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ABSTRACT. In metrizable spaces, points in the closure of a susate limits

of sequences idl; i.e., metrizable spaces aref€het-Uryshon spaces. The aim

of this paper is to prove that metrizability and théé&met-Uryshon property are
actually equivalent for a large class of locally convex spaces that inc(Ud€s

and (DF)-spaces. We introduce and study countable bounded tightness of a
topological space, a property which implies countable tightness and is strictly
weaker than the Echet-Urysohn property. We provide applications of our re-
sults to, for instance, the space of distributi@<(2). The spac&’ () is not
Fréchet-Urysohn, has countable tightness, but its bounded tightness is uncount-
able. The results properly extend previous work in this direction.

1. INTRODUCTION

Thetightnesst(X) [resp.,bounded tightness,(X )] of a topological space’
is the smallest infinite cardinal number such that for any seff of X and any
pointz € A (the closure inX) there is a set [resp., bounding sé&] c A for
which |B] < m andz € B. Recall that a subsds of X is boundingif every
continuous real valued function o% is bounded omB. The notion of countable
tightness arises as a natural weakening of tleelret-Urysohn notion. Recall that
X is Fréchet-Urysohiif for every setA C X and everyr € A there is a sequence
in A which converges ta. Clearly,

Fréchet-Urysohnr=- countable bounded tightness countable tightness

Franklin [9] recorded an example of a compact topological space with countable
tightness, hence countable bounded tightness, which is 8oh&t-Urysohn.

In [5] Cascales and Orihuela introduced the clés®f those locally convex
spaces (Icsp = (E,%) for which there is a family{ A,, : a € N} of subsets in
the topological duak’ of E (called its&-representation) such that:

(a) E' = U{Aa ca e NV
1) (b) An C Agwhena < 3in NY;
(c) ineachA,, sequences afg — equicontinuous

In the setNY of sequences of positive integers the inequality. 3 for a = (a,,)
andg = (b,) means that,, < b, for all n € N.

The class® is stable by the usual operations of countable type and con-
tains many important spaces; e.g., allF)-spaces and th¢ DF')-spaces of
Grothendieck. In [5] Cascales and Orihuela extended earlier resultd.fah)-
and (DF)-spaces by showing that € &, its precompact sets are metrizable
and bothE and E with its weak topology (E, E') are angelic spaces. In a very
recent paper [4] we advanced the study started in [5], characterizing those spaces
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in class® which have countable tightness when endowed with their weak topolo-
gies. We showed that quasibarrelled spaces lmave countable tightness for both

the weak and original topologies [4, Theorem 4.8], a bold generalization of Ka-
plansky’s classical theorem stating that the weak topology of metrizable spaces
has countable tightness. On the other hand, we showed [4, Theorem 4.6] that for
E € & the countable tightness 6f/, o(F, E')) is equivalent to realcompactness

of the weak dualF’, o (F', E)).

The present article further advances our study®of we show that in this
class metrizability and the Echet-Urysohn property are actually equivalent, The-
orem 2.2; moreover, we prove that for barrelled spaces &, metrizability and
countable bounded tightness, as well Eglpes not contairp], are equivalent con-
ditions, Theorem 2.5. These generalize earlier results of [11, 12, 14, 16] and have
interesting applications. For example: The strong dual:= (£, 3(£", £)) of
a regular (equivalently, locally completé).F')-spaceE’ has countable tightness
providedE/ﬁ is quasibarrelled, buE’ﬁ is metrizable if and only if it is F¥chet-
Uryshon, if and only ifE’B is quasibarrelled ancL(E’ﬁ) < Ng. This applies to
many concrete spaces, illustrated below for the space of distribugigy).

Our notation and terminology are standard and we take [2, 15] as our basic
reference texts.

2. A CHARACTERIZATION OF METRIZABLE SPACES

First we obtain a Makarov-type result, cf. [2, 8.5.20], for spaEes &. Recall
that an increasing sequengé,,) of absolutely convex subsets of a lEsis called
bornivorousif for every bounded seB in E there existsA,,, which absorbs the set
B.

Lemma 1. LetE € & and let{A, : a € N} be a®-representation of?. For
a = (ng) € NN put

Cnl...nk = U{Aﬁ : ﬁ = (mk) € NNanj = my, Jj=12... k}a
k € N. Then the sequence of polars

Cn, CCp o, C-o-CCy

n1,n2 N1,N2,eee N

is bornivorous inkE.

Proof. Assume that there exists a bounded Bein E such thatB ¢ kCp
for everyk € N. Then for everyk € N there existsr, € B such thatt—'z;, ¢
Cy. .- Therefore for every € N there existsfy, € C,,. ., such that fy.(z)| >

k. Then for everys € N there existg, = (mF),, € NY such thatf, € Ag,, where
n; :mfforj =1,2,...k.

Definea, = max{m’ : k € N}, n € N, andy = (a,) € NV, Clearly
~ > [ for everyk € N. Therefore, by property (b) in the definition of tide
representation of’ one getsdg, C A,, sof;, € A, forall k € N; by property (c)
the sequencefy,) is equicontinuous. Hendgy,) is uniformly bounded on bounded
sets inE, including B, a contradiction. O

Recall that a IcsF is barrelled (resp. quasibarrelled if every closed and ab-
solutely convex subset df which is absorbing (resp. absorbs every bounded set
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of F) is a neighborhood of zero, or equivalently, if every weakly bounded (resp.
strongly bounded) subset &f is equicontinuous.

Along with the terminology of [19] a quasi-LB representation of a i¢$s a
family { B,, : o € N} of Banach discs i satisfying the following conditions:

(i) F=|J{Ba:aeN
(i) B C Bgwhena < gin NV,

A Ics is called aguasi-(LB) spacéf it admits a quasi-L B) representation. The

class of quasi-(LB) spaces is a large class: It containg/all)-spaces as well

as their strong duals, and it is stable by closed subspaces, separated quotients,
countable direct sums and countable topological products, cf. [19].

Now, we refine some of our ideas in Theorem 4.8 of [4] giving the characteriza-
tion below.

Lemma 2. For a quasibarrelled spacé the following statements are equivalent:
i) Eisin®;
iy (E',B(F', E))is aquasi-LB space;
iii) There is a family of absolutely convex closed subsets

F :={Dp; no,...ny, : ksn1,n2,...,np € N}

of E satisfying
a) Dy mo,...me C Dy na,..ony Wheneven; <m;,1=1,2,...,k;,
b) For everya = (n;) € N we have

Dnl C Dn1,n2 c---C Dn17n27---7nk c-

and the sequence is bornivorous;
c) If U, := UDnhm,_._,nk, o € NN, then{U, : a € NV} is a basis of

k
neighborhoods of the origin ifv.
iv) E has a basis of neighborhoods of the oridifl,, : « € N} satisfying
the decreasing condition

(2) Us C U, whenever < 3in NN,

Proof. Let us start by proving #ii). Fix a &-representatiofA,, : o € NV} of E.
SinceF is quasibarrelled, each,, is equicontinuous. ThuB,, := A2 is strongly
bounded and weakly compact (Alaoglu-Bourbaki), and thusdék, E)-Banach
disc. Thereford B,, : o € NV} is a quasi-LB representation 6F’, 3(E', E)).

The implication ii)=iii) uses the ideas of Theorem 4.8 in [4].(IE', B(E', E))
is quasi-LB, [19, Proposition 2.2] applies to ensure us of a quasi-LB representation
{Aq : o € NN} of (B, B(F', E)) with the extra property

for every3(E’, E) — Banach dis®3 C E' there isa € N

3
®) with B C A,.

The above argument and condition (3) imply that heepresentatioR A, : o €
NN} is a fundamental family of-equicontinuous subsets 7. Hence the family
of polars{ A% : a € N} is a basis of neighborhoods of the originfin



Givenk,ny,na,...,n, € N we defineCy,, ,,
taking polars we write

n, as we did in lemma 1 and

Dy g, 1= 0721,7127---7“1@

The family {D,,, n,....n, : k,n1,n2,...,n, € N} matches our requirements. In-
deed: a) follows from the fact that,, .., . n, C Ciy mo,...,m, Whenevemn,; < m;,
i=1,2,...,k; b)is exactly the conclusion in lemma 1; c) may be verified thusly:
for everya = (ny) € NN we have

BB
Vo = U Dy .. - (m Cni g,y )’ C AQ-
k=1 k=1

Observe now that/, is closed, absolutely convex and bornivorous, thiyss a
neighborhood of the origin. Use b) again and [2, Proposition 8.2.27] to obtain that
for everye > 0

— G(EE)

o0 0o
Va = U Dnl,ng,..‘,nk C (1 + 5) U Dnl,nz,‘..,nk = (1 + E)Ua.
k=1 k=1

Thus{U, : o € NN} is a basis off-neighborhoods of the origin if.

As iii)=iv) is obvious, it only remains to prove the implication4#)): if we
take a basis of neighborhoods of the origiii, : o € NV} satisfying (2) then the
family of polars{U? : a € N} is a®-representation of. O

Clearly, then, every barrelled spacedirhas a basis di-neighborhoods of size
no more tharr. Thus the reasoning of Proposition 1 of [18] gives the following
partial positive solution to the (still open) barrelled countable enlargement (BCE)
problem (cf. [18] and [2, Section 4.5]).

Corollary 2.1. [Assume the Continuum Hypothesigjery barrelled space i®
has a BCE, except those with the strongest locally convex topology.

The previous lemmas naturally lead us to the characterization of metrizable
spaces in clas®, Theorem 2.2 below. This result non-trivially generalizes parts of
[11, Theorem 5.1], [12, Theorem 2.1] and [16, Theorem 3].

We will need here the following notion introduced by Saxon and Ruess, respec-
tively, cf. [2]: A lcs E is calledBaire-like (resp.b-Baire-likg if for any increasing
(and bornivorous) sequen¢d,,) of absolutely convex closed subsetsfivhose
union isF there existsn € N such thatd,, is a neighborhood of zero ifi. Every
b-Baire-like (Baire-like) space is quasibarrelled (barrelled) and within metrizable
spaces barrelledness and Baire-likeness are equivalent conditions.

Adapting an idea of Averbukh and Smolyanov, we proved [12, Proposition 1.2]
that every Fechet-Urysohn space is b-Baire-like (and bornological). We provide a
direct proof below.

Theorem 2.2. For a spaceF in & the following statements are equivalent:

i) Eis metrizable;
ii) Eis Fréchet-Uryshon;
iif) F is b-Baire-like.

there is inE an increasing and bornivorous sequefég) of non-zero absolutely
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convex sets and nd,, is a0-neighborhood. Then for eadhkneighborhood/
and eachh € N there iszy,, € U \ nA4y,, so0 is in the closure of zy, } v for
eachn € N. By assumption for each € N there is a sequencd/,(k)}; of
0-neighborhoods such that ,, := zy, (x),,» CONVerges to zero dstends to infinity
and

(4) Ykn ¢ nAn7 n, k€ N.

Take any sequence, € A; of non-zero elements iy which converges to
zero and putd = {yx, + x, : k,n € N}. ThenO is in the closure ofA and
by assumption there are two sequen@egs and(k,) in N such thatyy,, ,,, +
converges to zero. Note that,) is unbounded. Indeed, otherwise, there exists a
constant subsequenag, := L of (n,). But then(k,,.) must be unbounded; if not,
it contains a subsequen¢®) such thaty;, r + z, = 0, soy,r € A1 C TAr, a
contradiction to condition (4). S@,, ) is unbounded. Buttheg., 1 convergesto
—x 1, (which is non-zero by assumption), a contradiction. We showed that indeed
(np) is unbounded. Finally{yy, n,}p C mA, C nyA,, for somem € N and
n, > m. Again a contradiction to condition (4). This proves tliais b-Baire-like
[and also bornological (take each, = A)].

Finally, we prove iii}=i). If E is b-Baire-like thenFE is quasibarrelled and
therefore we can use Lemma 2 to produce a countable family

F :=A{Dny no,..mp : kyn1,n2,...,np € N},
as in iii) there. Since
Dm - Dnh”z c---C Dn1,n27~~-,nk Cee

is bornivorous for everyr = (n;) € NY we haveE = Ur2y kDni ns,....n, @Nd,
again, sincef is b-Baire-like someD,,, .. ... ., IS @ neighborhood of the origin
for certainm € N. Thus the family

U :={Dny ng,.niy. €F : Dy ny....n, 1ST — neighborhood o6}
is a countable basis of neighborhoods of the originAor O

The next corollary says in particular that the strong dual of a regilan-space
is metrizable if and only if it is Fechet-Urysohn. A Ic€ is an(LF)-space ifE
is the inductive limit of an increasing sequence oédhret, i.e. metrizable and
complete Ics.

Corollary 2.3. Let E be a locally complete quasi-LB space. Then the strong dual
(E', 3(E', E)) belongs ta® and the following statements are equivalent:
i) (E',B(E', E))is metrizable;
iy (F',B(F', FE)) is Fréchet-Uryshon;
iy (E',B(FE',E)) is b-Baire-like.
Proof. SinceE is locally complete then ever§-bounded subset is contained in

a Banach disc. Use [19, Proposition 2.2] to produce a quasi-LB representation of
{A, : a € NV} of E with the extra property

for every¥ — bounded seB C FE there isoe € NV

5
®) with B C A,,.
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For eachn € NN consider the polal/,, := A%. The family{U,, : o € NN} is a ba-
sis of neighborhoods of the origin (', 3(E’, E)) satisfying the decreasing con-
dition (2) iniv) of Lemma 2. Hence the polars@f, in E” form a®-representation
for (E',B(E',E)). Thus(E',3(E', E)) is in & and the equivalences here imme-
diately follow from Theorem 2.2 above. O

Since every quasibarrelled spaEec & has countable tightness [4, Theorem
4.8], our Corollary applies as follows.

Corollary 2.4. Let E be a locally complete quasi-LB-space.(E’, 3(E’, E)) is

quasibarrelled, thert(E’, 5(E’, E)) < Nq. In particular, if E is an (LF)-space
which is locally complete (equivalently, regular) atd’, 5(F’, F)) is quasibar-
relled, thent(E’, B(E', E)) < Ry.

Recall, thatin [4] we provided an example of &Ehet space for which its strong
dual does not have countable tightness.

Now we will show thatbounded countable tightnesbaracterizes metrizability
for barrelled spaces in clags We need the following lemma,

Lemma 3. Let p be anXy-dimensional vector space endowed with the finest lo-
cally convex topology. Thelty) < Ny butt,(p) is uncountable.

Proof. Sincey is an(LF')-space and the tightness of affyF’)-space is countable

by [4, Corollary 4.3] we get that(p) < Xy. On the other hand, singeis non-
metrizable it is not a FEchet-Urysohn space after Theorem 2.2 above. Therefore
there exists a subset in ¢ such that) € A, but0 is not the limit of a sequence

in A. Assume now that there is a countable and boundind3set A such that

0 € B. SinceB is also bounded and every bounded set i finite-dimensional)
belongs to the sequential closuref®vhich gives us the contradiction that finishes
the proof. O

Noting that a barrelled space is b-Baire-like if and only if it is Baire-like, we
have the following generalization of Theorem 3 of [16].

Theorem 2.5. Let £ € & be barrelled. The following five statements are equiva-
lent:

i) E is metrizable;
ii) E is Frechet-Urysohn;
iiiy F is Baire-like;
iv) t(E) < No;
v) E does not contairp.

Proof. By Theorem 2.2, the first three conditions are equivalent. i§ metrizable,
then clearly the bounded tightness Bfis countable; i.e., iv) holds. If iv) holds,
thenE cannot contairp by Lemma 3. IfE does not contaip thenFE is Baire-like
by [17, Theorem 2.1]. O

We refer also the reader to [13] for more information concerning tleeheat-
Urysohn property and its relation with various barrelledness conditions.

As a consequence of last theorem we obtain for duals of quasi-LB spaces the
following characterization.

Corollary 2.6. If a quasi-LB spacé” and its strong dua(E’, 5(F’, F)) are both
locally complete, then the following assertions are equivalent:



() (E',B(E',E)) is metrizable;
(i) (E',B(E',E))is quasibarrelled and,((E’, B(E', E))) < No.

Proof. The implication (i}=(ii) is obvious and the implication (i#>(i) immedi-

ately follows from Theorem 2.5 applied {&’, 3(E’, E)). Indeed, Corollary 2.3
says thatF’, B(E', E)) is in &; beside this, aséF’, 3(E’, F)) is locally complete

and quasibarrelled it is barrelled, [2, 5.1.10], hence Theorem 2.5 applies and we
are done. O

If @ C R™ is an open set then the space of test functi®{$?) is a com-
plete Montel(LF)-space, so its strong dual, the space of distributi®ns?), is
a quasi-complete ultrabornological (hence quasi-barrelled) non-metrizable space.
We consequently have:

Corollary 2.7. If Q C R™ is an open set the®’(Q2) has countable tightness for
the original and weak topologies bt(®’(£2)) is uncountable.

Proof. By Corollary 2.3 we hav&®’(Q2) € &. As ©'(2) is quasi-barrelled, we
can apply [4, Theorem 4.8 ] to obtain th@at(£2) has countable tightness for the
original and weak topologies. On the other hand, théD’((2)) is uncountable
follows now from the fact tha®’(£2) is non-metrizable and Corollary 2.6.

Prof. Bonet and the referee kindly point out that the same reasoning applies
to the spaced(2) of real analytic functions of via the work [7, Theorem 1.6
and Proposition 1.7] of Domanski and Vogt, who also showed that this space, the
subject of much recent attention, has no basis [8].

In addition, note that iff € &, then any Ics which containg as a dense sub-
space also belongs &. Therefore Theorem 2.2 applies also to show the following,
where, as usual},(X) denotes the spadg(.X) of continuous real functions on
the topological spac& endowed with the topology of pointwise convergence on
X.

Corollary 2.8. The space”,(X) belongs to the clas$ if and only if X is count-
able (if and only ifC, (X') is metrizable).

Proof. Indeed,C,(X) is a dense subspace of the prodRet which is a Baire
space [2, 1.2.13], hence b-Baire-like. 0f,(X) € &, thenR* € & and Theo-
rem 2.2 applies. 0

This extends the main result of [14] which states tatX) is an(LM )-space
if and only if X is countable. Let us remark that, alternatively, Corollary 2.8 can be
proved from the fact that quasibarrelled spaces in afalsave countable tightness,
[4, Proposition 4.7]: indeed, if’,(X) € &, then its completion, the Baire space
RX is also in®, and so we have thatRX) < Xg; but this is the case if and only
if X is countable as the reader can easily check.

Let E be a locally convex space let us write, := (E,o(E,FE’)), E/ =
(E',o(F', E)). Note that wherE! is K-analytic (see [6, 10] for definition), then
t(Ey) < Yo becausd E.)™ is still K-analyticn € N (hence Lindebf), [1, Theo-
rem 1.1.1] tells us that(C,(E.)) < Ny, and thusE,, (as a subspace @, (E))
has countable tightness.

Conversely, ifE € & andt(FE,) < N, thenE/ is K-analytic as we showed
in [4, Theorem 4.6]. Corollary 2.8 allows us to provide now an example showing
that E € & cannot be dropped when proving this implication. IndeedXldte an
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uncountable Lindéif P-space. Sinc&™ is Lindelof for anyn € N, [1, Theorem
[1.1.1] applies again to obtain thatC,(X)) < No. By Corollary 2.8 the space
Cp(X) does not belong t&. Now if we assume thall := C,(X)/, is K-analytic,
then F' has an ordered family4, : o« € NV} of compact sets itF’ covering it,
cf. [3, Corollary 1.2], i.e. satisfying conditions (a) and (b) in (1). Sid€ds a
P-space (i.e., evergrs set in X is open), every bounding set i is finite and by
[2, 10.1.20] the spac€,(X) is barrelled. Hence every sk, is equicontinuous,
so condition (c) holds in (1) too, and consequently the spggel) belongs ta®,
which is a contradiction.
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