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Abstract

An upper bound q(c) for the best, under equivalent renorming, possible power type of the modulus of
smoothness of a Banach space with modulus of convexity satisfying δX(ε) � cε2, is found. The estimate is
asymptotically sharp and is expressed in terms of linear fractional function q(c).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let (X,‖ · ‖) be a Banach space and SX = {x ∈ X; ‖x‖ = 1} be its unit sphere. The modulus
of convexity, respectively of smoothness, of X is defined by

δX(ε) = inf

{
1 − ‖x + y‖

2
; x, y ∈ SX, ‖x − y‖ = ε

}
, for ε ∈ [0,2];
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respectively

ρX(τ) = sup

{‖x + τy‖ + ‖x − τy‖ − 2

2
; x, y ∈ SX

}
, for τ � 0.

We say that the modulus of convexity (respectively of smoothness) has an estimate of power
type p if δX(ε) � c1ε

p (respectively ρX(τ) � c2τ
p). We say that a Banach space X is p-uni-

formly convex (respectively p-uniformly smooth) renormable if there exists an equivalent norm
on X such that the corresponding modulus of convexity (respectively of smoothness) has an
estimate of power type p.

From the renorming theorem of Enflo and Pisier (see [11,19]) it follows that any superreflexive
Banach space is p-uniformly convex and q-uniformly smooth renormable for some p and q ,
satisfying 1 < q � 2 � p < ∞.

Using Kwapien’s characterization [15] (for an elegant proof see also [23]) of Hilbert spaces,
Figiel and Pisier [9] prove that each Banach space which is 2-uniformly convex and 2-uniformly
smooth renormable is isomorphic to Hilbert space.

Rakov [20] proves that if δX is of power type 2 and, more precisely,

δX(ε) � cε2,

for c > 0.1076 and small ε > 0, then X is q-uniformly smooth renormable for each

q < log 2/ log
(√

2
(
c1 +

√
c2

1 − 1
))

, (1)

where c1 = 1 + (
√

2 − 1)
√

1 − 8c. This can be simplified as 2 − q > k
4
√

1 − 8c.
The roots of Rakov result go back to the isometric characterizations of Hilbert spaces in the

class of Banach spaces.
It is easy to see that if H is a Hilbert space then

δH (ε) = 1 −
√

1 − ε2/4 = ε2/8 + o
(
ε2). (2)

Nördlander [18] shows that

δX(ε) � δH (ε) (3)

for any Banach space X and any ε ∈ [0,2]. It is proved in [1] that X is Hilbert space whenever
δX(ε) = δH (ε) for some ε �= 2 cos(kπ/2n), n = 2,3, . . . ; k = 1,2, . . . , n − 1. An asymptotic
version of the latter is the following statement. If

lim
ε→0

δX(ε)

ε2
= 1

8

then X is a Hilbert space. This result is obtained independently in [14,20,22] using different
approaches.

We improve the estimate (1). This improvement is achieved by combining ideas from [14] (i.e.
use of differential inequalities) and [20] (i.e. use of so called John sphere, see, e.g., [4, p. 68],
[10], also known as Loewner ellipsoid, [2]). Namely, we prove the following
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Theorem 1.1. There is an absolute constant k1 such that if the Banach space X satisfies

lim inf
ε→0

δX(ε)

ε2
� 1

8(1 + b)
(4)

for some b � 0, then X is q-uniformly smooth renormable for

q = 1 + 1

1 + k1b
. (5)

For the sake of brevity we define for each Banach space X

a(X) = 2 lim sup
τ→0

ρX(τ)

τ 2
− 1 and b(X) =

(
8 lim inf

ε→0

δX(ε)

ε2

)−1

− 1.

From (2) and (3) it follows that 0 � b(X) � ∞. The dual relation

a(X∗) = b(X) (6)

is a direct consequence of Lindenstrauss formula: (see, e.g., [16, p. 61])

ρX∗(τ ) = sup
ε∈[0,2]

{
τε

2
− δX(ε)

}
. (7)

Indeed, if b(X) = ∞ then there are εn → 0 and μn → 0 such that δX(εn) = μnε
2
n. Set τn =

4μnεn and let ε = εn in the supremum on the right-hand side of (7) to obtain ρX∗(τn) � μnε
2
n.

So, ρX∗(τn)/τ
2
n � 1/(16μn) → ∞ and a(X∗) = ∞.

If b(X) < ∞ let ν1 = lim infε→0 δX(ε)/ε2 = [8(1 + b(X))]−1 > 0. Pick εn → 0 and μn → 0
such that δX(εn) = ν1(1 + μn)ε

2
n. For τn = 4ν1εn we have (setting in (7) ε = εn) ρX∗(τn) �

ν1ε
2
n(2 − (1 + μn)), so lim supτ→0 ρX(τ)/τ 2 � 1/(16ν1). That is, a(X∗) � b(X).
On the other hand, for any ν ∈ (0, ν1) there is ε0 > 0 such that δX(ε) > νε2 for ε ∈ (0, ε0).

Since δX(ε) is increasing, we have that δX(ε0) > 0 and

sup
ε∈[ε0,2]

{
τε

2
− δX(ε)

}
� τ − δX(ε0) < 0

for small enough τ > 0. Therefore, for τ close to zero

ρX∗(τ ) � sup
ε∈[0,ε0]

{
τε

2
− νε2

}
= τ 2

16ν
.

So, a(X∗) � 1/(8ν1) − 1 = b(X), since ν ∈ (0, ν1) was arbitrary, completing the proof of (6).
In these terms Theorem 1.1 states that X is q-uniformly smooth renormable for q =

1 + 1/(1 + k1b(X)).
If we compare this to the known situation of lp , 1 < p � 2, we find that b(lp) = (2 − p)/

(p − 1), see [13] (for a simple proof see also [17]). So,

p = 1

1 + b(l )
.

p
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On the other hand lp is not q-uniformly smooth renormable for q > p, see, e.g., [8]. Therefore k1
from Theorem 1.1 could not possibly be less than one. That is, the estimate (5) is sharp up to the
multiplicative constant k1, when b → 0 as well as when b → ∞. Thus in actual fact Theorem 1.1
reveals that, asymptotically, the behaviour of any space is the same as that of lp .

In order to establish Theorem 1.1 we use the following statement which is essentially two-
dimensional.

Theorem 1.2. There is an absolute positive constant k2 such that if X is a Banach space and
x, y ∈ SX then

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� 1 + k2a(X). (8)

This estimate is not trivial and it depends upon the homogeneity of the norm, even though this
fact is somehow implicit in our approach. We also make crucial use of Euclidean geometry on
the plane and it seems unclear whether Theorem 1.2 could be established without the aid of the
latter.

Remark 1.3. Inequality (8) is much easier to prove for fixed a0 > 0 and a(X) ∈ [a0,∞).

To demonstrate this we would present at the end of the paper a short proof of the following
estimate:

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� 1 + 3 lim sup

τ→0

ρX(τ)

τ 2
(9)

for all x, y ∈ SX .
If then a(X) � a0 > 0, we can write

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� 1 + 3

2

(
a(X) + 1

)
� 1 + 3

2

(
a(X) + a(X)

a0

)
.

So, for a(X) � a0

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� 1 + 3(1 + a0)

2a0
a(X). (10)

The advantage of (8) is that it transfers directly to L2(X): the space of all (equivalence classes
of) measurable X-valued functions f on a probabilistic space Ω such that the norm ‖f ‖2 =
(E‖f ‖2)1/2 is finite. Thus, using some dual arguments, we can demonstrate the following:

Proposition 1.4. Let X be a Banach space. Then

δL2(X)(ε) � 1 −
√

1 − ε2

4(1 + k2b(X))
, (11)

where k2 is from Theorem 1.2.
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Obviously the above result specifies for the case of power type 2 estimate the classical result
of Figiel and Pisier [8,9] (see also [16, p. 68]) which says that δX and δL2(X) are equivalent at
zero.

The renorming is now a matter of straightforward application of the deep theorems of Gurarij
and Gurarij [12] (see also [7, p. 303]) and Pisier [19] (see also [5, p. 149]).

Remark 1.5. It seems interesting whether an analogue of Theorem 1.1 can be stated in terms of
the modulus ξX introduced in [3].

In the following section we prove Theorem 1.1 and Proposition 1.4, assuming that Theo-
rem 1.2 is known. In the final section we present the proof of Theorem 1.2.

2. Proof of Theorem 1.1

We split the proof of Proposition 1.4 into few lemmas.

Lemma 2.1. If X is Banach space and c � 1 is such that for all x, y ∈ SX

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� c (12)

then for all u,v ∈ X

‖u + v‖2 + ‖u − v‖2 � 2
(‖u‖2 + c‖v‖2). (13)

Proof. Set ϕ(t) = ‖u + tv‖2 − ct2‖v‖2. Taking into account (12) we get that for all t

lim sup
h→0

ϕ(t + h) + ϕ(t − h) − 2ϕ(t)

h2
� 0.

Hence ϕ is concave. Therefore, ϕ(1) + ϕ(−1) � 2ϕ(0), which implies (13). �
Recall (see, e.g., [5, p. 7]), that the duality mapping J : X → 2X∗

is defined as

Jx = {
f ∈ X∗; f (x) = ‖f ‖2 = ‖x‖2}.

Clearly, if the norm is smooth at x then Jx is a single point.
It is easy to check that for each f ∈ X∗

‖f ‖2 = sup
x∈X

{
2f (x) − ‖x‖2}. (14)

Let us mention that this formula is related to Fenchel transformation (see, e.g., [21, p. 102]).
Evidently, for f ∈ Jx we have

‖f ‖2 + ‖x‖2 = 2f (x). (15)
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Lemma 2.2. Let for some c � 1 and all u,v ∈ X inequality (13) holds. Then for all f,g ∈ X∗
and z ∈ Jf we have

‖f + g‖2 � ‖f ‖2 + 2g(z) + ‖g‖2/c.

Proof. We first show that for all u,v ∈ X

‖u + v‖2 � ‖u‖2 + 2Ju(v) + c‖u‖2. (16)

Set ϕ(t) = ‖u + tv‖2 − ct2‖v‖2. From (13) we get that ‖ · ‖, and therefore ϕ, is differentiable.
As in the proof of Lemma 2.1 we see that ϕ is concave. Therefore, ϕ(1) � ϕ(0) + ϕ′(0). Taking
into account that ϕ′(0) = 2Ju(v), we get (16).

From (15) and (16) we have that

‖f ‖2 = 2f (z) − ‖z‖2, ‖x‖2 − ‖z‖2 − 2f (x − z) � c‖x − z‖2.

These, (14) and (15) imply

‖f + g‖2 = sup
x∈X

{
2f (x) + 2g(x) − ‖x‖2}

= sup
x∈X

{
2f (z) − ‖z‖2 + 2f (x − z) + 2g(x) + ‖z‖2 − ‖x‖2}

= ‖f ‖2 + sup
x∈X

{
2g(x) − (‖x‖2 − ‖z‖2 − 2f (x − z)

)}
� ‖f ‖2 + sup

x∈X

{
2g(x) − c‖x − z‖2}

= ‖f ‖2 + 2g(z) + sup
x∈X

{
2g(x − z) − c‖x − z‖2}

= ‖f ‖2 + 2g(z) + ‖g‖2/c. �
Lemma 2.3. Let for some c � 1 and all x, y ∈ X, f ∈ Jx

‖x + y‖2 � ‖x‖2 + 2f (y) + ‖y‖2/c. (17)

Then

δX(ε) � 1 −
√

1 − ε2/4c. (18)

Proof. Let ‖x‖ = ‖y‖ = 1 and ‖x − y‖ = ε. Pick f ∈ J (
x+y

2 ). We have that f (x − y) � 0 or
f (y − x) � 0. By swapping if necessary x and y we may assume that f (y − x) � 0. Using (17)
we write

1 = ‖y‖2 =
∥∥∥∥x + y

2
+ y − x

2

∥∥∥∥
2

� ‖x + y‖2

4
+ 2f

(
y − x

2

)
+ ‖y − x‖2

4c

� ‖x + y‖2

+ ε2

.

4 4c
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Therefore,

1 − ‖x + y‖
2

� 1 −
√

1 − ε2/4c. �
Now, assuming that Theorem 1.2 is true, we can complete the

Proof of Proposition 1.4. Let b(X) < ∞ for otherwise the claim is trivial. Then X is reflexive
and we have that L2(X) is reflexive as well and (see, e.g., [6, p. 98])

L∗
2(X) = L2(X

∗). (19)

From (6), Theorem 1.2 and Lemma 2.1 it follows that for all f,g ∈ X∗

‖f + g‖2 + ‖f − g‖2 � 2
(‖f ‖2 + c‖g‖2),

where c = 1 + k2b(X).
Clearly, for all f,g ∈ L2(X

∗) we have that

‖f + g‖2
2 + ‖f − g‖2

2 � 2
(‖f ‖2

2 + c‖g‖2
2

)
. (20)

From Lemmas 2.2, 2.3 and Eq. (19) we get

δL2(X)(ε) � 1 −
√

1 − ε2/4c. �
The following elementary inequality is used in the proof of Theorem 1.1.

Lemma 2.4. For all t > 1

g(t) = 2 log 2

log(4 − (t + 1)/t2)
> 1 + 1

1 + 6(t − 1)
.

Proof. First note that (t + 1)/t2 > 2/(2t − 1) and therefore

g(t) > g1(t) = 2l

l + log(2 − 1/(2t − 1))
,

where l = log 2. Set s = 2(t − 1)/(2t − 1), so s ∈ (0,1), and consider

h(s) = (2 + s) log(1 + s).

Since h′′(s) = s/(1 + s)2, the function h is strictly convex for s > 0. In particular, h(s) <

sh(1) = 3ls for s ∈ (0,1). So, log(1 + s) < 3ls/(2 + s) for s ∈ (0,1).
Since g1(t) = 2l/(l + log(1 + s)), we have that

g1(t) >
2 = 2(3t − 2) = 1 + 1

. �

1 + 3(t − 1)/(3t − 2) 6t − 5 1 + 6(t − 1)
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With each basic sequence {ui}∞i=1 the following quantity is associated:

Δ
({ui}∞i=1

) = inf
{‖x − y‖; x ∈ E1,k, y ∈ Ek+1,l , ‖x‖ = ‖y‖ = 1, k < l

}
,

where Ei,j = span{ui, ui+1, . . . , uj }.

Lemma 2.5. If for some c � 1 and all x, y ∈ X, f ∈ Jx (17) holds and {ui}∞i=1 is a monotone
basic sequence in X then

Δ
({ui}∞i=1

)
�

√
1 + c−1.

Proof. Pick k < l and let x, y be such that ‖x‖ = ‖y‖ = 1 and x ∈ E1,k , y ∈ Ek+1,l . Since the
basis is monotone, we have that ‖x + ty‖ � 1 for all t ∈ R. Therefore, there is f ∈ Jx such that
f (y) = 0. So, (17) reads

‖x − y‖2 � 1 + c−1. �
Recall the following result from [12] (see also [7, p. 303]):

Proposition 2.6. Let {ui}∞i=1 be a basic sequence in the Banach space X, such that Δ({ui}∞i=1)�d ,
δX(d) > 0, and let λ = 2(1 − δX(d)). Then for each q < log 2/ logλ there exists A = A(q) > 0
such that ∥∥∥∥∥

n∑
i=1

ui

∥∥∥∥∥ � A

(
n∑

i=1

‖ui‖q

)1/q

, n = 1,2, . . . .

We use also the following result of Pisier [19].

Proposition 2.7. Assume that for some constants C > 0 and q � 1 all X-valued Walsh–Paley
martingales {Mi}i�0 satisfy

sup
n

‖Mn‖2 � C

(∑
i�0

‖dMi‖q

2

)1/q

,

where dM0 = M0, dMi = Mi − Mi−1, i � 1, are the increments of the martingale {Mi}i�0 and
‖ · ‖2 is the norm in L2(X).

Then X is q-uniformly smooth renormable.

Proof of Theorem 1.1. If b(X) = 0 then X is Hilbert space, see [14,20,22], so we assume that
b(X) > 0.

Set Y = L2(X), c = 1 + k2b(X), where k2 is from Theorem 1.2, and

λ = 2
(
1 − δY

(√
(c + 1)/c

))
.

From (11) we get

λ �
√

4 − (c + 1)/c2. (21)
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Let {Mi}i�0 be arbitrary X-valued Walsh–Paley martingale. Since {dMi}i�0 is monotone basic
sequence in Y and (20) is fulfilled for the same reasons as in the proof of Proposition 1.4, we get
from Lemma 2.5 that

Δ
({dMi}i�0

)
�

√
(c + 1)/c.

From Propositions 2.6 and 2.7 it follows that X is q-uniformly smooth renormable for each

q < log 2/ logλ.

Set d = 2 log 2/ log(4 − (c + 1)c−2). From (21) it follows that d � log 2/ logλ and hence X is
q-uniformly smooth renormable for each q < d and in particular for

q = 1 + 1

1 + 6(c − 1)
= 1

1 + 6k2b(X)
(22)

due to Lemma 2.4. �
3. The smoothness of the square of the norm

In order to demonstrate Theorem 1.2 we use the nice differentiability properties of the norm
when the modulus of smoothness has an estimate of power type 2.

Lemma 3.1. Let X be such that a(X) < ∞. Then for each two linearly independent u,v ∈ X the
function

r(σ ) = ‖cosσu + sinσv‖

has first derivative, which is Lipschitz continuous.

Proof. Set f (t) = ‖u + tv‖. From the proof of [5, Lemma IV.5.1, p. 158], we get that f ′ is
a Lipschitz function on R. Since r(σ ) = |cosσ |f (tanσ), we obtain that r ′ is Lipschitz on any
closed interval I ⊂ (−π/2,3π/2), such that π/2 /∈ I . In the same manner, considering ‖v + tu‖,
we get that r ′ is Lipschitz on any closed interval I1 ⊂ (0,2π) such that π /∈ I1. �
Lemma 3.2. Let e1, e2 be an orthonormal basis in R

2 with respect to the standard inner product
and let ‖ · ‖ be some norm in R

2. Let

r(σ ) = ‖cosσe1 + sinσe2‖

and let x = r−1(θ)(cos θe1 + sin θe2), y = r−1(φ)(cosφe1 + sinφe2), that is, x, y ∈ SX .

(i) If r is twice differentiable at θ , then

lim
τ→0

‖x + τy‖ + ‖x − τy‖ − 2

τ 2
= sin2(φ − θ)

r2(φ)
r(θ)

(
r(θ) + r ′′(θ)

)
. (23)
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(ii) If r is differentiable at θ and for some κ and small enough |η|

r(θ + η) � r(θ) + r ′(θ)η + κη2, (24)

then

lim sup
τ→0

‖x + τy‖2 + ‖x−τy‖2 − 2

2τ 2
� r2(θ) + r ′2(θ) + r(θ)(|r ′(θ)|+2κ)

r2(φ)
. (25)

Proof. Each vector z = z1e1 +z2e2 ∈ R
2 can be represented as z = |z|(cosσe1 +sinσe2), where

| · | is the Euclidean norm in R
2, i.e. |z| =

√
z2

1 + z2
2. So, we have

‖z‖ = |z|r(σ ), tanσ = z2/z1. (26)

Case 1. θ = 0. Then x = r−1(0)e1, so

x + τy = (
r−1(0) + r−1(φ)τ cosφ

)
e1 + (

r−1(φ)τ sinφ
)
e2

= r−1(0)
[(

1 + (
r(0)r−1(φ)τ

)
cosφ

)
e1 + ((

r(0)r−1(φ)τ
)

sinφ
)
e2

]
.

Let

t = r(0)r−1(φ)τ, l = r−1(0). (27)

Then

x + τy = l
(
(1 + t cosφ)e1 + (t sinφ)e2

)
(28)

and

|x + τy|2 = l2(1 + 2t cosφ + t2). (29)

As
√

1 + w = 1 + w/2 − w2/8 + o(w2), we have that

|x + τy| = l

(
1 + t cosφ + t2

2
− 1

8

(
2t cosφ + t2)2

)
+ o

(
t2)

= l

(
1 + t cosφ + t2

2

(
1 − cos2 φ

)) + o
(
t2).

That is,

|x + τy| = l

(
1 + t cosφ + t2

2
sin2 φ

)
+ o

(
t2). (30)

For small enough τ there is θτ ∈ (−π/2,π/2) such that

x + τy = |x + τy|(cos θτ e1 + sin θτ e2). (31)
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Keeping in mind (26) and (28) we get

tan θτ = t sinφ

1 + t cosφ
.

Thus

θτ = arctan
t sinφ

1 + t cosφ
= t sinφ

1 + t cosφ
+ o

(
t2),

since arctanw = w + o(w2).
So, θτ = (t sinφ)(1 − t cosφ + o(t)) + o(t2), or

θτ = t sinφ − t2

2
sin 2φ + o

(
t2). (32)

Since by assumption r ′′(0) exists, the Taylor formula gives

r(θτ ) = r(0) + r ′(0)θτ + r ′′(0)
θ2
τ

2
+ o

(
θ2
τ

)
.

From (32) it follows that |θτ | � 2|t | when |t | is small enough. Therefore,

r(θτ ) = r(0) + r ′(0)

(
t sinφ − t2

2
sin 2φ

)
+ r ′′(0)

2

(
t sinφ − t2

2
sin 2φ

)2

+ o
(
t2)

which yields

r(θτ ) = r(0) + r ′(0)(sinφ)t + (
r ′′(0) sin2 φ − r ′(0) sin 2φ

) t2

2
+ o

(
t2). (33)

From (31) and the definition of r it follows that

‖x + τy‖ = r(θτ )|x + τy|.

This, (27), (30) and (33) imply

‖x + τy‖ = 1 + ξ t + ζ t2 + o
(
t2),

where

ζ = sin2 φ

2
+ lr ′(0)

sin 2φ

2
+ l

2

(
r ′′(0) sin2 φ − r ′(0) sin 2φ

)

= sin2 φ

2
+ l

2
r ′′(0) sin2 φ = sin2 φ

2

(
1 + r−1(0)r ′′(0)

)
.

From this and (27), which rewrites τ−2 = r2(0)r−2(φ)t−2, it follows that
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lim
τ→0

‖x + τy‖ + ‖x − τy‖ − 2

τ 2
= r2(0)r−2(φ) lim

τ→0

‖x + τy‖ + ‖x − τy‖ − 2

t2

= 2r2(0)r−2(φ)ζ = sin2 φ

r2(φ)
r(0)

(
r(0) + r ′′(0)

)
.

Case 2. θ �= 0. Consider the rotated basis (ê1, ê2):

ê1 = cos θe1 + sin θe2, ê2 = − sin θe1 + cos θe2.

If r̂(σ ) = ‖ cosσ ê1 + sinσ ê2‖ then

r̂(σ ) = r(σ + θ),

because

cosσ ê1 + sinσ ê2 = (cosσ cos θ − sinσ sin θ)e1 + (cosσ sin θ + sinσ cos θ)e2

= cos(σ + θ)e1 + sin(σ + θ)e2.

Set γ = φ − θ . Since

x = r̂−1(0)ê1 and y = r̂−1(γ )
(
(cosγ )ê1 + (sinγ )ê2

)
,

from Case 1 it follows that

lim
τ→0

‖x + τy‖ + ‖x − τy‖ − 2

τ 2
= sin2 γ

r̂2(γ )
r̂(0)

(
r̂(0) + r̂ ′′(0)

)

= sin2(φ − θ)

r2(φ)
r(θ)

(
r(θ) + r ′′(θ)

)
,

because r̂(γ ) = r(θ + γ ) = r(φ).
(ii) Let r be differentiable and (24) hold. Denote s = r2.
Assume that θ = 0.
As the left-hand side of (24) is positive, taking squares gives

s(η) � s(0) + s′(0)η + (
r ′2(0) + 2r(0)κ

)
η2 + o

(
η2).

This and (32) imply

s(θτ ) � s(0) + s′(0)t sinφ +
((

r ′2(0) + 2r(0)κ
)

sin2 φ − s′(0)
sin 2φ

2

)
t2 + o

(
t2).

From the latter, (26) and (29), we get

‖x + τy‖2 = s(θτ )|x + τy|2 � 1 + μt + νt2 + o
(
t2),
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where

ν = 1 + s−1(0)s′(0) sin 2φ + s−1(0)

((
r ′2(0) + 2r(0)κ

)
sin2 φ − s′(0)

sin 2φ

2

)
,

i.e.

ν = 1 + s−1(0)

((
r ′2(0) + 2r(0)κ

)
sin2 φ + s′(0)

sin 2φ

2

)

� 1 + s−1(0)

(
r ′2(0) + 2r(0)κ + |s′(0)|

2

)
.

Now, recalling (27) we write:

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
� lim sup

t→0

νt2 + o(t2)

t2

s(0)

s(φ)
= ν

s(0)

s(φ)
.

Since s′(0) = 2r(0)r ′(0), we have that

νs(0) � s(0) + r ′2(0) + 2r(0)κ + r(0)
∣∣r ′(0)

∣∣ = r2(0) + r ′2(0) + r(0)
(∣∣r ′(0)

∣∣ + 2κ
)
.

The case θ �= 0 is derived in the same way as in the proof of (i). �
Proof of Theorem 1.2. We can assume that x and y are linearly independent. Let Y be the two-
dimensional subspace of X spanned over x and y. Let Y be realized on the plane R

2 in such a
way that the Euclidean sphere S = {(z1, z2) ∈ R

2; z2
1 + z2

2 = 1} is the John sphere for BY . That
is, the Euclidean norm | · | � ‖ · ‖ and there is no ellipse of area greater than π contained in BY . It
is well known (see, e.g., [4, p. 68], or [10]) that | · | � √

2‖ · ‖. Let e1, e2 be the unit vector basis
in R

2 and r(σ ) = ‖ cosσe1 + sinσe2‖. Then SY = {r−1(σ )(cosσ, sinσ); σ ∈ [−π,π]}. Since
‖ · ‖ � | · | � √

2‖ · ‖ we get

1/
√

2 � r(σ ) � 1 (34)

for all σ .
Lemma 1 [20] shows that at each arc of S = {z ∈ R

2; |z| = 1} of Euclidean length π/2 there
is a point of contact w ∈ S ∩ SY . So, for any σ there exists σ1 such that

r(σ1) = 1 and |σ − σ1| � π/4. (35)

Let us mention that (35) implies r(σ ) � 1/
√

2.
From Lemma 3.1 we know that r ′ is absolutely continuous and hence r ′′ exists almost every-

where. From the definition of a(X) and (23) it follows that for almost all θ and all φ

sin2(φ − θ)

2
r(θ)

(
r(θ) + r ′′(θ)

)
� 1 + a(Y ).
r (φ)
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Setting in the above (for each fixed θ ) φ = θ + π/2, we derive

r(θ)
(
r(θ) + r ′′(θ)

)
� r2(φ)

(
1 + a(Y )

)
� 1 + a(Y ),

since r � 1. So,

r(r + r ′′) � 1 + a(Y ) (36)

almost everywhere. Since Y is a subspace of X we have that a(Y ) � a(X).
Set

a = a(X), c = 1 + a, d = min r(θ) and κ = (
c − d2)/(2d)

(since r is continuous and π -periodic it attains its minimum).
As a first step we will show that for all θ

r ′2(θ) � 4κ
(
r(θ) − d

)
. (37)

Fix arbitrary σ . If r ′(σ ) = 0 then (37) holds since κ > 0 (as c � 1 � d � d2) and r(σ ) � d . Let
r ′(σ ) �= 0. Since (36) is not affected by the change of variables θ ↔ −θ , we can assume that
r ′(σ ) > 0.

As r is periodic and r ′ is continuous there is σ0 < σ , such that r ′(σ0) = 0 and r ′(θ) > 0 for
all θ ∈ (σ0, σ ). Multiplying the inequality r ′′ + r � c/r , derived from (36), by r ′(θ) > 0, we see
that for almost all θ ∈ (σ0, σ ) (

r ′2(θ) + r2(θ)
)′
/2 � c

(
log r(θ)

)′
.

Integrating the above from σ0 to σ we see that

r ′2(σ ) � 2c log
r(σ )

r(σ0)
− (

r2(σ ) − r2(σ0)
)
.

Let r0 = r(σ0) and r1 = r(σ ). Note that r1 > r0, since r1 − r0 = ∫ σ

σ0
r ′(θ) dθ > 0. Clearly,

log
r1

r0
= log

(
1 + r1 − r0

r0

)
� r1 − r0

r0

and thus

r ′2(σ ) � g(r0, r1),

where g(u, v) = 2c(v − u)u−1 − (v2 − u2). Consider g in the triangle T : {(u, v); d � u � v �
r1 � 1} (r1 is no greater than 1 because of (34)). We have that

g′
u = −2cvu−2 + 2u = 2u−2(u3 − cv

)
� 0,

because cv � v � u � u3, since u � 1 � c; and

g′
v = 2cu−1 − 2v � 0.
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That is, in the triangle T the function g is increasing on v and decreasing on u, and so attains its
maximum in T at (u, v) = (d, r1). In particular, as (r0, r1) ∈ T ,

r ′2(σ ) � g(d, r1) = 2c(r1 − d)d−1 − (
r2

1 − d2).
Note that r2

1 − d2 = (r1 − d)(r1 + d) � 2d(r1 − d), since r1 � d . Therefore,

r ′2(σ ) � (r1 − d)
(
2cd−1 − 2d

) = 4
((

c − d2)/(2d)
)
(r1 − d) = 4κ(r1 − d).

Next, we show that

d � 1 − (√
2 + 1

)
a. (38)

If d = 1 then (38) is trivial. Let d < 1. From (35) it follows that there exist θd, θ1 such that
r(θd) = d , r(θ1) = 1 and |θ1 − θd | � π/4. Changing if necessary the variable θ with −θ we may
assume that θd < θ1. We may also assume that r(θ) > d for all θ ∈ (θd, θ1). From (37) it follows
that

r ′(θ)

2
√

r(θ) − d
� |r ′(θ)|

2
√

r(θ) − d
�

√
κ

for all θ ∈ (θd, θ1). By integrating from θd to θ1 we obtain

π

4

√
κ � (θ1 − θd)

√
κ =

θ1∫
θd

√
κ dθ � 1

2

θ1∫
θd

r ′(θ)√
r(θ) − d

dθ = 1

2

1∫
d

dr√
r − d

= √
1 − d.

Since π2/16 < 2/3, we derive

1 − d � 2κ/3 = (
c − d2)/(3d).

That is, 0 � 2d2 − 3d + c = (2d − 1)(d − 1) + c − 1. Recalling that 2d − 1 �
√

2 − 1, see (34),
and c − 1 = a, we derive a � (

√
2 − 1)(1 − d), or d � 1 − a/(

√
2 − 1), which implies (38).

Finally, we apply part (ii) of Lemma 3.2 in order to complete the proof.
From (36) it follows that r ′′ � 2κ almost everywhere (for, (36) ⇒ r + r ′′ � cd−1, so r ′′ �

cd−1 − d = (c − d2)d−1 = 2κ). From Taylor formula it is clear that (24) is satisfied with this κ .
Therefore, inequality (25) holds.

Since r(θ)−d � 1−d � c−d2 � (c−d2)/d = 2κ , we deduce from (37) that |r ′(θ)| � 2
√

2κ

(of course, this is weaker than (37), but we will use it in the following estimate for simplicity,
while for r ′2(θ) we use (37) as it is). So,

r ′2(θ) + r(θ)
(|r ′(θ)| + 2κ

)
� 4κ

(
r(θ) − d

) + 1 · (2
√

2κ + 2κ
)

� 2κ
(
2(1 − d) + √

2 + 1
)
� 6κ,

since r � 1 and −2d � −√
2.
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Since r2(θ) � 1 and r−2(φ) � 1/d2, the above and (25) imply:

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2−2

2τ 2
� 1 + 6κ

d2
= 1

d2
+ 3

c − d2

d3
. (39)

We finish the proof by showing that the right-hand side is less than 1 + k2a for some k2 > 0.
From (34) we have that 1/

√
2 � d � 1. Using this and (38), which rewrites 1−d � (

√
2+1)a,

we get

1 − d2 = (1 + d)(1 − d) � 2
(√

2 + 1
)
a � 5a,

d−2 = 1 + (
1 − d2)d−2 � 1 + 5ad−2 � 1 + 10a.

Similarly, recalling that c = 1 + a:

c − d2

d3
= 1

d3

(
a + (

1 − d2)) � 2
√

2(a + 5a). �
Proof of (9). Fix x, y ∈ SX and pick f ∈ Jx. From the definition of ρX and f (x) = ‖f ‖ = 1 it
follows that

2ρX(τ) � ‖x + τy‖ + ‖x − τy‖ − 2 � ‖x + τy‖ + f (x − τy) − 2

= ‖x + τy‖ − 1 − τf (y).

Similarly, 2ρX(τ) � ‖x − τy‖ − 1 + τf (y). Thus

‖x ± τy‖ � 1 ± τf (y) + 2ρX(τ),

or

‖x ± τy‖2 � ‖x ± τy‖(1 ± τf (y) + 2ρX(τ)
)
.

Therefore,

‖x + τy‖2 + ‖x − τy‖2 − 2 � ‖x + τy‖ + ‖x − τy‖ − 2 + τf (y)
(‖x + τy‖ − ‖x − τy‖)

+ 2ρX(τ)
(‖x + τy‖ + ‖x − τy‖)

� 2ρX(τ) + 2τ 2 + 4(1 + τ)ρX(τ)

� 2τ 2 + 6(1 + τ)ρX(τ),

which implies (9). �
Remark 3.3. Finally, we check the least possible constant k1, which could be obtained by the
method presented in the paper.
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From (22) we get that k1 � 6k2. So, we should find an upper estimate of k2.
Set λ = 1 + √

2. Fix a0 ∈ (0, λ−1). From (10), (39) and (38) we get

lim sup
τ→0

‖x + τy‖2 + ‖x − τy‖2 − 2

2τ 2
�

{
1 + 3(1+a0)

2a0
a, a � a0,

f (c, d),

where f (c, d) = d−2 + 3(c − d2)d−3, c = 1 + a, a = a(X), and d is a real number satisfying
1 � d � 1 − λa > 0 for a < a0.

Let g(a) = (1 − λa)−2 + 3(1 + a − (1 − λa)2)(1 − λa)−3. Since f ′
d(c, d) � 0 for c � 1 � d ,

we obtain

f (c, d) � f (1 + a,1 − λa) = g(a).

Since (1 − λa)−2 is convex as a function of a, we have that

(1 − λa)−2 � 1 + (1 − λa0)
−2 − 1

a0
a = 1 + 2λ − λ2a0

(1 − λa0)2
a, a ∈ [0, a0].

Also,

1 + a − (1 − λa)2 = (
1 + 2λ − λ2a

)
a � (1 + 2λ)a,

and (1 − λa)−3 � (1 − λa0)
−3. Therefore, for a ∈ [0, a0]

g(a) � 1 +
(

λ(2 − λa0)

(1 − λa0)2
+ 3

1 + 2λ

(1 − λa0)3

)
a.

So, we may choose

k2 = inf
0<a0<λ−1

(
max

{
3(1 + a0)

2a0
,

λ(2 − λa0)

(1 − λa0)2
+ 3

1 + 2λ

(1 − λa0)3

})
.

For example, for a0 = (8λ)−1 ≈ 0.05 we have that

3(1 + a0)

2a0
≈ 30.5,

while the second term in the above right-hand side is approximately 32.01, so k2 < 33 and
k1 < 200.
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