR renormings
We can prove now a quantitative version for the main results in [13] and [18]. It corresponds with the
renorming implication of Theorem 2, where the hypothesis provide the conclusion for every ε > 0 and
every x ∈ X .
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Theorem 4 Let X be a normed space and F ⊂ X∗ be a 1-norming subspace for X . Given ε we assume
that there are subsets An such that for every x ∈ ∪∞n=1An we can find p ∈ N and a σ(X,F )-open half
space H such that x ∈ Ap ∩ H and diam(Ap ∩ H) ≤ ε. Then X admits an equivalent σ(X,F )-lower
semicontinuous norm 9·9 such that the condition

lim
n

(29xn92 + 29x92 − 9x+ xn92) = 0

implies that for every δ > 0 there is some integer nδ such that for all n ≥ nδ we have ‖xn − x‖ < ε + δ
whenever x ∈ ∪∞n=1An.

PROOF. Let us consider the family Hn of all σ(X,F )-open half spaces such that An ∩ H 6= ∅ and
diam(An ∩H) ≤ ε. If there is not such slice for some set An we do not consider it at all. If we apply the
former Theorem for the familyHn and the setAn we get an equivalent norm ‖ · ‖n that verifies conditions 1
and 2 of Theorem 3 for any sequence (xm) and x such that

lim
m

(
2‖xm‖2n + 2‖x‖2n − ‖x+ xm‖2n

)
= 0.

Let us take cn such that ‖ · ‖n ≤ cn‖ · ‖. If we set

9x92 :=
∞∑
n=1

1
cn2n

‖x‖2n

for every x ∈ X , we obtain the renorming we are looking for. Indeed, if

lim
n

(
29xn92 + 29x92 − 9|x+ xn|92

)
= 0

by standard convex arguments we know that

lim
n

(
29xn92

p + 29x92
p − 9x+ xn92

p

)
= 0

for every positive integer p. If x ∈ Aq and there is a σ(X,F )-open half space H such that x ∈ Aq ∩H and
diam(Aq ∩H) ≤ ε, we have that H ∈ Hq and diam(co(Ap ∩H)) ≤ ε, too. Moreover, the condition 2 of
Theorem 3 tell us that there is a sequence of half spaces Hn ∈ Hq such that for every δ > 0 there is some
nδ with

x, xn ∈ (co(Aq ∩Hn) +B(0, δ))
σ(X,F )

for all n ≥ nδ . Since F is 1-norming the original norm is σ(X,F )-lower semicontinuous and we have
‖x− xn‖ ≤ ε+ δ for every n ≥ nδ , as we wanted to prove. �

Corollary 1 Let X be a Banach space and F ⊂ X∗ a norming subspace for X . Let us assume that
Z ⊂ X is a subspace of X with a sequence of subsets (An) ⊂ Z such that for every ε > 0 and z ∈ Z there
is some p ∈ N together with a σ(X,F )-open half space H such that z ∈ H ∩Ap and diam(Ap ∩H) ≤ ε.
Then the whole space X admits an equivalent σ(X,F )-lower semicontinuous norm 9·9 such all points in
the subspace Z are LUR points for the new norm in the whole of X , i.e. for every point z ∈ Z and every
sequence (xn) in X such that

lim
n

(29xn92 + 29z92 − 9z + xn92) = 0

we will have that limn xn = z in norm.
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PROOF. Without loss of generality we may and do assume that the original norm is ‖ · ‖F ; i.e. F is a 1-
norming subspace. If we perform the construction in Theorem 4 for a fixed ε > 0 we obtain the equivalent
σ(X,F )-lower semicontinuous norm ‖ · ‖ε. Let us take dn such that ‖ · ‖1/n ≤ dn‖·‖1/n. If we set

9x92 :=
∞∑
n=1

1
dn2n

‖x‖21/n

for every x ∈ X , we obtain the renorming we are looking for. Indeed, as above, if

lim
n

(29xn92 + 29z92 − 9z + xn92) = 0,

by standard convex arguments we know that

lim
n

(29xn92
1/p + 29z92

1/p − 9z + xn92
1/p) = 0

for every positive integer p, and Theorem 4 says that 9xn− z9 < 2/p for n ≥ n1/p whenever z ∈ Z. �

Remark 1 The corollary provide us with a geometrical proof of the renorming implication in Theorem 2
based on the Deville-Godefroy-Zizler decomposition method only.

Corollary 2 Let X and Y be normed spaces with 1-norming subspaces F ⊂ X∗, G ⊂ Y ∗ and

T : X −→ Y

a bounded linear map, continuous for the σ(X,F ) and σ(Y,G) topologies. Given ε > 0 we assume there
are subsets An ⊂ Y such that for every y ∈ ∪∞n=1An we can find p ∈ N and a σ(Y,G)-open half space L
such that y ∈ Ap∩L and diam(Ap∩L) ≤ ε. ThenX admits an equivalent σ(X,F )-lower semicontinuous
norm 9 ·9T such that the condition

lim
n

(
29xn92

T + 29x92
T − 9x+ xn92

T

)
= 0

implies that for every δ > 0 there is some integer nδ such that for all n ≥ nδ we have

9T (xn)− T (x)9 < ε+ δ‖T‖

whenever T (x) ∈ ∪∞n=1An. In particular, when Y admits an equivalent σ(Y,G)-lower semicontinuous
and LUR norm we will have that the condition

lim
n

(29xn92
T + 29x92

T − 9x+ xn92
T ) = 0

implies that limn T (xn) = T (x) in the norm of Y .

PROOF. Let us fix the integer n and apply Theorem 3 to the set T−1(An) together with the family Hn of
σ(X,F )-open half spaces given by T−1(L) for every L, a σ(Y,G)-open half space, such that An ∩ L 6= ∅
and diam(An ∩ L) ≤ ε. We will get an equivalent norm ‖ · ‖n on X such that, the condition

lim
m

(
29xm92

n + 29x92
n − 9x+ xm92

n

)
= 0

implies that xmand x are in the sets

co(T−1(An) ∩ T−1(Lm)) +B(0, δ)
σ(Y,G)

for m ≥ mδ , where diam(An ∩ Lm) ≤ ε, and therefore ‖T (xm) − T (x)‖ ≤ ε + δ‖T‖ for all m ≥ mδ

whenever T (x) ∈ An ∩ L with some σ(Y,G)-open half space L and diam(An ∩ L) ≤ ε. Adding all this
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norms we get the equivalent norm ‖ · ‖T we are looking for. Indeed, let us take hn such that ‖ · ‖n ≤ hn‖ · ‖;
if we set

9x92 :=
∞∑
n=1

1
hn2n

‖x‖2n

for every x ∈ X , we obtain the renorming we are looking for. The proof follows the same arguments as
above. When Y admits the LUR norm we have the former conditions for all ε > 0 by Theorem 2, and the
conclusion then follows. �

4 The network construction
Our approach for LUR renormings is also based on the topological concept of network. A family of subsets
N in a topological space (T, T ) is a network for the topology T if for every open set W ∈ T , and every
x ∈W , there is some N ∈ N such that x ∈ N ⊂W .

Let us recall the following definitions and results:

Definition 2 Let X be a normed space and F a norming subspace in the dual X∗. A family B :=
{Bi : i ∈ I } of subsets on X is called σ(X,F )-slicely isolated (or σ(X,F )-slicely relatively discrete) if
it is a disjoint family of sets such that for every

x ∈
⋃
{Bi : i ∈ I }

there exist a σ(X,F )-open half space H and i0 ∈ I such that

H
⋂⋃

{Bi : i ∈ I, i 6= i0 } = ∅ and x ∈ Bi0 ∩H.

A main result, obtained by using the approach of [16], is the following one; it is equivalent to Theorem 2
if we have in mind Stone’s theorem on the paracompactness of a metric space, see [16, chapter III].

Theorem 5 ([16, chapter III, Theorem 3.1, pag 49]) LetX be a normed space and F a norming sub-
space in the dual X∗. The space X admits an equivalent σ(X,F )-lower semicontinuous and locally uni-
formly rotund norm if, and only if, the norm topology has a networkN that can be written asN = ∪∞n=1Nn
where each of the families Nn is σ(X,F )- slicely isolated.

In the monograph [16] the network point of view for locally uniformly rotund renormings is the central
one. The approach to construct networks make extensive use of Stone’s theorem on the paracompactness of
metric spaces. We shall construct in this section the network that characterize the property of being locally
uniformly rotund renormable, but our approach will be completely geometrical as the one presented in [14]
for the weak topology, see lemma 3.19 in [16] too. We have presented the next result in [17] but using
Stone’s theorem in the construction.

Theorem 6 LetX be a normed space with a σ(X,F )-lower semicontinuous and locally uniformly rotund
norm for some subspace F ⊂ X∗. Then the norm topology admits a network N such that N = ∪∞n=1Nn
where the families Nn are norm discrete, σ(X,F )-slicely isolated, and consisting of sets which are the
difference of convex and σ(X,F )-closed subsets of X for every n ∈ N.

PROOF. In a LUR norm all points in the unit sphere are denting points, then for ε > 0 fixed we will have a
family of σ(X,F )-open half spacesHε, covering the unit sphere SX of our σ(X,F )-lower semicontinuous
and LUR norm, and such that ‖ · ‖ − diam(H ∩ BX) < ε for all H ∈ Hε. Let us choose a well order
relation for the elements inHε and let us write

Hε = {Hγ : γ < Γ }
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where we denote Hγ = {x ∈ X : fγ(x) > λγ }, fγ ∈ BX∗ ∩ F .
We set

Mγ := Hγ ∩BX \
(⋃
{Hβ ∩BX : β < γ }

)
for every γ < Γ. Let us define the sets Mn

γ := {x ∈ Mγ : fγ(x) ≥ λγ + 1/n }. It follows that, when
x ∈Mn

γ and y ∈Mn
β for γ 6= β then we have either

fγ(x)− fγ(y) ≥ 1/n (when γ < β), (1)

or
fβ(y)− fβ(x) ≥ 1/n (when β < γ ), (2)

but in any case
‖x− y‖ ≥ 1/n (3)

since the linear functionals fγ , fβ are assumed to be in BX∗ ∩ F . If we fix x ∈ SX the LUR condition of
the norm gives a slice

G = { y ∈ BX : g(y) > µ }
with g(x) > µ, g ∈ BX∗ ∩F and ‖ · ‖ − diam(G) < 1/n, thus G meets at most one member of the family
of sets {Mn

γ : γ < Γ } by (3).
These families of closed and convex subsets of X cover the unit sphere SX and they suffice to describe

the network there. Nevertheless, to go over the whole space X we need to make the difference of closets
convex sets. Indeed, take x ∈ X \ {0}, and y := x/‖x‖. If we take γ0 < Γ so that y ∈ Mγ0 and n big
enough to have fγ0(y) > λγ0 + 1/n, we will have a rational number 0 < µx < 1, close enough to one,
such that fγ0(µxy) > λγ0 + 1/n. The LUR condition of the norm tell us that there is δx > 0 such that
‖(y + z)/2‖ > 1− δx implies that ‖y − z‖ < 1/n whenever the condition ‖z‖ ≤ 1 holds.

Let us take a rational number ρ such that

ρ > ‖x‖ > ρ(1− δx) and ρµx < ‖x‖.

Then x ∈ ρMn
γ0 and ‖ · ‖ − diam(ρMn

γ0) < ρε. Moreover, if we choose gx ∈ BX∗ ∩ F such that
gx(x) > ρ(1− δx) then, for any z ∈ ∪{ ρMn

γ : γ < Γ } with gx(z) > ρ(1− δx), we will have

gx(z/ρ) > 1− δx and gx(y) >
ρ(1− δx)
‖x‖

> 1− δx,

thus ‖y+z/ρ2 ‖ > 1− δx, and we will have ‖y− z/ρ‖ < 1/n, from where it follows that γ = γ0. Therefore,
if we consider sets Mn,p

γ := {x ∈Mn
γ ∩ SX : δx > 1/p }, and we take the family

{ ρMn,p
γ \ ρ(1− 1/p)BX : γ < Γ }

for rational numbers ρ and integers p, n fixed, we form an slicely isolated family of sets. All together, with
the same construction done for every ε > 0 we obtain a family⋃{

{ ρMn,p
γ (ε) \ ρ(1− 1/p)BX : γ < Γ } : ρ ∈ Q, n, p ∈ N, ε > 0

}
which is a network for the norm topology. Taking ε = 1/r, r = 1, 2, . . . we get the network for the norm
we are looking for. �

Remark 2 Let us observe that we have completed a geometrical proof of Theorem 2. Indeed, Theorem 6
provides us with the σ(X,F )-slicely isolated network N = ∪∞n=1Nn for the norm topology. Setting Aq :=
∪{N : N ∈ Nq } for q ∈ N and given x ∈ X and ε > 0, if we take p and M ∈ Np with x ∈ M ⊂
B(x, ε/2), then by the slicely isolatedness property of the family Np there is a σ(X,F )-open half space H
with x ∈ H ∩ Ap ⊂ M . Thus ‖ · ‖ − diam(H ∩ Ap) ≤ ‖·‖ − diam(M) ≤ ε. The reverse implication
follows from corollary 1.
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Let us remark that the space l∞ is a complemented subspace of a Banach space X with a Markushevich
basis { (xi, fi) ∈ X ×X∗ : i ∈ I } by a result of Plichko, [4, Theorem 6.45], and that l∞ does not admit
equivalent LUR norm, [2, Theorem II.7.10]. It follows that the linear span

E := span{xi : i ∈ I }

give us an example of a normed space with an equivalent LUR norm, [5, Theorem 3.48] or [15, example
2], since the proof is valid for a normed space, but such that its completion X doest not have it.

The network provides us with criteria to see when the closure of a LUR renormable space could be
LUR renormable too. For instance, we can prove the following:

Theorem 7 Let E be a normed space with a norming subspace F ⊂ E∗ and X its completion. There is
a network N = ∪Nn of the norm topology on E where each of the families Nn is σ(E,F )-slicely isolated
and such that the family of sets:

B := {N + εBX : N ∈ N , ε > 0 }

is a basis for the norm topology of X if, and only if, the completion X admits an equivalent σ(X,F )-lower
semicontinuous and LUR equivalent norm.

In the proof we are going to use the following result that we have obtained in [17].

Proposition 1 Let X be a normed space with a norming subspace F ⊂ X∗ and ‖ · ‖F the equivalent
norm associated with it. Given a σ(X,F )-slicely isolated family A := {Ai : i ∈ I } there exist de-
compositions with increasing sequences of subsets (Ani )n, Ai = ∪∞n=1A

n
i for every i ∈ I , such that the

families
{Ani +B‖·‖F

(0, 1/4n) : i ∈ I }

are σ(X,F )-slicely isolated and norm discrete for every n ∈ N.

PROOF OF THEOREM 7. If the normed space X admits an equivalent σ(X,F )-lower semicontinuous
and LUR norm, we have proved in [17] that it has a basis of the norm topology B = ∪Bn such that every
one of the families of open sets Bn is σ(X,F )-slicely isolated and norm discrete. It now follows that
Nn := Bn ∩ F are families of non- void subsets in E since E is dense in X , and they are σ(E,F )-slicely
isolated and norm discrete withN := ∪∞n=1Nn a basis of the norm topology of E. It is clear that the family
of sets

B := {N + εBX : N ∈ N , ε > 0 }

is a basis of the norm topology of X . Indeed, since every set B ∈ B is open and E is dense we have
B ⊂ B ∩ E. This fact together with the regularity of the norm topology complete the proof for this
implication.

Let us prove now the converse result. Without loss of generality we can assume that the given norm in
X coincides with ‖ · ‖F . Let us fix a σ-slicely isolated (for σ(E,F )) networkN of the norm topology in E
such that the family of sets

B := {N + εBX : N ∈ N , ε > 0 }

is a basis of the norm topology of X . Let us write N = ∪Nn where each of the families Nn is a σ(E,F )-
slicely isolated family of sets in E, thus σ(X,F )-slicely isolated in X , too. We apply the Proposition 1 and
we can write:

Nn := {Nn
j : j ∈ In },

Nn
i =

⋃∞
m=1N

n
i (m), where Nn

i (1) ⊂ Nn
i (2) ⊂ · · · ⊂ Nn

i (m) ⊂ · · · and the families

{Nn
i (m) + (1/4m)BX) : i ∈ In },
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for every fixed integer m, are σ(X,F )-slicely isolated and norm discrete. Moreover, the families⋃
n,m∈N

{Nn
i (m) : i ∈ In }

form a σ(X,F )-slicely isolated network of the norm topology on the whole space X as we are going to
see now. Let us take x ∈ X and ε > 0. Then there is some pair of positive integers p, q such that
x ∈ Np

i (q) ⊂ B(x, ε) for some i ∈ Ip. Indeed, if not we will have some point xp,q ∈ Np
i (q)∩(X \B(x, ε))

whenever
x ∈ Np

i (q) + δBX ⊂ B(x, ε)

for some p, q ∈ N, some i ∈ Ip and some δ > 0. Let us begin with the first integers p1 such that

x ∈ Ni + δ1BX ⊂ B(x, ε),

for some i ∈ Ip1 and some δ1 > 0. Thus we can select the first integer q1 such that

x ∈ Np1
i (q1) + δ1BX ⊂ B(x, ε)

and take x1 ∈ Np1
i (q1) ∩ (X \ B(x, ε)) by our assumption. Taking 0 < δ2 small enough we will have

B(x, δ2) ⊂ B(x, ε) too. Let us take again first integers p2 such that

x ∈ Ni + δ3BX ⊂ B(x, δ2),

for some i ∈ Ip2 and some δ3 > 0 together with the first integer q2 such that

x ∈ Np2
i (q2) + δ3BX ⊂ B(x, δ2),

then we can take again a point x2 ∈ Np1
i (q1)∩ (X \B(x, ε)) together with 0 < δ4 < δ2/2. If we continue

in this way, by induction we obtain a sequence (xn) in the closed setX \B(x, ε) with a decreasing sequence
(δ2n) ↓ 0 such that xn ∈ B(x, δ2n), a contradiction, and the proof is over. �
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Campus de Espinardo. Campus de Espinardo.
Universidad de Murcia. Universidad de Murcia.
E-30100 Espinardo. SPAIN. E-30100 Espinardo. SPAIN.
joseori@um.es stroya@um.es

85


