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Abstract. Let ν be a countably additive measure defined on a measurable

space (Ω, Σ) and taking values in a Banach space X. Let 1 < p < ∞. In this

paper we study some aspects of the weak topology on the Banach lattice Lp(ν)

of all (equivalence classes of) measurable real-valued functions on Ω which are

p-th power integrable with respect to ν. We show that every subspace of Lp(ν)

is weakly compactly generated and has weakly compactly generated dual. We

prove that a bounded net (fα) in Lp(ν) is weakly convergent to f ∈ Lp(ν) if

and only if
∫

A fα dν →
∫

A f dν weakly in X for every A ∈ Σ. Finally, we also

provide sufficient conditions ensuring that the set of functionals{
f 7→

∫
Ω

fg d〈x∗, ν〉 : g ∈ BLq(ν), x∗ ∈ BX∗
}
⊂ BLp(ν)∗

is a James boundary, where 1/p + 1/q = 1.

1. Introduction

In the classical space of integrable functions Lp(µ), where µ is a probability mea-

sure and 1 ≤ p < ∞, a bounded net (fα) is weakly convergent to f ∈ Lp(µ) if and

only if
∫

A
fα dµ →

∫
A

f dµ for every measurable set A. This is a direct consequence

of the duality Lp(µ)∗ ∼= Lq(µ) and the density of simple functions in Lq(µ) (here

1/p+1/q = 1). In general, for the Lp space associated to a vector measure ν taking

values in a Banach space X (see Section 2 for the definitions) there is not a ‘good’

representation of the dual and so the study of the weak topology becomes more

difficult. In the case p = 1, G. P. Curbera [3] and independently S. Okada [21]

showed that, if L1(ν) contains no complemented subspace isomorphic to `1, then

the weak convergence of bounded nets in L1(ν) is characterized by the weak conver-

gence in X of the integrals over arbitrary measurable sets. For bounded sequences

in L1(ν) such characterization of weak convergence holds whenever the range of ν

is norm relatively compact [21], but not in general [4]. Later, G. Manjabacas [19,
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Section 4.7] studied weak compactness in L1(ν) with the help of the weaker topol-

ogy σ(L1(ν), B) of pointwise convergence on the norming set B ⊂ BL1(ν)∗ made up

of all functionals of the form f 7→
∫
Ω

fh d〈x∗, ν〉, where h ∈ BL∞(ν) and x∗ ∈ BX∗ .

The key point is that bounded σ(L1(ν), B)-compact sets are weakly compact when-

ever B is a James boundary for BL1(ν)∗ , and this is the case, for instance, provided

that ν has norm relatively compact range.

The aim of this paper is to discuss some aspects of the weak topology on Lp(ν)

for 1 < p < ∞. This space plays a relevant role in the theory of Banach lattices

and has attracted the attention of many authors in recent years, see [5], [10], [11],

[12], [13], [14], [23] and [24]. In contrast with the case of scalar measures, Lp(ν)

is not reflexive in general (see e.g. Example 3.11). However, it turns out that

every subspace of Lp(ν) is weakly compactly generated and has weakly compactly

generated dual (Theorem 3.1 and Corollary 3.2). The order continuity of Lp(ν)∗

(Theorem 3.1) paves the way to deal with our main result, Theorem 3.5, stating

that a bounded net (fα) in Lp(ν) is weakly convergent to f ∈ Lp(ν) if and only if∫
A

fα dν →
∫

A
f dν weakly in X for every measurable set A. Equivalently, the weak

topology coincides on any bounded subset of Lp(ν) with the topology σ(Lp(ν),Γ)

of pointwise convergence on the norming set

Γ := {γg,x∗ : g ∈ BLq(ν), x∗ ∈ BX∗} ⊂ BLp(ν)∗ , γg,x∗(f) :=
∫

Ω

fg d〈x∗, ν〉.

This answers affirmatively a question implicit in [13, 14, 23] where σ(Lp(ν),Γ) had

been used, for instance, while trying to finding concrete representations of Lp(ν) as

a dual space. In the last part of the paper we look for conditions ensuring that Γ

is a James boundary for BLp(ν)∗ . This happens in each of the following cases:

• ν has norm relatively compact range and Lp(ν) is reflexive (Theorem 3.9);

• X is a Banach lattice and ν is positive (Theorem 3.12).

2. Preliminaries and notation

All unexplained terminology can be found in our standard references [9] (Ba-

nach spaces), [18, 20] (Banach lattices) and [7] (vector measures). All our Banach

spaces (Y, ‖ · ‖) are assumed to be real. We denote by BY the closed unit ball

of Y and Y ∗ stands for its topological dual. We write w∗ to denote the weak*

topology on Y ∗. The evaluation of y∗ ∈ Y ∗ at y ∈ Y is denoted by either 〈y∗, y〉
or y∗(y). By a ‘subspace’ of Y we mean a closed linear subspace. A set C ⊂ BY ∗

is norming if ‖y‖ = sup{|y∗(y)| : y∗ ∈ C} for every y ∈ Y ; in this case we denote

by σ(Y,C) the (locally convex Hausdorff) topology on Y of pointwise convergence

on C. A set C ⊂ BY ∗ is a James boundary for BY ∗ if for each y ∈ Y there is

y∗ ∈ C such that ‖y‖ = y∗(y). The classical example of James boundary is given
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by the set Ext(BY ∗) of extreme points of BY ∗ , cf. [9, Fact 3.45]. Recall that Y is

weakly compactly generated (WCG for short) if there is a weakly compact subset

of Y whose linear span is dense in Y . Standard examples of WCG Banach spaces

are the separable or reflexive ones.

Throughout the paper (Ω,Σ) is a measurable space, X is a Banach space, ν : Σ →
X is a countably additive vector measure and 1 < p, q < ∞ satisfy 1/p + 1/q = 1.

The semivariation of ν is the set function defined on Σ by the formula ‖ν‖(A) =

sup{|〈x∗, ν〉|(A) : x∗ ∈ BX∗}; as usual, we write |〈x∗, ν〉| to denote the variation

of the scalar measure 〈x∗, ν〉 given by 〈x∗, ν〉(A) = 〈x∗, ν(A)〉 for every A ∈ Σ.

Throughout the paper λ stands for a fixed Rybakov control measure of ν, that is,

λ = |〈x∗, ν〉| for some x∗ ∈ BX∗ and λ(A) = 0 if and only if ‖ν‖(A) = 0, cf. [7,

Theorem 2, p. 268].

Following D. R. Lewis’ [17] approach to the Bartle-Dunford-Schwartz integral

(cf. [8, IV.10]), we say that a Σ-measurable function f : Ω → R is ν-integrable if it

is integrable with respect to 〈x∗, ν〉 for every x∗ ∈ X∗ and for each A ∈ Σ there is∫
A

f dν ∈ X such that

x∗
(∫

A

f dν
)

=
∫

A

f d〈x∗, ν〉 for every x∗ ∈ X∗.

Two Σ-measurable functions f, g : Ω → R are identified if they are equal ‖ν‖-a.e.

The space L1(ν) of all (equivalence classes of) ν-integrable functions becomes a

Banach lattice when endowed with the ‖ν‖-a.e. order and the norm

‖f‖L1(ν) = sup
x∗∈BX∗

∫
Ω

|f | d|〈x∗, ν〉|.

It is known that L1(ν) is order continuous and has weak unit, see [2, Theorem 1].

Moreover, G. P. Curbera [2, Theorem 8] showed that any order continuous Banach

lattice with weak unit is order isomorphic to the L1 space of some vector measure.

Such a Banach lattice is always WCG, see [2, Theorem 2].

Following E. A. Sánchez-Pérez [23], we now say that a Σ-measurable function

f : Ω → R is p-th power ν-integrable if |f |p is ν-integrable. The space Lp(ν) of

all (equivalence classes of) p-th power ν-integrable functions is a p-convex (see [18,

Section 1.d] for the definition) order continuous Banach lattice with weak unit when

equipped with the ‖ν‖-a.e. order and the norm

‖f‖Lp(ν) = sup
x∗∈BX∗

(∫
Ω

|f |p d|〈x∗, ν〉|
) 1

p

,

see [23, Section 2]. Lp(ν) is WCG (see the proof of Proposition 3 in [5]) and simple

functions are dense in it (see [23, Proposition 4]). Recently, A. Fernández and

others [11] proved that any p-convex order continuous Banach lattice having weak

unit is order isomorphic to the Lp space of some vector measure.
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Recall that the product of a p-th power ν-integrable function and a q-th power

ν-integrable one is always ν-integrable, see [23, Section 3]. Given f ∈ Lp(ν), we

can define an operator (i.e. linear and continuous mapping)

Mf : Lq(ν) → X, Mf (g) :=
∫

Ω

fg dν,

with ‖Mf‖ = ‖f‖Lp(ν), see [13, Proposition 2.1]. As a consequence of the previous

equality, the set Γ ⊂ BLp(ν)∗ defined in the introduction is norming.

Finally, note that Lp(ν) is a Banach (or Köthe) function space over λ, see [23,

Proposition 5]. Since Lp(ν) is order continuous, Lp(ν)∗ coincides with the Köthe

dual of Lp(ν) (cf. [20, Corollary 2.6.5]), that is, Lp(ν)∗ = {ϕh : h ∈ H} where

H := {h : Ω → R Σ-measurable : fh ∈ L1(λ) for all f ∈ Lp(ν)}

and the duality is given by 〈ϕh, f〉 :=
∫
Ω

fh dλ.

3. The results

Our starting point is the following theorem.

Theorem 3.1. Lp(ν)∗ is order continuous and has weak unit. In particular, Lp(ν)∗

is WCG.

Proof. Since Lp(ν) is p-convex and `1 is not p-convex, we can apply [18, Proposition

1.d.9] to conclude that no sublattice of Lp(ν) is order isomorphic to `1. Equivalently,

Lp(ν)∗ is order continuous, cf. [20, Theorem 2.4.14]. On the other hand, since Lp(ν)

is an order continuous Banach function space over λ, the space Lp(ν)∗ has weak unit

(namely, the functional ϕχΩ). Therefore, according to the comments in Section 2,

Lp(ν)∗ is order isomorphic to the L1 space of some vector measure and so it is

WCG. �

Subspaces of WCG Banach spaces are not WCG in general. The first example

showing this phenomenon was built by H.P. Rosenthal [22] (cf. [6, Chapter 5, §10])

over the L1 space of certain probability measure. However, the property of being

WCG is always inherited by subspaces having WCG dual, according to a result of

W.B. Johnson and J. Lindenstrauss [16] (cf. [6, Chapter 5, §8]). Since Lp(ν) is

WCG (see Section 2) and the dual of any subspace of Lp(ν) is WCG (because it is

a quotient of the WCG space Lp(ν)∗), we have the following corollary.

Corollary 3.2. Every subspace of Lp(ν) is WCG.

A result of T. Kuo (cf. [7, Corollary 7, p. 83]) states that every dual WCG

Banach space has the Radon-Nikodým property. On the other hand, it is well

known that a dual Banach space Y ∗ has the Radon-Nikodým property if and only
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if every separable subspace of Y has separable dual, cf. [7, Corollary 8, p. 198].

Bearing in mind these facts and Theorem 3.1, we get the following corollary. For

further characterizations of the separability of Lp(ν), see [11].

Corollary 3.3. Every separable subspace of Lp(ν) has separable dual. In particular,

Lp(ν) is separable if and only if Lp(ν)∗ is separable.

In order to prove Theorem 3.5 below we need the following lemma which might

be folklore. We include a proof here for the sake of completeness.

Lemma 3.4. Let Y be a Banach lattice such that both Y and Y ∗ are order contin-

uous. Let C ⊂ Y ∗ be a set which separates the points of Y . Then the ideal I ⊂ Y ∗

generated by C is norm dense in Y ∗.

Proof. The norm closure I ′ of I in Y ∗ is an ideal, cf. [20, Proposition 1.2.3]. Since

Y ∗ is order continuous, every closed ideal of Y ∗ is a band, [20, Corollary 2.4.4]. On

the other hand, the order continuity of Y ensures that any band of Y ∗ is w∗-closed,

cf. [20, Corollary 2.4.7]. It follows that I ′ is w∗-closed. Finally, since I ′ is a linear

subspace of Y ∗ which separates the points of Y , an appeal to the Hahn-Banach

theorem allows us to conclude that I ′ = Y ∗. �

The proof of the next result is inspired by some of the ideas in [3, Theorem 4].

Theorem 3.5. The weak topology and σ(Lp(ν),Γ) coincide on any bounded subset

of Lp(ν). Consequently, a bounded net (fα) in Lp(ν) converges weakly to f ∈ Lp(ν)

if and only if
∫

A
fα dν →

∫
A

f dν weakly in X for every A ∈ Σ.

Proof. Fix a bounded net (fα) in Lp(ν) converging to f ∈ Lp(ν) in the topology

σ(Lp(ν),Γ). We will show that fα → f weakly. Let I ⊂ Lp(ν)∗ be the ideal

generated by Γ. Since Lp(ν) and Lp(ν)∗ are order continuous (the latter by The-

orem 3.1), we can apply Lemma 3.4 to conclude that I is norm dense in Lp(ν)∗.

Bearing in mind that (fα) is bounded, it is clear that in order to prove that fα → f

weakly it suffices to check that 〈ϕ, fα〉 → 〈ϕ, f〉 for every ϕ ∈ I.

To this end, fix ϕ ∈ I. There exist g1, . . . , gn ∈ Lq(ν) and x∗1, . . . , x
∗
n ∈ X∗ such

that |ϕ| ≤
∑n

i=1 |γgi,x∗i
|. An easy computation shows that γgi,x∗i

= ϕhi
, where

hi := gi
d〈x∗i , ν〉

dλ
∈ H for all 1 ≤ i ≤ n.

As usual, d〈x∗i ,ν〉
dλ denotes the Radon-Nikodým derivative of 〈x∗i , ν〉 with respect

to λ. Take g ∈ H satisfying ϕ = ϕg. Then ϕ|g| = |ϕ| ≤
∑n

i=1 ϕ|hi| = ϕ∑n
i=1 |hi| and

therefore

(1) |g| ≤
n∑

i=1

|hi| λ-a.e.
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Let us consider the non-negative finite measures defined on Σ by µ(A) :=
∫

A
|g| dλ

and µi(A) :=
∫

A
|hi| dλ for all 1 ≤ i ≤ n. Taking µ̃ :=

∑n
i=1 µi, inequality (1)

ensures that µ ≤ µ̃ and so we can define an operator T : L1(µ̃) → L1(µ) by

T (h) = h. Notice that fα, f ∈ L1(µ̃) because fα, f ∈ L1(µi) for all 1 ≤ i ≤ n.

Claim.- fα → f weakly in L1(µi) for every 1 ≤ i ≤ n. Indeed, since (fα) is

bounded in L1(µi) (because it is bounded in Lp(ν)), we only have to check that∫
A

fα dµi →
∫

A
f dµi for every A ∈ Σ. To this end, let us consider a Hahn

decomposition {G, Ω \G} of 〈x∗i , ν〉, that is, G ∈ Σ and

|〈x∗i , ν〉|(E) = 〈x∗i , ν〉(E ∩G)− 〈x∗i , ν〉(E \G) for all E ∈ Σ.

We have∫
A

fαdµi =
∫

A

fα|gi| d|〈x∗i , ν〉|

=
∫

Ω

fα(|gi|χA∩G − |gi|χA\G) d〈x∗i , ν〉 →
∫

Ω

f(|gi|χA∩G − |gi|χA\G) d〈x∗i , ν〉

=
∫

A

f |gi| d|〈x∗i , ν〉| =
∫

A

fdµi,

because |gi|χA∩G−|gi|χA\G ∈ Lq(ν) and fα → f in the topology σ(Lp(ν),Γ). This

proves the Claim.

From the previous Claim it follows that fα → f weakly in L1(µ̃). Since T is

weak-weak continuous, we infer that fα → f weakly in L1(µ).

Set A := {ω ∈ Ω : g(ω) ≥ 0} ∈ Σ. Then

〈ϕ, fα〉 =
∫

Ω

fαg dλ =
∫

A

fα|g| dλ−
∫

Ω\A

fα|g| dλ

=
∫

A

fα dµ−
∫

Ω\A

fα dµ →
∫

A

f dµ−
∫

Ω\A

f dµ =
∫

Ω

fg dλ = 〈ϕ, f〉.

This finishes the proof of the first assertion of the theorem. The last part follows

immediately bearing in mind that simple functions are dense in Lq(ν). �

We stress that a set F ⊂ Lp(ν) is bounded if and only if the set of integrals

{
∫
Ω

fg dν : f ∈ F} ⊂ X is bounded for every g ∈ Lq(ν). This is a direct conse-

quence of the Uniform Boundedness Principle applied to the family {Mf : f ∈ F}
of operators from Lq(ν) to X.

Corollary 3.6. A sequence (fn) in Lp(ν) converges weakly to f ∈ Lp(ν) if and

only if fn → f in the topology σ(Lp(ν),Γ).

The rest of the paper is essentially devoted to presenting a couple of sufficient

conditions (Theorems 3.9 and 3.12 below) ensuring that Γ is a James boundary

for BLp(ν)∗ . We do not know whether this is always the case. Our interest is

somehow motivated by the following comment.
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A result of G. Godefroy (see [15, Theorem III.3]) ensures that if a dual Banach

space Y ∗ is WCG, then

(2) BY ∗ = co(C)
norm

for every James boundary C ⊂ BY ∗ . Other cases where the previous equality holds

can be found in [1]. Note that (2) implies that σ(Y, C) coincides with the weak

topology on any bounded subset of Y . Bearing in mind that Lp(ν)∗ is WCG (The-

orem 3.1), we get the following corollary which, in particular, provides a different

proof of Theorem 3.5 when Γ is a James boundary for BLp(ν)∗ .

Corollary 3.7. Let C be a James boundary for BLp(ν)∗ . Then σ(Lp(ν), C) and

the weak topology coincide on any bounded subset of Lp(ν).

Lemma 3.8. Suppose ν has norm relatively compact range. Let f ∈ Lp(ν). Then

the operator Mf is compact.

Proof. The norm relative compactness of ν(Σ) ensures that MχΩ is compact, see

[11, Theorem 3.6]. Clearly, this implies that MχA
is compact for every A ∈ Σ and,

consequently, Mf is compact whenever f is a simple function. For the general case,

let (fn) be a sequence of simple functions converging to f in the norm topology

of Lp(ν). Then (Mfn
) is a sequence of compact operators converging to Mf in the

operator norm and, therefore, Mf is compact too. �

Theorem 3.9. Suppose ν has norm relatively compact range and Lp(ν) is reflexive.

Then:

(i) Γ is w∗-closed in Lp(ν)∗.

(ii) Ext(BLp(ν)∗) ⊂ Γ. In particular, Γ is a James boundary for BLp(ν)∗ .

Proof. Since Γ is norming and symmetric, the Hahn-Banach theorem ensures that

BLp(ν)∗ = co(Γ)
w∗

. This equality and the so-called “converse” of the Krein-Milman

theorem (cf. [8, Lemma 5, p. 440]) yield Ext(BLp(ν)∗) ⊂ Γ
w∗

.

Since Ext(BLp(ν)∗) is a James boundary for BLp(ν)∗ , it only remains to prove

that Γ is w∗-closed. To this end, let (γgα,x∗α) be a net in Γ which converges to

some ϕ ∈ BLp(ν)∗ in the w∗-topology. We will check that ϕ ∈ Γ. By the reflexivity

of Lp(ν), the space Lq(ν) is reflexive as well, see [11, Corollary 3.10]. Since BLq(ν) is

weakly compact and BX∗ is w∗-compact, we can assume without loss of generality

that gα → g ∈ BLq(ν) weakly and x∗α → x∗ ∈ BX∗ in the w∗-topology. We claim

that ϕ = γg,x∗ .

To this end, fix f ∈ Lp(ν) and set xα :=
∫
Ω

gαf dν ∈ X for every α. Since

gα → g weakly in Lq(ν), we have

x∗(xα) =
∫

Ω

gαf d〈x∗, ν〉 →
∫

Ω

gf d〈x∗, ν〉 = γg,x∗(f).
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On the other hand, the set {xα} is norm relatively compact (by Lemma 3.8),

x∗α → x∗ in the w∗-topology and (x∗α) is bounded, so we have

|x∗α(xα)− x∗(xα)| → 0.

Since |x∗α(xα)− γg,x∗(f)| ≤ |x∗α(xα)− x∗(xα)|+ |x∗(xα)− γg,x∗(f)| for every α, we

conclude that

ϕ(f) = lim
α

γgα,x∗α(f) = lim
α

x∗α(xα) = γg,x∗(f).

As f ∈ Lp(ν) is arbitrary, ϕ = γg,x∗ and the proof is over. �

Remark 3.10. Under the assumptions of the previous theorem, the fact that Γ

is a James boundary for BLp(ν)∗ can be deduced in a more direct way. Namely,

given f ∈ Lp(ν), the operator Mf : Lq(ν) → X is weak-weak continuous, hence

the convex set Mf (BLq(ν)) is weakly compact and, in particular, norm closed. The

compactness of Mf now ensures that Mf (BLq(ν)) is norm compact, thus there is

g ∈ BLq(ν) such that ‖Mf (g)‖ = ‖Mf‖ = ‖f‖Lp(ν). Clearly, we have ‖Mf (g)‖ =

γg,x∗(f) for some x∗ ∈ BX∗ , and the conclusion follows.

As we mentioned in the introduction, Lp(ν) is not reflexive in general. We next

present a simple example. Recall first that Lp(ν) is reflexive if (and only if) it

does not contain subspaces isomorphic to c0 (combine [11, Corollary 3.10] and [20,

Theorem 2.4.12]). For further characterizations of the reflexivity of Lp(ν), see [5]

and [11].

Example 3.11. A non-reflexive Lp(ν).

Proof. Take Ω := N, let Σ be the set of all subsets of N and consider the countably

additive vector measure ν : Σ → c0 given by ν(A) =
∑

n∈A(1/n)en, where (en) is

the canonical basis of c0. It is not difficult to check that

Lp(ν) =
{
f ∈ RN : (n−1/pf(n))n∈N ∈ c0

}
with ‖f‖Lp(ν) = sup{n−1/p|f(n)| : n ∈ N} for all f ∈ Lp(ν). Clearly, c0 is isomor-

phic to Lp(ν) and this space is not reflexive. �

Recall that a vector measure ϑ taking values in a Banach lattice Y is said to be

positive if ϑ(·) ≥ 0. In this case, we have |〈y∗, ϑ〉| ≤ 〈|y∗|, ϑ〉 for every y∗ ∈ Y ∗ and

the semivariation of ϑ can be computed in a simple way, namely, ‖ϑ‖(·) = ‖ϑ(·)‖.
This observation will be needed in the proof of the next result.

Theorem 3.12. Suppose X is a Banach lattice and ν is positive. Then Γ is a

James boundary for BLp(ν)∗ .
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Proof. Fix f ∈ Lp(ν)\{0}. Since ν is positive, the vector measure ϑ : Σ → X given

by ϑ(A) :=
∫

A
|f |p dν is positive as well. The comments preceding the theorem can

be applied to ϑ ensuring that

‖f‖p
Lp(ν) = ‖ϑ‖(Ω) = ‖ϑ(Ω)‖ =

∥∥∥∫
Ω

|f |p dν
∥∥∥.

Take x∗ ∈ BX∗ such that ‖f‖p
Lp(ν) = x∗(

∫
Ω
|f |p dν) =

∫
Ω
|f |p d〈x∗, ν〉. Set

h := sign(f)|f |p−1 and note that h ∈ Lq(ν) and ‖h‖q
Lq(ν) = ‖f‖p

Lp(ν). Define

g := (1/‖h‖Lq(ν))h ∈ BLq(ν). We claim that γg,x∗(f) = ‖f‖Lp(ν). Indeed:∫
Ω

fg d〈x∗, ν〉 =
(∫

Ω

fh d〈x∗, ν〉
)
· ‖h‖−1

Lq(ν)

=
(∫

Ω

|f |p d〈x∗, ν〉
)
· ‖f‖−(p/q)

Lp(ν) = ‖f‖p
Lp(ν) · ‖f‖

−(p/q)
Lp(ν) = ‖f‖Lp(ν).

This finishes the proof. �
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[13] I. Ferrando, S. Okada, and E. A. Sánchez-Pérez, Weak convergence in spaces of p-integrable

functions with respect to a vector measure, Actas de las VI Jornadas de Matemática Aplicada,
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Valencia, Camino de Vera, s/n, 46071 Valencia, Spain

E-mail address: irferpa@doctor.upv.es
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