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Integral Equations
and Operator Theory

On the structure of L1 of a vector measure via
its integration operator

J.M. Calabuig, J. Rodŕıguez and E.A. Sánchez-Pérez

Abstract. Geometric and summability properties of the integration operator
associated to a vector measure m can be translated in terms of structure prop-
erties of the space L1(m). In this paper we study the cases of the integration
operator being: (i) p-concave on Lp(m), or (ii) positive p-summing on L1(m)
(where 1 ≤ p < ∞). We prove that (i) is equivalent to saying that L1(m)
contains continuously the Lp space of a (non-negative scalar) control measure
for m. On the other hand, we show that (ii) holds if and only if L1(m) is order
isomorphic to the L1 space of a non-negative scalar measure.
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1. Introduction

Let E be an order continuous Banach function space (over a non-negative
scalar measure) having weak order unit. It is known that there is a vector mea-
sure m such that E is order isomorphic to L1(m), see [3, Theorem 8] or [12,
Proposition 3.30]. In this case, we say that m represents E. This representation
is not unique. However, the properties of the integration operator associated to
some/every vector measure representing E determine some features of E. From
this point of view, properties of the integration operator like compactness or weak
compactness have already been studied (see [12, Section 3.3] and the references
therein).

In this paper we analyze the continuous injection in E of usual Lebesgue
spaces Lr(λ) (λ being a non-negative scalar measure and 1 ≤ r < ∞). Some
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results in this direction can be found in [12, Chapter 6]. Our arguments are closely
related to the ones presented there.

In our main result, Theorem 2.3, we characterize the vector-valued norm
inequalities that the integration operator associated to certain vector measure m
representing E must satisfy in order to have the following property:

There is a (non-negative scalar) control measure λ for m such that

Lr(m) ↪→ Lr(λ) ↪→ L1(m) ' E.

Moreover, in Theorem 2.3 we also prove that the property above is equivalent to
saying that the integration operator on Lr(m) is r-concave. Here, the notation
E1 ↪→ E2 (where E1 and E2 are Banach function spaces over non-negative scalar
measures defined on the same measurable space) means that ‘identity’ mapping is
a well-defined one-to-one operator (i.e. linear continuous mapping) from E1 to E2.

The last part of the paper is devoted to the ‘extreme case’: when is E order
isomorphic to L1(λ) for some non-negative scalar measure λ? In Theorem 2.7 we
show that the positive p-summability (1 ≤ p <∞) of the integration operator as-
sociated to some/every vector measure representing E provides a complete answer
to the previous question.

Terminology and preliminaries. All unexplained terminology can be found in our
standard references [6], [9] and [12]. All our vector spaces are real. Given a Banach
space Y , the symbol Y ′ stands for the topological dual of Y and the duality is
denoted by 〈·, ·〉. We write BY to denote the closed unit ball of Y . If in addition
Y is a Banach lattice, we write Y + and B+

Y for the positive cone of Y and its
intersection with BY , respectively. A relevant class of Banach lattices is that of
Banach function spaces. Given a finite measure space (Ω,Σ, µ), a linear subspace
E of L0(µ) equipped with a complete norm ‖·‖E is called a Banach function space
over µ if the following conditions are satisfied: (i) if f ∈ L0(µ) and g ∈ E are
such that |f | ≤ |g| (for the µ-a.e. order), then f ∈ E and ‖f‖E ≤ ‖g‖E ; (ii) every
simple function belongs to E; and (iii) the ‘identity’ defines a one-to-one operator
from E to L1(µ).

Throughout this paper X is a Banach space, (Ω,Σ) is a measurable space and
m : Σ→ X is a (countably additive) vector measure. By a control measure for m
we mean a non-negative scalar measure λ on (Ω,Σ) such that λ(A) = 0 if and only
if ‖m‖(A) = 0, where ‖m‖ denotes the semivariation of m. For each x′ ∈ X ′ we
write 〈m,x′〉 to denote the scalar measure defined by 〈m,x′〉(A) := 〈m(A), x′〉, for
all A ∈ Σ. From now on we fix a Rybakov control measure for m, that is, a control
measure of the form µ = |〈m,x′0〉| with x′0 ∈ BX′ , cf. [6, p. 268]. In this way, a
property holds µ-a.e. if and only if it holds ‖m‖-a.e.

A Σ-measurable function f : Ω → R is m-integrable if f is integrable with
respect to 〈m,x′〉 for every x′ ∈ X ′ and, for each A ∈ Σ, there exists a vector∫
A
f dm ∈ X such that 〈

∫
A
f dm, x′〉 =

∫
A
f d〈m,x′〉 for all x′ ∈ X ′. Given 1 ≤

p < ∞, the space Lp(m) is the Banach function space over µ made up of all
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equivalence classes of functions f such that |f |p is m-integrable, endowed with the
norm

‖f‖Lp(m) := sup
x′∈BX′

(∫
Ω

|f |pd|〈m,x′〉|
) 1
p

.

The space Lp(m) is p-convex, order continuous and has weak unit. Observe that
‖f‖pLp(m) = ‖|f |p‖L1(m) for all f ∈ Lp(m). For the basic properties of this space,
we refer the reader to [7] and [12, Chapter 3].

The operator I1
m : L1(m) → X defined by I1

m(f) :=
∫

Ω
f dm is called the

integration operator associated to m. Since Lp(m) ↪→ L1(m) (cf. [12, p. 122]), we
can also consider the operator on Lp(m) defined by

Ipm : Lp(m)→ X, Ipm(f) :=
∫

Ω

f dm.

The fact that L1(m) is order continuous ensures that its topological dual
L1(m)′ coincides with its Köthe dual L1(m)× (cf. [11, Corollary 2.6.5]) and we
identify each functional ϕ ∈ L1(m)′ with the (unique) function u ∈ L1(µ) such
that 〈f, ϕ〉 =

∫
Ω
fu dµ for all f ∈ L1(m). As usual, we write u dµ to denote the

real-valued measure on (Ω,Σ) given by A 
∫
A
u dµ.

For simplicity, from now on we just write the symbol
∫

instead of
∫

Ω
to

denote any ‘integral’ over Ω.

Remark 1.1. Let λ be a control measure for m. The following statements are
equivalent:

(1) L1(m) ↪→ L1(λ).
(2) λ = u dµ for some u ∈ L1(m)′, u ≥ 0.

Proof. (1)⇒(2). We can write λ = u dµ for some u ∈ L1(µ), u ≥ 0. Since the linear
functional on L1(m) given by f  

∫
f dλ =

∫
fu dµ is continuous, it follows that

u belongs to L1(m)′.
(2)⇒(1). For each f ∈ L1(m) we have f ∈ L1(λ) and

‖f‖L1(λ) =
∫
|f |u dµ ≤ ‖f‖L1(m)‖u‖L1(m)′ ,

hence L1(m) ↪→ L1(λ). �

2. Results

Let r ≥ 1 and p, q > 1 be real numbers such that 1/r = 1/p + 1/q. Then
the product fg belongs to Lr(m) whenever f ∈ Lp(m) and g ∈ Lq(m), with
‖fg‖Lr(m) ≤ ‖f‖Lp(m)‖g‖Lq(m), cf. [12, (3.88)]. Therefore, we can consider the
bilinear continuous mapping Lp(m)× Lq(m)→ X defined by

(f, g) Irm(fg) =
∫
fg dm.
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In [8] this approach has been used to obtain factorization theorems for operators
defined between Banach lattices satisfying adequate convexity/concavity proper-
ties. In our main result, Theorem 2.3 below, we discuss the r-concavity of the
integration operator Irm : Lr(m)→ X in terms of the bilinear mapping described
above. Moreover, we show that the r-concavity of Irm is equivalent to the fact that
Lr(m) ↪→ Lr(λ) ↪→ L1(m) for some control measure λ for m. We stress that the
1-concavity of I1

m is analyzed in [12] (see Section 3.4 and Chapter 6), where some
relevant examples can also be found.

To state our Theorem 2.3 we need the following:

Definition 2.1. A set S ⊂ B+
L1(m)′ is positively norming for L1(m) if

‖f‖L1(m) = sup
ϕ∈S
〈|f |, ϕ〉 for all f ∈ L1(m).

Remark 2.2. Some examples of positively norming sets:
• B+

L1(m)′ is positively norming for L1(m).
• If λ is a non-negative scalar measure on (Ω,Σ), then the singleton {χΩ} ⊂
B+
L∞(λ) is positively norming for L1(λ).

• Given x′ ∈ BX′ , define ϕx′ ∈ B+
L1(m)′ by ϕx′(f) :=

∫
f d|〈m,x′〉|. The Radon-

Nikodým derivative of |〈m,x′〉| with respect to µ
d|〈m,x′〉|

dµ
=
∣∣∣d〈m,x′〉

dµ

∣∣∣
is the function associated to ϕx′ via the identification L1(m)′ ' L1(m)×.
Clearly, the set {ϕx′ : x′ ∈ BX′} is positively norming for L1(m).

Condition (3) in Theorem 2.3 involves some spaces of multiplication operators
recently studied in [2]. Recall that if E1 and E2 are two Banach function spaces
over non-negative scalar measures defined on (Ω,Σ), then an operator T : E1 → E2

is called a multiplication operator if there is (a unique) h ∈ E2 such that T (f) =
fh for all f ∈ E1; in this case we write T = Mh. The space M(E1, E2) of all
multiplication operators from E1 to E2 becomes a Banach space when endowed
with the operator norm, cf. [10].

Theorem 2.3. Let r ≥ 1 and p, q > 1 be such that 1/r = 1/p+1/q. Let S ⊂ B+
L1(m)′

be a weak∗ compact convex set which is positively norming for L1(m). The following
statements are equivalent:
(1) There is a constant K > 0 such that the inequality( n∑

i=1

∥∥∥∫ figi dm
∥∥∥r) 1

r ≤ K
∥∥∥( n∑

i=1

|fi|p
) 1
p
∥∥∥
Lp(m)

∥∥∥( n∑
i=1

|gi|q
) 1
q
∥∥∥
Lq(m)

holds for every f1, . . . , fn ∈ Lp(m) and g1, . . . , gn ∈ Lq(m), n ∈ N.
(2) There exist a constant K > 0 and u0, v0 ∈ S such that the inequality∥∥∥∫ fg dm

∥∥∥ ≤ K(∫ |f |pu0 dµ
) 1
p
(∫
|g|qv0 dµ

) 1
q



Vol. 99 (9999) On the structure of L1 of a vector measure 5

holds for every f ∈ Lp(m) and g ∈ Lq(m).
(3) There exist u0, v0 ∈ S such that:

– u0 dµ and v0 dµ are control measures for m.
– Each f ∈ Lp(u0 dµ) induces a multiplication operator

Mf ∈M(Lq(v0 dµ), L1(m)).

– The mapping f  Mf is a one-to-one operator from Lp(u0 dµ) to
M(Lq(v0 dµ), L1(m)).

(4) There exist u0, v0 ∈ S such that for h0 = u
r/p
0 v

r/q
0 ∈ B+

L1(m)′ we have

Lr(m) ↪→ Lr(h0 dµ) ↪→ L1(m).

(5) There is a control measure ν for m such that

Lr(m) ↪→ Lr(ν) ↪→ L1(m).

(6) The integration operator Irm : Lr(m) → X is r-concave, that is, there is a
constant K > 0 such that the inequality( n∑

i=1

∥∥∥∫ fi dm
∥∥∥r) 1

r ≤ K
∥∥∥( n∑

i=1

|fi|r
) 1
r
∥∥∥
Lr(m)

holds for every f1, . . . , fn ∈ Lr(m), n ∈ N.

Proof. (1)⇒(2). Observe first that S × S is a convex compact subset of the linear
space L1(m)′ × L1(m)′ endowed with the (locally convex) product topology T
obtained from (L1(m)′,weak∗). We now divide the proof of the implication (1)⇒(2)
in several steps.

Step 1. Fix f1, . . . , fn ∈ Lp(m) and g1, . . . , gn ∈ Lq(m). Using (1), the fact
that S is positively norming and Young’s inequality we obtain

n∑
i=1

∥∥∥∫ figi dm
∥∥∥r ≤

≤ Kr sup
h∈S

( n∑
i=1

∫
|fi|ph dµ

) r
p

sup
h∈S

( n∑
i=1

∫
|gi|qh dµ

) r
q ≤

≤ Kr r

p
sup
h∈S

( n∑
i=1

∫
|fi|ph dµ

)
+
Kr r

q
sup
h∈S

( n∑
i=1

∫
|gi|qh dµ

)
. (2.1)

Define the function φ : S × S → R (depending on the fi’s and gi’s) by

φ(u, v) :=
n∑
i=1

∥∥∥∫ figi dm
∥∥∥r −Krr

n∑
i=1

(1
p

∫
|fi|pu dµ+

1
q

∫
|gi|qv dµ

)
(2.2)

for all (u, v) ∈ S × S. Clearly, φ is affine (hence convex) and T-continuous. In-
equality (2.1) can be read as

inf
(u,v)∈S×S

φ(u, v) ≤ 0
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and, since this infimum is attained (bear in mind that S × S is T-compact and φ
is T-continuous), it follows that φ(uφ, vφ) ≤ 0 for some (uφ, vφ) ∈ S × S.

Step 2. Let Φ be the family made up of all φ’s which can be constructed (as
in Step 1 ) from different sets of functions in Lp(m) and Lq(m). We claim that Φ
is a convex cone of RS×S . Indeed, take α1, α2 ≥ 0 and, for each j ∈ {1, 2}, take
nj ∈ N and choose functions f1,j , . . . , fnj ,j ∈ Lp(m) and g1,j , . . . , gnj ,j ∈ Lq(m)
whose associated function belonging to Φ (via (2.2)) is denoted by φj . Let φ ∈ Φ
be the function associated to the collection:

α
1/p
j fi,j ∈ Lp(m), α

1/q
j gi,j ∈ Lq(m), j ∈ {1, 2}, i ∈ {1, . . . , nj}.

A direct computation shows that α1φ1 + α2φ2 = φ. This proves the claim.
Step 3. Ky Fan’s lemma (cf. [5, Lemma 9.10]) applied to the family Φ ensures

the existence of u0, v0 ∈ S such that φ(u0, v0) ≤ 0 for all φ ∈ Φ. In particular, for
each f1 ∈ Lp(m) and g1 ∈ Lq(m) we have∥∥∥∫ f1g1 dm

∥∥∥r ≤ Kr r

p

(∫
|f1|pu0 dµ

)
+
Kr r

q

(∫
|g1|qv0 dµ

)
. (2.3)

Take f ∈ Lp(m) and g ∈ Lq(m). Suppose without loss of generality that a :=
(
∫
|f |pu0 dµ)1/p and b := (

∫
|g|qv0 dµ)1/q are non-zero. Inequality (2.3) applied to

f1 := (1/a)f ∈ Lp(m) and g1 := (1/b)g ∈ Lq(m) yields

1
arbr

∥∥∥∫ fg dm
∥∥∥r ≤

≤ Kr r

p ap

(∫
|f |pu0 dµ

)
+
Kr r

q bq

(∫
|g|qv0 dµ

)
=
Kr r

p
+
Kr r

q
= Kr,

hence ‖
∫
fg dm‖ ≤ K(

∫
|f |pu0 dµ)1/p(

∫
|g|qv0 dµ)1/q. This completes the proof of

the implication (1)⇒(2).
(2)⇒(3). We first show that u0 dµ is a control measure for m. To this end,

take A ∈ Σ with (u0 dµ)(A) = 0, that is,
∫
χAu0 dµ = 0. Given any B ⊂ A with

B ∈ Σ, condition (2) applied to f = χB and g = 1 implies that m(B) = 0, hence
‖m‖(A) = 0. Similarly, v0 dµ is a control measure for m.

Let Y1 ⊂ Lp(u0 dµ) and Y2 ⊂ Lq(v0 dµ) be the linear subspaces made up
of all simple functions. Given f ∈ Y1 and g ∈ Y2, their product fg is again a
simple function, so it belongs to L1(m). Its norm can be computed as ‖fg‖L1(m) =
supz∈BL∞(µ)

‖
∫
fgz dm‖ (cf. [12, Lemma 3.11]) and condition (2) yields

‖fg‖L1(m) = sup
z∈BL∞(µ)

∥∥∥∫ fgz dm
∥∥∥ ≤ K ‖f‖Lp(u0 dµ) ‖g‖Lq(v0 dµ).

Thus we can define a bilinear continuous mapping P : Y1 × Y2 → L1(m) by
P(f, g) := fg. Since Y1 and Y2 are dense in Lp(u0 dµ) and Lq(v0 dµ), respectively,
a standard argument ensures the existence of a bilinear continuous mapping P :
Lp(u0 dµ)× Lq(v0 dµ)→ L1(m) extending P.

We claim that fg ∈ L1(m) and fg = P(f, g) whenever f ∈ Lp(u0 dµ) and
g ∈ Lq(v0 dµ). Indeed, choose sequences (fn) in Y1 and (gn) in Y2 such that
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‖fn − f‖Lp(u0 dµ) → 0 and ‖gn − g‖Lq(v0 dµ) → 0. We can assume without loss of
generality that fn → f u0 dµ-a.e. and gn → g v0 dµ-a.e. Then fngn → fg µ-a.e.
On the other hand, the continuity of P ensures that P(fn, gn) = fngn → P(f, g)
in L1(m), and so we have fngn → P(f, g) in L1(µ) as well (because µ = |〈m,x′0〉|
for some x′0 ∈ BX′). It follows that fg ∈ L1(m) and fg = P(f, g).

Therefore, for each f ∈ Lp(u0 dµ) we can define a multiplication operator

Mf : Lq(v0 dµ)→ L1(m), Mf (g) := fg,

with norm ‖Mf‖ ≤ ‖P‖ ‖f‖Lp(u0 dµ). The natural mapping f  Mf is a one-to-one
operator from Lp(u0 dµ) to M(Lq(v0 dµ), L1(m)), as required.

(3)⇒(4). Set h0 := u
r/p
0 v

r/q
0 . Since 0 ≤ h0 ≤ r

pu0 + r
q v0 (by Young’s inequal-

ity) and r
pu0 + r

q v0 ∈ B+
L1(m)′ , we also have h0 ∈ B+

L1(m)′ . Moreover, since u0 dµ

and v0 dµ are control measures for m, we can assume without loss of generality
that u0 > 0 and v0 > 0 pointwise.

Fix h ∈ Lr(h0 dµ). Set

f := sign(h)|h|
r
p

( v0

u0

) r
pq ∈ Lp(u0 dµ) and g := |h|

r
q

(u0

v0

) r
pq ∈ Lq(v0 dµ).

According to (3), h = fg ∈ L1(m) and

‖h‖L1(m) ≤ ‖Mf‖ ‖g‖Lq(v0 dµ) ≤ K ‖f‖Lp(u0 dµ) ‖g‖Lq(v0 dµ)

for some constant K > 0 independent of h. But

‖f‖Lp(u0 dµ) ‖g‖Lq(v0 dµ) =
(∫
|h|rh0 dµ

) 1
p
(∫
|h|rh0 dµ

) 1
q

= ‖h‖Lr(h0 dµ),

hence ‖h‖L1(m) ≤ K‖h‖Lr(h0 dµ).
This shows that the ‘identity’ mapping from Lr(h0 dµ) to L1(m) is a well-

defined one-to-one operator. In particular, h0 dµ is a control measure for m and
so L1(m) ↪→ L1(h0 dµ), hence Lr(m) ↪→ Lr(h0 dµ).

(4)⇒(5). Just bear in mind that the condition Lr(m) ↪→ Lr(h0 dµ) implies
that h0 dµ is a control measure for m.

(5)⇒(6). By Remark 1.1 we can write λ = h dµ for some h ∈ L1(m)′ with
h ≥ 0. We can assume further that h ∈ B+

L1(m)′ . Let K > 0 be a constant such
that ‖f‖L1(m) ≤ K‖f‖Lr(λ) for all f ∈ Lr(λ). Given simple functions f1, . . . , fn ∈
Lr(m), we have( n∑

i=1

∥∥∥∫ fi dm
∥∥∥r) 1

r ≤
( n∑
i=1

‖fi‖rL1(m)

) 1
r ≤

≤ K
( n∑
i=1

‖fi‖rLr(λ)

) 1
r

= K
(∫ ( n∑

i=1

|fi|r
)
dλ
) 1
r

=

= K
(∫ ( n∑

i=1

|fi|r
)
h dµ

) 1
r ≤ K

∥∥∥( n∑
i=1

|fi|r
) 1
r
∥∥∥
Lr(m)

.
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Since simple functions are dense in Lr(m) (because this space is order continuous,
cf. [12, Proposition 3.28]), the r-concavity of Irm can be deduced easily from the
previous chain of inequalities. To this end, it suffices to bear in mind that the
mapping from Lr(m) to L1(m) given by f  |f |r is continuous because, as in the
case of scalar measures (cf. [13, Chapter 3, Exercise 24]), the inequality∥∥|f |r − |g|r∥∥

L1(m)
≤ r

(
‖f‖r−1

Lr(m) + ‖g‖r−1
Lr(m)

)
‖f − g‖Lr(m)

holds for all f, g ∈ Lr(m).
(6)⇒(1). Given f1, . . . , fn ∈ Lp(m) and g1, . . . , gn ∈ Lq(m), each product

figi belongs to Lr(m) and the r-concavity of Irm yields( n∑
i=1

∥∥∥∫ figi dm
∥∥∥r) 1

r ≤ K
∥∥∥( n∑

i=1

|figi|r
) 1
r
∥∥∥
Lr(m)

. (2.4)

By Hölder’s inequality (for real numbers!) we have
n∑
i=1

|figi|r ≤
( n∑
i=1

|fi|p
) r
p
( n∑
i=1

|gi|q
) r
q

,

hence for each x′ ∈ BX′ the inequality∫ ( n∑
i=1

|figi|r
)
d|〈m,x′〉| ≤

∫ ( n∑
i=1

|fi|p
) r
p
( n∑
i=1

|gi|q
) r
q

d|〈m,x′〉|

holds and again Hölder’s inequality (now for integrals!) applied to the right hand
side of the previous inequality allows us to conclude that∫ ( n∑

i=1

|figi|r
)
d|〈m,x′〉| ≤

≤
(∫ ( n∑

i=1

|fi|p
)
d|〈m,x′〉|

) r
p
(∫ ( n∑

i=1

|gi|q
)
d|〈m,x′〉|

) r
q ≤

≤
∥∥∥( n∑

i=1

|fi|p
) 1
p
∥∥∥r
Lp(m)

∥∥∥( n∑
i=1

|gi|q
) 1
q
∥∥∥r
Lq(m)

.

As x′ ∈ BX′ is arbitrary, it follows that∥∥∥( n∑
i=1

|figi|r
) 1
r
∥∥∥
Lr(m)

≤
∥∥∥( n∑

i=1

|fi|p
) 1
p
∥∥∥
Lp(m)

∥∥∥( n∑
i=1

|gi|q
) 1
q
∥∥∥
Lq(m)

,

which combined with (2.4) yields the inequality in (1). The proof of the theorem
is over. �

Remark 2.4. In the previous theorem, the equivalence (1)⇔(2) can also be ob-
tained as a particular case of a result of Defant [4, Theorem 1]. The equivalence
(4)⇔(6) can be found essentially in [12, Section 6.4], see in particular Lemma 6.39,
Proposition 6.40 and Theorem 6.41.
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Given 1 ≤ p < ∞, a Banach function space E is called p-concave (resp. p-
convex) if the identity operator on E is p-concave (resp. p-convex), that is, there
is a constant K > 0 such that the inequality( n∑

i=1

‖zi‖pE
) 1
p ≤ K

∥∥∥( n∑
i=1

|zi|p
) 1
p
∥∥∥
E

(resp. the reverse one)

holds for every z1, . . . , zn ∈ E, n ∈ N. It is known that E is order isomorphic
to the Lp space of a non-negative scalar measure whenever it is simultaneously
p-concave and p-convex, cf. [9, p. 59]. As Lp(m) is always p-convex, the following
result (cf. [12, Proposition 3.74]) can be seen as a specialized version of the previous
statement.

Corollary 2.5. The following statements are equivalent:
(1) Lp(m) is p-concave for some 1 ≤ p <∞.
(2) L1(m) is 1-concave.
(3) Lp(m) is p-concave for every 1 ≤ p <∞.
(4) The integration operator I1

m : L1(m)→ X is 1-concave.
(5) There is h0 ∈ B+

L1(m)′ such that the ‘identity’ map from L1(m) to L1(h0 dµ)
is an isomorphism.

(6) There is a control measure λ for m such that L1(m) is order isomorphic
to L1(λ).

Proof. The equivalence (1)⇔(2)⇔(3) follows from a simple computation. (2)⇒(4)
is straightforward. (4)⇒(5) follows from the implication (6)⇒(4) in Theorem 2.3
(taking there r = 1). For (5)⇒(6) just observe that h0 dµ is a control measure
for m. Finally, the implication (6)⇒(2) is a consequence of the 1-concavity of L1(λ)
and the general fact that p-concavity is preserved by order isomorphisms (cf. [9,
Proposition 1.d.9]). �

Following [1], we say that an operator T from a Banach function space E
to X is positive p-summing (where 1 ≤ p < ∞) if there is a constant K > 0 such
that the inequality( n∑

i=1

‖Tzi‖p
) 1
p ≤ K sup

z′∈BE′

( n∑
i=1

|〈zi, z′〉|p
) 1
p

holds for every z1, . . . , zn ∈ E+. This property lies strictly between being abso-
lutely p-summing and being p-concave, see [1]. For more information about this
subject, we refer the reader to [5]. We will need the following folk characterization
of positive p-summing operators.

Remark 2.6. Let T be an operator from a Banach function space E to X and let
1 ≤ p <∞. Then T is positive p-summing if and only if there is a constant K > 0
such that the inequality( n∑

i=1

‖Tzi‖p
) 1
p ≤ K sup

z′∈BE′

( n∑
i=1

|〈|zi|, z′〉|p
) 1
p
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holds for every z1, . . . , zn ∈ E.

We arrive at the last result of the paper.

Theorem 2.7. Let E be an order continuous Banach function space having weak
order unit. The following statements are equivalent:

(1) For every vector measure ν representing E and every 1 ≤ p < ∞, the inte-
gration operator I1

ν is positive p-summing.
(2) There exist a vector measure ν representing E and 1 ≤ p < ∞ such that I1

ν

is positive p-summing.
(3) There exist a vector measure ν representing E and 1 ≤ p < ∞ such that I1

ν

is absolutely p-summing.
(4) E is order isomorphic to the L1 space of a non-negative scalar measure.

Proof. (1)⇒(2) and (3)⇒(2) are obvious. For the implication (4)⇒(3), just bear
in mind that the integration operator of the L1 space of a non-negative scalar
measure has rank 1 and, therefore, it is absolutely p-summing for any 1 ≤ p <∞.

(2)⇒(4). The case p = 1 follows from Corollary 2.5 since I1
ν is p-concave.

Assume now that p > 1 and let q > 1 such that 1/p+ 1/q = 1. By Corollary 2.5,
we only have to check that Lp(ν) is p-concave. To this end, fix f1, . . . , fn ∈ Lp(ν).
Take arbitrary g1, . . . , gn ∈ BLq(ν) and denote by µ0 a fixed Rybakov control
measure for ν. Since I1

ν is positive p-summing, Remark 2.6 ensures that

n∑
i=1

∥∥∥∫ figi dν
∥∥∥p ≤ Kp sup

h∈BL1(ν)′

n∑
i=1

|〈|figi|, h〉|p =

= Kp sup
h∈BL1(ν)′

n∑
i=1

〈|figi|, |h|〉p = Kp sup
h∈BL1(ν)′

n∑
i=1

(∫
|figi||h| dµ0

)p
(2.5)

for some constant K > 0 which depends only on I1
ν . For each 1 ≤ i ≤ n and each

h ∈ BL1(ν)′ , Hölder’s inequality implies∫
|figi||h| dµ0 ≤

(∫
|fi|p|h| dµ0

) 1
p
(∫
|gi|q|h| dµ0

) 1
q ≤

≤
(∫
|fi|p|h| dµ0

) 1
p ‖gi‖Lq(ν) ≤

(∫
|fi|p|h| dµ0

) 1
p

,

which combined with (2.5) yields

n∑
i=1

∥∥∥∫ figi dν
∥∥∥p ≤ Kp sup

h∈BL1(ν)′

n∑
i=1

∫
|fi|p|h| dµ0 =

= Kp sup
h∈BL1(ν)′

∫ ( n∑
i=1

|fi|p
)
|h| dµ0 ≤ Kp

∥∥∥( n∑
i=1

|fi|p
) 1
p
∥∥∥p
Lp(ν)

.
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Since each ‖fi‖Lp(ν) can be computed as the supremum of ‖
∫
fig dν‖ where g runs

over BLq(ν) (cf. [12, (3.64)]), we conclude that

( n∑
i=1

‖fi‖pLp(ν)

) 1
p ≤ K

∥∥∥( n∑
i=1

|fi|p
) 1
p
∥∥∥
Lp(ν)

.

It follows that Lp(m) is p-concave, as required.
(4)⇒(1). Let T : L1(λ)→ L1(ν) be an order isomorphism, where λ is a non-

negative scalar measure. We can assume without loss of generality that ‖T−1‖ = 1.
Then the functional h ∈ B+

L1(ν)′ defined by the formula 〈f, h〉 :=
∫
T−1(f) dλ

satisfies

〈|f |, h〉 =
∫
T−1(|f |) dλ =

∫
|T−1(f)| dλ = ‖T−1(f)‖L1(λ) ≥

‖f‖L1(ν)

‖T‖

for all f ∈ L1(ν). Given f1, . . . , fn ∈ L1(ν)+, we have

n∑
i=1

∥∥∥∫ fi dν
∥∥∥ ≤ n∑

i=1

‖fi‖L1(ν) ≤ ‖T‖
n∑
i=1

〈fi, h〉 ≤ ‖T‖ sup
z′∈BL1(ν)′

n∑
i=1

|〈fi, z′〉|.

Therefore, the operator I1
ν is positive 1-summing. By [1, Proposition 2], I1

ν is also
positive p-summing for all 1 ≤ p <∞. The proof is over. �

Remark 2.8. For an order continuous Banach function space E having weak order
unit, in general the statements of Theorem 2.7 are not equivalent to the following
one:

For every vector measure ν representing E and every 1 ≤ p < ∞, the
integration operator I1

ν is absolutely p-summing.

Indeed, observe that the E-valued measure A  χA (the characteristic function
of A) represents E and its corresponding integration operator is just the identity
mapping on E, which is not absolutely p-summing (for any 1 ≤ p <∞) whenever
E is infinite-dimensional.

We finish the paper with two questions:

1. We have shown that concavity type properties for the integration operator
characterize the continuous injection of Lebesgue spaces in L1(m). Is it possi-
ble to generalize these ideas to characterize the continuous injection of other
classical spaces (Lorentz, Orlicz, etc.) in L1(m)?

2. Lozanovskii lattice interpolation spaces obtained from Lebesgue spaces and
L1(m) are a well described class of Banach function spaces. Which are the
vector-valued norm inequalities for the integration operator that characterize
the continuous injection of such spaces in L1(m)?
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integrable functions with respect to a vector measure and factorizations through Lp

and Hilbert spaces, J. Math. Anal. Appl. 330 (2007), no. 2, 1249–1263. MR 2308439
(2008f:46034)

[9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II Function spaces, Re-
sults in Mathematics and Related Areas, vol. 97, Springer-Verlag, Berlin, 1979. MR
540367 (81c:46001)

[10] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces,
Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 3, 323–338. MR 1020026
(91b:46028)

[11] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR
1128093 (93f:46025)

[12] S. Okada, W.J. Ricker and E.A. Sánchez-Pérez, Optimal domain and integral ex-
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