On the structure of L^1 of a vector measure via its integration operator

J.M. Calabuig, J. Rodríguez and E.A. Sánchez-Pérez

Abstract. Geometric and summability properties of the integration operator associated to a vector measure m can be translated in terms of structure properties of the space $L^1(m)$. In this paper we study the cases of the integration operator being: (i) p-concave on $L^p(m)$, or (ii) positive p-summing on $L^1(m)$ (where $1 \leq p < \infty$). We prove that (i) is equivalent to saying that $L^1(m)$ contains continuously the L^p space of a (non-negative scalar) control measure for m. On the other hand, we show that (ii) holds if and only if $L^1(m)$ is order isomorphic to the L^1 space of a non-negative scalar measure.

Mathematics Subject Classification (2000). 46E30, 46G10.

Keywords. Banach function space, integration operator, p-concave operator, positive p-summing operator, vector measure.

1. Introduction

Let E be an order continuous Banach function space (over a non-negative scalar measure) having weak order unit. It is known that there is a vector measure m such that E is order isomorphic to $L^1(m)$, see [3, Theorem 8] or [12, Proposition 3.30]. In this case, we say that m represents E. This representation is not unique. However, the properties of the integration operator associated to some/every vector measure representing E determine some features of E. From this point of view, properties of the integration operator like compactness or weak compactness have already been studied (see [12, Section 3.3] and the references therein).

In this paper we analyze the continuous injection in E of usual Lebesgue spaces $L^r(\lambda)$ (λ being a non-negative scalar measure and $1 \leq r < \infty$). Some

J.M. Calabuig was supported by MEC and FEDER (MTM2005-08350-C03-03) and Generalitat Valenciana (GV/2007/191). J. Rodríguez was supported by MEC and FEDER (MTM2005-08379) and Generalitat Valenciana (GVPRE/2008/312). E.A. Sánchez-Pérez was supported by MEC and FEDER (MTM2006-11690-C02-01).

results in this direction can be found in [12, Chapter 6]. Our arguments are closely related to the ones presented there.

In our main result, Theorem 2.3, we characterize the *vector-valued norm* inequalities that the integration operator associated to certain vector measure m representing E must satisfy in order to have the following property:

There is a (non-negative scalar) control measure λ for m such that

$$L^r(m) \hookrightarrow L^r(\lambda) \hookrightarrow L^1(m) \simeq E.$$

Moreover, in Theorem 2.3 we also prove that the property above is equivalent to saying that the integration operator on $L^r(m)$ is r-concave. Here, the notation $E_1 \hookrightarrow E_2$ (where E_1 and E_2 are Banach function spaces over non-negative scalar measures defined on the same measurable space) means that 'identity' mapping is a well-defined one-to-one operator (i.e. linear continuous mapping) from E_1 to E_2 .

The last part of the paper is devoted to the 'extreme case': when is E order isomorphic to $L^1(\lambda)$ for some non-negative scalar measure λ ? In Theorem 2.7 we show that the *positive p-summability* $(1 \leq p < \infty)$ of the integration operator associated to some/every vector measure representing E provides a complete answer to the previous question.

Terminology and preliminaries. All unexplained terminology can be found in our standard references [6], [9] and [12]. All our vector spaces are real. Given a Banach space Y, the symbol Y' stands for the topological dual of Y and the duality is denoted by $\langle \cdot, \cdot \rangle$. We write B_Y to denote the closed unit ball of Y. If in addition Y is a Banach lattice, we write Y^+ and B_Y^+ for the positive cone of Y and its intersection with B_Y , respectively. A relevant class of Banach lattices is that of Banach function spaces. Given a finite measure space (Ω, Σ, μ) , a linear subspace E of $L^0(\mu)$ equipped with a complete norm $\|\cdot\|_E$ is called a Banach function space over μ if the following conditions are satisfied: (i) if $f \in L^0(\mu)$ and $g \in E$ are such that $|f| \leq |g|$ (for the μ -a.e. order), then $f \in E$ and $\|f\|_E \leq \|g\|_E$; (ii) every simple function belongs to E; and (iii) the 'identity' defines a one-to-one operator from E to $L^1(\mu)$.

Throughout this paper X is a Banach space, (Ω, Σ) is a measurable space and $m: \Sigma \to X$ is a (countably additive) vector measure. By a control measure for m we mean a non-negative scalar measure λ on (Ω, Σ) such that $\lambda(A) = 0$ if and only if $\|m\|(A) = 0$, where $\|m\|$ denotes the semivariation of m. For each $x' \in X'$ we write $\langle m, x' \rangle$ to denote the scalar measure defined by $\langle m, x' \rangle(A) := \langle m(A), x' \rangle$, for all $A \in \Sigma$. From now on we fix a Rybakov control measure for m, that is, a control measure of the form $\mu = |\langle m, x'_0 \rangle|$ with $x'_0 \in B_{X'}$, cf. [6, p. 268]. In this way, a property holds μ -a.e. if and only if it holds $\|m\|$ -a.e.

A Σ -measurable function $f:\Omega\to\mathbb{R}$ is m-integrable if f is integrable with respect to $\langle m,x'\rangle$ for every $x'\in X'$ and, for each $A\in\Sigma$, there exists a vector $\int_A f\,dm\in X$ such that $\langle \int_A f\,dm,x'\rangle=\int_A f\,d\langle m,x'\rangle$ for all $x'\in X'$. Given $1\leq p<\infty$, the space $L^p(m)$ is the Banach function space over μ made up of all

equivalence classes of functions f such that $|f|^p$ is m-integrable, endowed with the norm

$$\|f\|_{L^p(m)}:=\sup_{x'\in B_{X'}}\Bigl(\int_{\Omega}|f|^pd|\langle m,x'\rangle|\Bigr)^{\frac{1}{p}}.$$

The space $L^p(m)$ is p-convex, order continuous and has weak unit. Observe that $||f||_{L^p(m)}^p = |||f|^p||_{L^1(m)}$ for all $f \in L^p(m)$. For the basic properties of this space, we refer the reader to [7] and [12, Chapter 3].

The operator $I_m^1:L^1(m)\to X$ defined by $I_m^1(f):=\int_\Omega f\,dm$ is called the *integration operator* associated to m. Since $L^p(m)\hookrightarrow L^1(m)$ (cf. [12, p. 122]), we can also consider the operator on $L^p(m)$ defined by

$$I_m^p:L^p(m) o X,\quad I_m^p(f):=\int_\Omega f\,dm.$$

The fact that $L^1(m)$ is order continuous ensures that its topological dual $L^1(m)'$ coincides with its Köthe dual $L^1(m)^{\times}$ (cf. [11, Corollary 2.6.5]) and we identify each functional $\varphi \in L^1(m)'$ with the (unique) function $u \in L^1(\mu)$ such that $\langle f, \varphi \rangle = \int_{\Omega} f u \, d\mu$ for all $f \in L^1(m)$. As usual, we write $u \, d\mu$ to denote the real-valued measure on (Ω, Σ) given by $A \leadsto \int_A u \, d\mu$.

For simplicity, from now on we just write the symbol \int instead of \int_{Ω} to denote any 'integral' over Ω .

Remark 1.1. Let λ be a control measure for m. The following statements are equivalent:

- (1) $L^1(m) \hookrightarrow L^1(\lambda)$.
- (2) $\lambda = u d\mu$ for some $u \in L^1(m)'$, $u \ge 0$.

Proof. (1) \Rightarrow (2). We can write $\lambda = u d\mu$ for some $u \in L^1(\mu)$, $u \geq 0$. Since the linear functional on $L^1(m)$ given by $f \leadsto \int f d\lambda = \int f u d\mu$ is continuous, it follows that u belongs to $L^1(m)'$.

(2)
$$\Rightarrow$$
(1). For each $f \in L^1(m)$ we have $f \in L^1(\lambda)$ and

$$||f||_{L^1(\lambda)} = \int |f|u \, d\mu \le ||f||_{L^1(m)} ||u||_{L^1(m)'},$$

hence $L^1(m) \hookrightarrow L^1(\lambda)$.

2. Results

Let $r \geq 1$ and p,q > 1 be real numbers such that 1/r = 1/p + 1/q. Then the product fg belongs to $L^r(m)$ whenever $f \in L^p(m)$ and $g \in L^q(m)$, with $\|fg\|_{L^r(m)} \leq \|f\|_{L^p(m)} \|g\|_{L^q(m)}$, cf. [12, (3.88)]. Therefore, we can consider the bilinear continuous mapping $L^p(m) \times L^q(m) \to X$ defined by

$$(f,g) \rightsquigarrow I_m^r(fg) = \int fg \, dm.$$

In [8] this approach has been used to obtain factorization theorems for operators defined between Banach lattices satisfying adequate convexity/concavity properties. In our main result, Theorem 2.3 below, we discuss the r-concavity of the integration operator $I_m^r:L^r(m)\to X$ in terms of the bilinear mapping described above. Moreover, we show that the r-concavity of I_m^r is equivalent to the fact that $L^r(m)\hookrightarrow L^r(\lambda)\hookrightarrow L^1(m)$ for some control measure λ for m. We stress that the 1-concavity of I_m^1 is analyzed in [12] (see Section 3.4 and Chapter 6), where some relevant examples can also be found.

To state our Theorem 2.3 we need the following:

Definition 2.1. A set $S \subset B_{L^1(m)}^+$ is positively norming for $L^1(m)$ if

$$||f||_{L^1(m)} = \sup_{\varphi \in S} \langle |f|, \varphi \rangle \quad \text{for all } f \in L^1(m).$$

Remark 2.2. Some examples of positively norming sets:

- $B_{L^1(m)'}^+$ is positively norming for $L^1(m)$.
- If λ is a non-negative scalar measure on (Ω, Σ) , then the singleton $\{\chi_{\Omega}\} \subset B^+_{L^{\infty}(\lambda)}$ is positively norming for $L^1(\lambda)$.
- Given $x' \in B_{X'}$, define $\varphi_{x'} \in B_{L^1(m)'}^+$ by $\varphi_{x'}(f) := \int f \, d|\langle m, x' \rangle|$. The Radon-Nikodým derivative of $|\langle m, x' \rangle|$ with respect to μ

$$\frac{d|\langle m,x'\rangle|}{d\mu} = \Big|\frac{d\langle m,x'\rangle}{d\mu}\Big|$$

is the function associated to $\varphi_{x'}$ via the identification $L^1(m)' \simeq L^1(m)^{\times}$. Clearly, the set $\{\varphi_{x'}: x' \in B_{X'}\}$ is positively norming for $L^1(m)$.

Condition (3) in Theorem 2.3 involves some spaces of multiplication operators recently studied in [2]. Recall that if E_1 and E_2 are two Banach function spaces over non-negative scalar measures defined on (Ω, Σ) , then an operator $T: E_1 \to E_2$ is called a multiplication operator if there is (a unique) $h \in E_2$ such that T(f) = fh for all $f \in E_1$; in this case we write $T = M_h$. The space $\mathcal{M}(E_1, E_2)$ of all multiplication operators from E_1 to E_2 becomes a Banach space when endowed with the operator norm, cf. [10].

Theorem 2.3. Let $r \ge 1$ and p, q > 1 be such that 1/r = 1/p + 1/q. Let $S \subset B^+_{L^1(m)'}$ be a weak* compact convex set which is positively norming for $L^1(m)$. The following statements are equivalent:

(1) There is a constant K > 0 such that the inequality

$$\left(\sum_{i=1}^{n} \left\| \int f_{i} g_{i} dm \right\|^{r} \right)^{\frac{1}{r}} \leq K \left\| \left(\sum_{i=1}^{n} |f_{i}|^{p} \right)^{\frac{1}{p}} \right\|_{L^{p}(m)} \left\| \left(\sum_{i=1}^{n} |g_{i}|^{q} \right)^{\frac{1}{q}} \right\|_{L^{q}(m)}$$

holds for every $f_1, \ldots, f_n \in L^p(m)$ and $g_1, \ldots, g_n \in L^q(m)$, $n \in \mathbb{N}$.

(2) There exist a constant K > 0 and $u_0, v_0 \in S$ such that the inequality

$$\left\| \int fg \ dm \right\| \le K \left(\int |f|^p u_0 \ d\mu \right)^{\frac{1}{p}} \left(\int |g|^q v_0 \ d\mu \right)^{\frac{1}{q}}$$

holds for every $f \in L^p(m)$ and $g \in L^q(m)$.

- (3) There exist $u_0, v_0 \in S$ such that:
 - $u_0 d\mu$ and $v_0 d\mu$ are control measures for m.
 - Each $f \in L^p(u_0 d\mu)$ induces a multiplication operator

$$M_f \in \mathcal{M}(L^q(v_0 d\mu), L^1(m)).$$

- The mapping $f \rightsquigarrow M_f$ is a one-to-one operator from $L^p(u_0 d\mu)$ to $\mathcal{M}(L^q(v_0 d\mu), L^1(m))$.
- (4) There exist $u_0, v_0 \in S$ such that for $h_0 = u_0^{r/p} v_0^{r/q} \in B_{L^1(m)}^+$ we have

$$L^r(m) \hookrightarrow L^r(h_0 d\mu) \hookrightarrow L^1(m)$$
.

(5) There is a control measure ν for m such that

$$L^r(m) \hookrightarrow L^r(\nu) \hookrightarrow L^1(m)$$
.

(6) The integration operator $I_m^r: L^r(m) \to X$ is r-concave, that is, there is a constant K > 0 such that the inequality

$$\left(\sum_{i=1}^{n} \left\| \int f_{i} dm \right\|^{r}\right)^{\frac{1}{r}} \leq K \left\| \left(\sum_{i=1}^{n} |f_{i}|^{r}\right)^{\frac{1}{r}} \right\|_{L^{r}(m)}$$

holds for every $f_1, \ldots, f_n \in L^r(m)$, $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (2). Observe first that $S \times S$ is a convex compact subset of the linear space $L^1(m)' \times L^1(m)'$ endowed with the (locally convex) product topology $\mathfrak T$ obtained from $(L^1(m)', \operatorname{weak}^*)$. We now divide the proof of the implication (1) \Rightarrow (2) in several steps.

Step 1. Fix $f_1, \ldots, f_n \in L^p(m)$ and $g_1, \ldots, g_n \in L^q(m)$. Using (1), the fact that S is positively norming and Young's inequality we obtain

$$\sum_{i=1}^{n} \left\| \int f_{i}g_{i} dm \right\|^{r} \leq$$

$$\leq K^{r} \sup_{h \in S} \left(\sum_{i=1}^{n} \int |f_{i}|^{p} h d\mu \right)^{\frac{r}{p}} \sup_{h \in S} \left(\sum_{i=1}^{n} \int |g_{i}|^{q} h d\mu \right)^{\frac{r}{q}} \leq$$

$$\leq \frac{K^{r} r}{p} \sup_{h \in S} \left(\sum_{i=1}^{n} \int |f_{i}|^{p} h d\mu \right) + \frac{K^{r} r}{q} \sup_{h \in S} \left(\sum_{i=1}^{n} \int |g_{i}|^{q} h d\mu \right). \quad (2.1)$$

Define the function $\phi: S \times S \to \mathbb{R}$ (depending on the f_i 's and g_i 's) by

$$\phi(u,v) := \sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} - K^{r}r \sum_{i=1}^{n} \left(\frac{1}{p} \int |f_{i}|^{p}u \, d\mu + \frac{1}{q} \int |g_{i}|^{q}v \, d\mu \right)$$
 (2.2)

for all $(u,v) \in S \times S$. Clearly, ϕ is affine (hence convex) and \mathfrak{T} -continuous. Inequality (2.1) can be read as

$$\inf_{(u,v)\in S\times S}\phi(u,v)\leq 0$$

and, since this infimum is attained (bear in mind that $S \times S$ is \mathfrak{T} -compact and ϕ is \mathfrak{T} -continuous), it follows that $\phi(u_{\phi}, v_{\phi}) \leq 0$ for some $(u_{\phi}, v_{\phi}) \in S \times S$.

Step 2. Let Φ be the family made up of all ϕ 's which can be constructed (as in Step 1) from different sets of functions in $L^p(m)$ and $L^q(m)$. We claim that Φ is a convex cone of $\mathbb{R}^{S\times S}$. Indeed, take $\alpha_1,\alpha_2\geq 0$ and, for each $j\in\{1,2\}$, take $n_j\in\mathbb{N}$ and choose functions $f_{1,j},\ldots,f_{n_j,j}\in L^p(m)$ and $g_{1,j},\ldots,g_{n_j,j}\in L^q(m)$ whose associated function belonging to Φ (via (2.2)) is denoted by ϕ_j . Let $\phi\in\Phi$ be the function associated to the collection:

$$\alpha_j^{1/p} f_{i,j} \in L^p(m), \quad \alpha_j^{1/q} g_{i,j} \in L^q(m), \quad j \in \{1, 2\}, \ i \in \{1, \dots, n_j\}.$$

A direct computation shows that $\alpha_1\phi_1 + \alpha_2\phi_2 = \phi$. This proves the claim.

Step 3. Ky Fan's lemma (cf. [5, Lemma 9.10]) applied to the family Φ ensures the existence of $u_0, v_0 \in S$ such that $\phi(u_0, v_0) \leq 0$ for all $\phi \in \Phi$. In particular, for each $f_1 \in L^p(m)$ and $g_1 \in L^q(m)$ we have

$$\left\| \int f_1 g_1 \, dm \right\|^r \le \frac{K^r r}{p} \left(\int |f_1|^p u_0 \, d\mu \right) + \frac{K^r r}{q} \left(\int |g_1|^q v_0 \, d\mu \right). \tag{2.3}$$

Take $f \in L^p(m)$ and $g \in L^q(m)$. Suppose without loss of generality that $a := (\int |f|^p u_0 d\mu)^{1/p}$ and $b := (\int |g|^q v_0 d\mu)^{1/q}$ are non-zero. Inequality (2.3) applied to $f_1 := (1/a)f \in L^p(m)$ and $g_1 := (1/b)g \in L^q(m)$ yields

$$\frac{1}{a^r b^r} \left\| \int fg \ dm \right\|^r \le
\le \frac{K^r r}{p \ a^p} \left(\int |f|^p u_0 \ d\mu \right) + \frac{K^r r}{q \ b^q} \left(\int |g|^q v_0 \ d\mu \right) = \frac{K^r r}{p} + \frac{K^r r}{q} = K^r,$$

hence $\|\int fg \ dm\| \le K(\int |f|^p u_0 \ d\mu)^{1/p} (\int |g|^q v_0 \ d\mu)^{1/q}$. This completes the proof of the implication $(1) \Rightarrow (2)$.

 $(2)\Rightarrow(3)$. We first show that $u_0 d\mu$ is a control measure for m. To this end, take $A \in \Sigma$ with $(u_0 d\mu)(A) = 0$, that is, $\int \chi_A u_0 d\mu = 0$. Given any $B \subset A$ with $B \in \Sigma$, condition (2) applied to $f = \chi_B$ and g = 1 implies that m(B) = 0, hence ||m||(A) = 0. Similarly, $v_0 d\mu$ is a control measure for m.

Let $Y_1 \subset L^p(u_0 d\mu)$ and $Y_2 \subset L^q(v_0 d\mu)$ be the linear subspaces made up of all simple functions. Given $f \in Y_1$ and $g \in Y_2$, their product fg is again a simple function, so it belongs to $L^1(m)$. Its norm can be computed as $||fg||_{L^1(m)} = \sup_{z \in B_{L^\infty(\mu)}} || \int fgz \ dm|| \ (cf. [12, Lemma 3.11])$ and condition (2) yields

$$||fg||_{L^1(m)} = \sup_{z \in B_{L^{\infty}(\mu)}} \left| \int fgz \ dm \right| \le K ||f||_{L^p(u_0 \ d\mu)} ||g||_{L^q(v_0 \ d\mu)}.$$

Thus we can define a bilinear continuous mapping $\mathcal{P}: Y_1 \times Y_2 \to L^1(m)$ by $\mathcal{P}(f,g) := fg$. Since Y_1 and Y_2 are dense in $L^p(u_0 d\mu)$ and $L^q(v_0 d\mu)$, respectively, a standard argument ensures the existence of a bilinear continuous mapping $\overline{\mathcal{P}}: L^p(u_0 d\mu) \times L^q(v_0 d\mu) \to L^1(m)$ extending \mathcal{P} .

We claim that $fg \in L^1(m)$ and $fg = \overline{\mathcal{P}}(f,g)$ whenever $f \in L^p(u_0 d\mu)$ and $g \in L^q(v_0 d\mu)$. Indeed, choose sequences (f_n) in Y_1 and (g_n) in Y_2 such that

 $||f_n - f||_{L^p(u_0 d\mu)} \to 0$ and $||g_n - g||_{L^q(v_0 d\mu)} \to 0$. We can assume without loss of generality that $f_n \to f$ $u_0 d\mu$ -a.e. and $g_n \to g$ $v_0 d\mu$ -a.e. Then $f_n g_n \to f g$ μ -a.e. On the other hand, the continuity of $\overline{\mathcal{P}}$ ensures that $\overline{\mathcal{P}}(f_n, g_n) = f_n g_n \to \overline{\mathcal{P}}(f, g)$ in $L^1(m)$, and so we have $f_n g_n \to \overline{\mathcal{P}}(f, g)$ in $L^1(\mu)$ as well (because $\mu = |\langle m, x_0' \rangle|$ for some $x_0' \in B_{X'}$). It follows that $fg \in L^1(m)$ and $fg = \overline{\mathcal{P}}(f, g)$.

Therefore, for each $f \in L^p(u_0 d\mu)$ we can define a multiplication operator

$$M_f: L^q(v_0 d\mu) \to L^1(m), \quad M_f(g) := fg,$$

with norm $||M_f|| \leq ||\overline{\mathcal{P}}|| \, ||f||_{L^p(u_0 \, d\mu)}$. The natural mapping $f \rightsquigarrow M_f$ is a one-to-one operator from $L^p(u_0 \, d\mu)$ to $\mathcal{M}(L^q(v_0 \, d\mu), L^1(m))$, as required.

 $(3)\Rightarrow (4)$. Set $h_0:=u_0^{r/p}v_0^{r/q}$. Since $0 \leq h_0 \leq \frac{r}{p}u_0 + \frac{r}{q}v_0$ (by Young's inequality) and $\frac{r}{p}u_0 + \frac{r}{q}v_0 \in B_{L^1(m)'}^+$, we also have $h_0 \in B_{L^1(m)'}^+$. Moreover, since $u_0 d\mu$ and $v_0 d\mu$ are control measures for m, we can assume without loss of generality that $u_0 > 0$ and $v_0 > 0$ pointwise.

Fix $h \in L^r(h_0 d\mu)$. Set

$$f:=\mathrm{sign}(h)|h|^{\frac{r}{p}}\left(\frac{v_0}{u_0}\right)^{\frac{r}{pq}}\in L^p(u_0\,d\mu)\quad\text{and}\quad g:=|h|^{\frac{r}{q}}\left(\frac{u_0}{v_0}\right)^{\frac{r}{pq}}\in L^q(v_0\,d\mu).$$

According to (3), $h = fg \in L^1(m)$ and

$$||h||_{L^1(m)} \le ||M_f|| \, ||g||_{L^q(v_0 \, d\mu)} \le K \, ||f||_{L^p(u_0 \, d\mu)} \, ||g||_{L^q(v_0 \, d\mu)}$$

for some constant K > 0 independent of h. But

$$||f||_{L^p(u_0\,d\mu)}\,||g||_{L^q(v_0\,d\mu)} = \left(\int |h|^r h_0\,d\mu\right)^{\frac{1}{p}} \left(\int |h|^r h_0\,d\mu\right)^{\frac{1}{q}} = ||h||_{L^r(h_0\,d\mu)},$$

hence $||h||_{L^1(m)} \le K||h||_{L^r(h_0 d\mu)}$.

This shows that the 'identity' mapping from $L^r(h_0 d\mu)$ to $L^1(m)$ is a well-defined one-to-one operator. In particular, $h_0 d\mu$ is a control measure for m and so $L^1(m) \hookrightarrow L^1(h_0 d\mu)$, hence $L^r(m) \hookrightarrow L^r(h_0 d\mu)$.

 $(4)\Rightarrow(5)$. Just bear in mind that the condition $L^r(m)\hookrightarrow L^r(h_0\,d\mu)$ implies that $h_0\,d\mu$ is a control measure for m.

 $(5)\Rightarrow (6)$. By Remark 1.1 we can write $\lambda=h\,d\mu$ for some $h\in L^1(m)'$ with $h\geq 0$. We can assume further that $h\in B^+_{L^1(m)'}$. Let K>0 be a constant such that $\|f\|_{L^1(m)}\leq K\|f\|_{L^r(\lambda)}$ for all $f\in L^r(\lambda)$. Given simple functions $f_1,\ldots,f_n\in L^r(m)$, we have

$$\left(\sum_{i=1}^{n} \left\| \int f_{i} dm \right\|^{r}\right)^{\frac{1}{r}} \leq \left(\sum_{i=1}^{n} \left\| f_{i} \right\|_{L^{1}(m)}^{r}\right)^{\frac{1}{r}} \leq
\leq K \left(\sum_{i=1}^{n} \left\| f_{i} \right\|_{L^{r}(\lambda)}^{r}\right)^{\frac{1}{r}} = K \left(\int \left(\sum_{i=1}^{n} \left| f_{i} \right|^{r}\right) d\lambda\right)^{\frac{1}{r}} =
= K \left(\int \left(\sum_{i=1}^{n} \left| f_{i} \right|^{r}\right) h d\mu\right)^{\frac{1}{r}} \leq K \left\| \left(\sum_{i=1}^{n} \left| f_{i} \right|^{r}\right)^{\frac{1}{r}} \right\|_{L^{r}(m)}.$$

Since simple functions are dense in $L^r(m)$ (because this space is order continuous, cf. [12, Proposition 3.28]), the r-concavity of I_m^r can be deduced easily from the previous chain of inequalities. To this end, it suffices to bear in mind that the mapping from $L^r(m)$ to $L^1(m)$ given by $f \leadsto |f|^r$ is continuous because, as in the case of scalar measures (cf. [13, Chapter 3, Exercise 24]), the inequality

$$\left\| |f|^r - |g|^r \right\|_{L^1(m)} \le r \left(\|f\|_{L^r(m)}^{r-1} + \|g\|_{L^r(m)}^{r-1} \right) \|f - g\|_{L^r(m)}$$

holds for all $f, g \in L^r(m)$.

 $(6)\Rightarrow(1)$. Given $f_1,\ldots,f_n\in L^p(m)$ and $g_1,\ldots,g_n\in L^q(m)$, each product f_ig_i belongs to $L^r(m)$ and the r-concavity of I_m^r yields

$$\left(\sum_{i=1}^{n} \left\| \int f_{i} g_{i} dm \right\|^{r} \right)^{\frac{1}{r}} \leq K \left\| \left(\sum_{i=1}^{n} |f_{i} g_{i}|^{r} \right)^{\frac{1}{r}} \right\|_{L^{r}(m)}. \tag{2.4}$$

By Hölder's inequality (for real numbers!) we have

$$\sum_{i=1}^{n} |f_i g_i|^r \le \left(\sum_{i=1}^{n} |f_i|^p\right)^{\frac{r}{p}} \left(\sum_{i=1}^{n} |g_i|^q\right)^{\frac{r}{q}},$$

hence for each $x' \in B_{X'}$ the inequality

$$\int \left(\sum_{i=1}^n |f_i g_i|^r\right) d|\langle m, x'\rangle| \le \int \left(\sum_{i=1}^n |f_i|^p\right)^{\frac{r}{p}} \left(\sum_{i=1}^n |g_i|^q\right)^{\frac{r}{q}} d|\langle m, x'\rangle|$$

holds and again Hölder's inequality (now for integrals!) applied to the right hand side of the previous inequality allows us to conclude that

$$\int \left(\sum_{i=1}^{n} |f_{i}g_{i}|^{r}\right) d|\langle m, x'\rangle| \leq$$

$$\leq \left(\int \left(\sum_{i=1}^{n} |f_{i}|^{p}\right) d|\langle m, x'\rangle|\right)^{\frac{r}{p}} \left(\int \left(\sum_{i=1}^{n} |g_{i}|^{q}\right) d|\langle m, x'\rangle|\right)^{\frac{r}{q}} \leq$$

$$\leq \left\|\left(\sum_{i=1}^{n} |f_{i}|^{p}\right)^{\frac{1}{p}} \right\|_{L^{p}(m)}^{r} \left\|\left(\sum_{i=1}^{n} |g_{i}|^{q}\right)^{\frac{1}{q}} \right\|_{L^{q}(m)}^{r}.$$

As $x' \in B_{X'}$ is arbitrary, it follows that

$$\left\| \left(\sum_{i=1}^{n} |f_i g_i|^r \right)^{\frac{1}{r}} \right\|_{L^r(m)} \le \left\| \left(\sum_{i=1}^{n} |f_i|^p \right)^{\frac{1}{p}} \right\|_{L^p(m)} \left\| \left(\sum_{i=1}^{n} |g_i|^q \right)^{\frac{1}{q}} \right\|_{L^q(m)},$$

which combined with (2.4) yields the inequality in (1). The proof of the theorem is over.

Remark 2.4. In the previous theorem, the equivalence $(1)\Leftrightarrow(2)$ can also be obtained as a particular case of a result of Defant [4, Theorem 1]. The equivalence $(4)\Leftrightarrow(6)$ can be found essentially in [12, Section 6.4], see in particular Lemma 6.39, Proposition 6.40 and Theorem 6.41.

Given $1 \leq p < \infty$, a Banach function space E is called p-concave (resp. pconvex) if the identity operator on E is p-concave (resp. p-convex), that is, there is a constant K > 0 such that the inequality

$$\left(\sum_{i=1}^{n} \|z_i\|_E^p\right)^{\frac{1}{p}} \le K \left\| \left(\sum_{i=1}^{n} |z_i|^p\right)^{\frac{1}{p}} \right\|_E \quad \text{(resp. the reverse one)}$$

holds for every $z_1, \ldots, z_n \in E$, $n \in \mathbb{N}$. It is known that E is order isomorphic to the L^p space of a non-negative scalar measure whenever it is simultaneously p-concave and p-convex, cf. [9, p. 59]. As $L^p(m)$ is always p-convex, the following result (cf. [12, Proposition 3.74]) can be seen as a specialized version of the previous statement.

Corollary 2.5. The following statements are equivalent:

- (1) $L^p(m)$ is p-concave for some $1 \le p < \infty$.
- (2) $L^1(m)$ is 1-concave.
- (3) $L^p(m)$ is p-concave for every $1 \le p < \infty$.
- (4) The integration operator I_m¹: L¹(m) → X is 1-concave.
 (5) There is h₀ ∈ B⁺_{L¹(m)}, such that the 'identity' map from L¹(m) to L¹(h₀ dμ) is an isomorphism.
- (6) There is a control measure λ for m such that $L^1(m)$ is order isomorphic to $L^1(\lambda)$.

Proof. The equivalence $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ follows from a simple computation. $(2) \Rightarrow (4)$ is straightforward. $(4)\Rightarrow(5)$ follows from the implication $(6)\Rightarrow(4)$ in Theorem 2.3 (taking there r=1). For $(5)\Rightarrow(6)$ just observe that $h_0 d\mu$ is a control measure for m. Finally, the implication (6) \Rightarrow (2) is a consequence of the 1-concavity of $L^1(\lambda)$ and the general fact that p-concavity is preserved by order isomorphisms (cf. [9, Proposition 1.d.9]).

Following [1], we say that an operator T from a Banach function space Eto X is positive p-summing (where $1 \le p < \infty$) if there is a constant K > 0 such that the inequality

$$\left(\sum_{i=1}^{n} \|Tz_i\|^p\right)^{\frac{1}{p}} \le K \sup_{z' \in B_{E'}} \left(\sum_{i=1}^{n} |\langle z_i, z' \rangle|^p\right)^{\frac{1}{p}}$$

holds for every $z_1, \ldots, z_n \in E^+$. This property lies strictly between being absolutely p-summing and being p-concave, see [1]. For more information about this subject, we refer the reader to [5]. We will need the following folk characterization of positive p-summing operators.

Remark 2.6. Let T be an operator from a Banach function space E to X and let $1 \le p < \infty$. Then T is positive p-summing if and only if there is a constant K > 0such that the inequality

$$\left(\sum_{i=1}^{n} \|Tz_i\|^p\right)^{\frac{1}{p}} \le K \sup_{z' \in B_{E'}} \left(\sum_{i=1}^{n} |\langle |z_i|, z'\rangle|^p\right)^{\frac{1}{p}}$$

holds for every $z_1, \ldots, z_n \in E$.

We arrive at the last result of the paper.

Theorem 2.7. Let E be an order continuous Banach function space having weak order unit. The following statements are equivalent:

- (1) For every vector measure ν representing E and every $1 \leq p < \infty$, the integration operator I^1_{ν} is positive p-summing.
- (2) There exist a vector measure ν representing E and $1 \leq p < \infty$ such that I^1_{ν} is positive p-summing.
- (3) There exist a vector measure ν representing E and $1 \leq p < \infty$ such that I^1_{ν} is absolutely p-summing.
- (4) E is order isomorphic to the L^1 space of a non-negative scalar measure.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (2) are obvious. For the implication (4) \Rightarrow (3), just bear in mind that the integration operator of the L^1 space of a non-negative scalar measure has rank 1 and, therefore, it is absolutely p-summing for any $1 \le p < \infty$.

 $(2)\Rightarrow (4)$. The case p=1 follows from Corollary 2.5 since I^1_{ν} is p-concave. Assume now that p>1 and let q>1 such that 1/p+1/q=1. By Corollary 2.5, we only have to check that $L^p(\nu)$ is p-concave. To this end, fix $f_1,\ldots,f_n\in L^p(\nu)$. Take arbitrary $g_1,\ldots,g_n\in B_{L^q(\nu)}$ and denote by μ_0 a fixed Rybakov control measure for ν . Since I^1_{ν} is positive p-summing, Remark 2.6 ensures that

$$\sum_{i=1}^{n} \left\| \int f_{i}g_{i} d\nu \right\|^{p} \leq K^{p} \sup_{h \in B_{L^{1}(\nu)'}} \sum_{i=1}^{n} |\langle |f_{i}g_{i}|, h\rangle|^{p} =$$

$$= K^{p} \sup_{h \in B_{L^{1}(\nu)'}} \sum_{i=1}^{n} \langle |f_{i}g_{i}|, |h|\rangle^{p} = K^{p} \sup_{h \in B_{L^{1}(\nu)'}} \sum_{i=1}^{n} \left(\int |f_{i}g_{i}||h| d\mu_{0} \right)^{p} \quad (2.5)$$

for some constant K > 0 which depends only on I_{ν}^1 . For each $1 \leq i \leq n$ and each $h \in B_{L^1(\nu)'}$, Hölder's inequality implies

$$\int |f_i g_i| |h| d\mu_0 \le \left(\int |f_i|^p |h| d\mu_0 \right)^{\frac{1}{p}} \left(\int |g_i|^q |h| d\mu_0 \right)^{\frac{1}{q}} \le
\le \left(\int |f_i|^p |h| d\mu_0 \right)^{\frac{1}{p}} ||g_i||_{L^q(\nu)} \le \left(\int |f_i|^p |h| d\mu_0 \right)^{\frac{1}{p}},$$

which combined with (2.5) yields

$$\sum_{i=1}^{n} \left\| \int f_{i} g_{i} d\nu \right\|^{p} \leq K^{p} \sup_{h \in B_{L^{1}(\nu)'}} \sum_{i=1}^{n} \int |f_{i}|^{p} |h| d\mu_{0} =$$

$$= K^{p} \sup_{h \in B_{L^{1}(\nu)'}} \int \left(\sum_{i=1}^{n} |f_{i}|^{p} \right) |h| d\mu_{0} \leq K^{p} \left\| \left(\sum_{i=1}^{n} |f_{i}|^{p} \right)^{\frac{1}{p}} \right\|_{L^{p}(\nu)}^{p}.$$

Since each $||f_i||_{L^p(\nu)}$ can be computed as the supremum of $||\int f_i g \, d\nu||$ where g runs over $B_{L^q(\nu)}$ (cf. [12, (3.64)]), we conclude that

$$\left(\sum_{i=1}^{n} \|f_i\|_{L^p(\nu)}^p\right)^{\frac{1}{p}} \le K \left\| \left(\sum_{i=1}^{n} |f_i|^p\right)^{\frac{1}{p}} \right\|_{L^p(\nu)}.$$

It follows that $L^p(m)$ is p-concave, as required.

 $(4)\Rightarrow (1)$. Let $T:L^1(\lambda)\to L^1(\nu)$ be an order isomorphism, where λ is a non-negative scalar measure. We can assume without loss of generality that $||T^{-1}||=1$. Then the functional $h\in B^+_{L^1(\nu)'}$ defined by the formula $\langle f,h\rangle:=\int T^{-1}(f)\,d\lambda$ satisfies

$$\langle |f|, h \rangle = \int T^{-1}(|f|) \, d\lambda = \int |T^{-1}(f)| \, d\lambda = ||T^{-1}(f)||_{L^1(\lambda)} \ge \frac{||f||_{L^1(\nu)}}{||T||}$$

for all $f \in L^1(\nu)$. Given $f_1, \ldots, f_n \in L^1(\nu)^+$, we have

$$\sum_{i=1}^{n} \left\| \int f_i \, d\nu \right\| \leq \sum_{i=1}^{n} \|f_i\|_{L^1(\nu)} \leq \|T\| \sum_{i=1}^{n} \langle f_i, h \rangle \leq \|T\| \sup_{z' \in B_{L^1(\nu)'}} \sum_{i=1}^{n} |\langle f_i, z' \rangle|.$$

Therefore, the operator I_{ν}^{1} is positive 1-summing. By [1, Proposition 2], I_{ν}^{1} is also positive *p*-summing for all $1 \leq p < \infty$. The proof is over.

Remark 2.8. For an order continuous Banach function space E having weak order unit, in general the statements of Theorem 2.7 are not equivalent to the following one:

For every vector measure ν representing E and every $1 \leq p < \infty$, the integration operator I^1_{ν} is absolutely p-summing.

Indeed, observe that the E-valued measure $A \leadsto \chi_A$ (the characteristic function of A) represents E and its corresponding integration operator is just the identity mapping on E, which is not absolutely p-summing (for any $1 \le p < \infty$) whenever E is infinite-dimensional.

We finish the paper with two questions:

- 1. We have shown that concavity type properties for the integration operator characterize the continuous injection of Lebesgue spaces in $L^1(m)$. Is it possible to generalize these ideas to characterize the continuous injection of other classical spaces (Lorentz, Orlicz, etc.) in $L^1(m)$?
- 2. Lozanovskii lattice interpolation spaces obtained from Lebesgue spaces and $L^1(m)$ are a well described class of Banach function spaces. Which are the vector-valued norm inequalities for the integration operator that characterize the continuous injection of such spaces in $L^1(m)$?

References

- O. Blasco, Positive p-summing operators on L_p-spaces, Proc. Amer. Math. Soc. 100 (1987), no. 2, 275–280. MR 884466 (88c:47033)
- [2] J.M. Calabuig, F. Galaz-Fontes, E. Jiménez-Fernández and E.A. Sánchez-Pérez, Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series, Math. Z. 257 (2007), no. 2, 381–402. MR 2324807 (2008f:46058)
- [3] G.P. Curbera, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), no. 2, 317–330. MR 1166123 (93b:46083)
- [4] A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity 5 (2001), no. 2, 153–175. MR 1825653 (2002a:46031)
- [5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297 (96i:46001)
- [6] J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977, With a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 0453964 (56 #12216)
- [7] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez and E.A. Sánchez-Pérez, Spaces of p-integrable functions with respect to a vector measure, Positivity 10 (2006), no. 1, 1–16. MR 2223581 (2006m:46053)
- [8] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez and E.A. Sánchez-Pérez, Spaces of integrable functions with respect to a vector measure and factorizations through L^p and Hilbert spaces, J. Math. Anal. Appl. 330 (2007), no. 2, 1249–1263. MR 2308439 (2008f:46034)
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II Function spaces, Results in Mathematics and Related Areas, vol. 97, Springer-Verlag, Berlin, 1979. MR 540367 (81c:46001)
- [10] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 3, 323–338. MR 1020026 (91b:46028)
- [11] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093 (93f:46025)
- [12] S. Okada, W.J. Ricker and E.A. Sánchez-Pérez, Optimal domain and integral extension of operators. Acting in function spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008. MR 2418751
- [13] W. Rudin, Real and complex analysis, Third Edition, McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)

J.M. Calabuig

Instituto Universitario de Matemática Pura y Aplicada (IUMPA-UPV)

Universidad Politécnica de Valencia

Camino de Vera, s/n

46022 Valencia

 Spain

e-mail: jmcalabu@mat.upv.es

J. Rodríguez

Departamento de Matemática Aplicada

Facultad de Informática Universidad de Murcia 30100 Espinardo (Murcia)

Spain

e-mail: joserr@um.es

E.A. Sánchez-Pérez

Instituto Universitario de Matemática Pura y Aplicada (IUMPA-UPV)

Universidad Politécnica de Valencia

Camino de Vera, s/n

46022 Valencia

Spain

e-mail: easancpe@mat.upv.es