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ABSTRACT. We provide a criterion for MLUR renormability of normed spaces
involving the class ofσ-slicely continuous maps, recently introduced in [11]. As
a consequence of this result, we obtain a theorem of G. Alexandrov concerning
the three space problem for MLUR renormings of Banach spaces.

A normed space(X, ‖ · ‖) (or its norm) is said to be midpoint locally uniformly
rotund (MLUR for short) if for everyx ∈ X and every sequence(xn)n in X such
that‖xn + x‖→‖x‖ and‖xn − x‖→‖x‖ we have‖xn‖→ 0.

Recall also thatX is locally uniformly rotund (LUR for short) if for everyx ∈ X

and every sequence(xn)n ⊂ X such thatlimn ‖xn‖ = ‖x‖ andlimn ‖xn + x‖ =
2‖x‖ we havelimn ‖xn − x‖ = 0, and thatX is strictly convex or rotund (R for
short) if x = y wheneverx andy are elements ofX such that‖x‖ = ‖y‖ =
‖(x + y)/2‖.

It is clear that LUR⇒ MLUR and that MLUR⇒ R. In the paper [5], devoted
to the renorming of spaces of continuous functions on trees, R. Haydon provides
the first example (the only known to date) of MLUR space with no equivalent
LUR renorming. There, he also shows that for every treeΥ, the existence of an
equivalent strictly convex norm onC(Υ) implies MLUR renormability on this
space. This coincidence is not true in general: an example of strictly convexifiable
space without MLUR renorming is̀∞ (see [2, 6]).

Our aim in this paper is to provide a criterion for MLUR renorming of spaces
that have images in MLUR spaces through special non linear maps. These are the
σ-slicely continuous maps recently introduced in [11], where a non linear transfer
technique for LUR renormability has been developed.

Definition 1. LetX andY be normed spaces, and letA be a subset ofX. A map
Φ : A −→ Y is said to beσ-slicely continuous if for everyε > 0 we may write
A =

⋃
n An,ε in such a way that for everyx ∈ An,ε there exists an open half space

H ⊂ X such thatx ∈ H anddiam Φ(H ∩An,ε) < ε.

Recall that an open half space ofX is a set of the form{x : f(x) > q}, with
q ∈ R andf ∈ X∗ \ {0}.

In [9] (see also [12]), there is a characterization of LUR renormable spaces
X given in terms of countable decompositions ofX by sets which are union of
slices with small diameter. From this characterization it follows that, ifX or Y
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is LUR renormable, then every linear bounded operatorQ : X→Y is σ-slicely
continuous, and the same holds for any compositionΦ = B Q : X→Z with
B : Y →Z continuous (see [11, Proposition 1.14]).

We shall useσ-slicely continuous maps in order to obtain our main result as
follows.

Theorem 1. Let X be a normed space. Suppose that there exist aσ-slicely con-
tinuous mapΦ : X→X and a MLUR renormable subspaceY of X such that
x− Φx ∈ Y , for all x ∈ X. Then,X admits an equivalent MLUR norm.

We apply this theorem to the three space problem for MLUR renormability. The
three space problem for a property of Banach spaces is the question whether a
Banach spaceX possesses this property provided that for some closed subspace
Y of X, bothY andX/Y have it. To admit an equivalent LUR norm is a three
space property [4]. In the case of MLUR (and rotund) renormings, the problem was
negatively solved in [5]. It was however shown in [1] the following weak version
of it, which is a consequence of Theorem 1.

Theorem 2. Let X be a Banach space, and suppose that there is a closed MLUR
renormable subspaceY of X such that the quotientX/Y has an equivalent LUR
norm. Then,X admits an equivalent MLUR norm.

Proof. We consider the quotient mapQ, from X ontoX/Y . By the Bartle-Graves
theorem (see e.g. [3, Chapter VII.3]), there is a continuous selectorB : X/Y →X

such thatB Qx ∈ Qx, for all x ∈ X. If we defineΦ = B Q, thenx−Φx ∈ Y , for
everyx ∈ X. SinceX/Y is LUR renormable,Q andΦ areσ-slicely continuous
and Theorem 1 gives the MLUR renormability onX. �

Let us mention that a similar result to the previous was obtained in [7] for Kadec
renormability (recall that a normed space is Kadec if the norm and the weak topolo-
gies coincide on its unit sphere).

An equivalent definition for MLUR norms can be stated in terms of the notion
of strongly extreme point of a subset of a normed space, introduced in [8].

Definition 2. Let A be a subset of a normed space(X, ‖ · ‖), and ε, δ > 0. An
elementx ∈ A is said to be an(ε, δ)-strongly extreme point ofA if

‖u− v‖ < ε wheneveru, v ∈ A and‖x− u+v
2 ‖ < δ

The pointx is called anε-strongly extreme point ofA it there existsδ > 0 such
thatx is an(ε, δ)-strongly extreme point ofA.

A normed space is MLUR if, and only if, every element of its unit sphere is an
ε-strongly extreme point of the unit ball, for eachε > 0.

In the proof of Theorem 1 we use the following covering type characterization
for the class of MLUR renormable spaces given in [10, Theorem 1]:A normed
spaceX admits an equivalent MLUR norm if, and only if, for everyε > 0 we can
write X =

⋃
n Xn,ε in such a way that eachx ∈ Xn,ε is an ε-strongly extreme

point ofco(Xn,ε).
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Proof of Theorem 1. First step. The countable covering.Let us fixε > 0, and take
the countable decomposition of the MLUR renormable spaceY :

Y =
⋃
n,m

Y n,m

with n, m ∈ N, 1
m < ε

2 , and such that every pointy ∈ Y n,m is a (ε, 1
m)-strongly

extreme point ofco(Y n,m).
Let denoteΨ(x) = x− Φ(x) ∈ Y , and lift the decomposition fromY to X,

X =
⋃
n,m

Xn,m

whereXn,m = {x ∈ X : Ψ(x) ∈ Y n,m}.
Now, we use the fact thatΦ is σ-slicely continuous on eachXn,m to get count-

able coverings

Xn,m =
⋃
k,q

Cn,m
k,q

with k ∈ N andq ∈ Q, such that for eachx ∈ Cn,m
k,q there exist a positive rational

numberrx and an half spaceHx = {y ∈ X : fx(y) > q}, defined byfx ∈ X∗

with ‖fx‖ = 1, that satisfy

diam Φ(Hx ∩ Cn,m
k,q ) <

1
8 m

(1)

and

fx(x) > q + rx > q

We can assume without loss of generality thatΦ is bounded onCn,m
k,q having

sup{‖Φ(x)‖ : x ∈ Cn,m
k,q } < Mk,q

for some constantMk,q.
In order to get more control on the values of functionalsfx we decompose a

little more the piecesCn,m
k,q . At this point we use some technical ideas taken from

[10, Proposition 1] and [11, Lemma 4.21].
Let us consider, for eachx ∈ Cn,m

k,q , a number0 < sx < 1
16 m

rx
Mk,q

, and define
for each pair of positive rationalsr ands the sets

Cn,m
k,q,r,s =

x ∈ Cn,m
k,q : s < sx andq + r < sup

y∈Cn,m
k,q

{fy(x)} < q + r + s


Observe that for eachx ∈ Cn,m

k,q,r,s we haver + s > rx.
Second step. A particular slice.Fix x ∈ Cn,m

k,q,r,s, takeyx ∈ Cn,m
k,q such that

(2) q + r + s > fyx(x) > q + r > q (x ∈ Hyx ∩ Cn,m
k,q ),

and consider the half spaceH ′
x = {z : fyx(z) > fyx(x)− r}.
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For eachz ∈ Cn,m
k,q,r,s ∩H ′

x we have

fyx(z) > fyx(x)− r > q (z ∈ Hyx ∩ Cn,m
k,q )(3)

fyx(z) < q + r + s < fyx(x) + s and

fyx(x)− fyx(z) > −s > −sx.(4)

Inequalities (1), (2) and (3) ensure us that

(5) ‖Φ(x)− Φ(z)‖ <
1

8m
.

On the other hand, forz ∈ Cn,m
k,q,r,s \H ′

x we have

(6) fyx(x)− fyx(z) ≥ r.

Third step. A good estimation for convex combinations.Let us consider two convex
combinations of vectorsui ∈ Cn,m

k,q,r,s (i ∈ I) andvj ∈ Cn,m
k,q,r,s (j ∈ J): u =∑

i∈I λiui and v =
∑

j∈J µjvj , with λi, µj > 0 and
∑

i∈I λi =
∑

j∈J µj = 1.
Now, for any vectorx ∈ Cn,m

k,q,r,s, we take the half spaceH ′
x given in the above

step, and define the subsets of indexesI0 = {i ∈ I : ui 6∈ H ′
x} andJ0 = {j ∈ J :

vj 6∈ H ′
x}.

As in the proof of [10, Lemma 4], we take advantage of the inequalities (4) and
(6) to obtain an upper bound for

∑
i∈I0

λi +
∑

j∈J0
µj :∥∥x− u+v

2

∥∥ ≥ fyx

(
x− u+v

2

)
= 1

2

(∑
i λi(fyx(x)− fyx(ui)) +

∑
j µj(fyx(x)− fyx(vj))

)
> 1

2

(∑
i∈I0

λi +
∑

j∈J0
µj

)
r − 1

2

(∑
i6∈I0

λi +
∑

j 6∈J0
µj

)
s

= 1
2

(∑
i∈I0

λi +
∑

j∈J0
µj

)
(r + s)− sx

> 1
2

(∑
i∈I0

λi +
∑

j∈J0
µj

)
rx − sx

From this inequality we deduce the following upper bound:

(7) 1
2

(∑
i∈I0

λi +
∑

j∈J0
µj

)
<

(∥∥x− u+v
2

∥∥ + sx

)
1
rx

Last step. Strongly extreme points.Now, we are going to prove that each point
x ∈ Cn,m

k,q,r,s is anε-strongly extreme point ofco(Cn,m
k,q,r,s). Thus, the cited covering

charaterization [10, Theorem 1] will finish the proof.
Let us fixx ∈ Cn,m

k,q,r,s and take0 < δx < 1
16 m min{1, rx

Mk,q
}. We will prove

that if u andv are inco(Cn,m
k,q,r,s) and‖x− u+v

2 ‖ < δx, then‖u− v‖ < ε.
We takeu =

∑
i∈I λiui and v =

∑
j∈J µjvj with the same notation as in

the previous step. Using that the identity map is just the sumΦ + Ψ, we get

‖u− v‖ = ‖
∑

i λi(Φ(ui) + Ψ(ui))−
∑

j µj(Φ(vj) + Ψ(vj))‖(8)

≤ ‖
∑

i λiΦ(ui)−
∑

j µjΦ(vj)‖+ ‖
∑

i λiΨ(ui)−
∑

j µjΨ(vj)‖
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The first member of this last sum is less thanε
2 because of theσ-slice continuity.

In fact, using the inequalities (5) and (7) we have

‖
∑

iλiΦ(ui)−
∑

j µjΦ(vj)‖
≤ ‖

∑
i λi(Φ(ui)− Φ(x))‖+ ‖

∑
j µj(Φ(vj)− Φ(x))‖

≤
(∑

i6∈I0
λi +

∑
j 6∈J0

µj

)
1

8 m +
(∑

i∈I0
λi +

∑
j∈J0

µj

)
2Mk,q

< 1
4 m + 2(δx + sx) 1

rx
2Mk,q

< 1
4 m + 1

2m = 3
4 m < ε

2 .

To obtain the same bound for the second summand in (8) we use the MLUR de-
composition in the beginning of the proof. Let us consider the vectors inco(Y n,m):
u′ =

∑
i λiΨ(ui) andv′ =

∑
j µjΨ(vj). Now, bearing in mind thatΨ(x) is an

( ε
2 , 1

m)-strongly extreme point ofco(Y n,m), if we are able to prove that‖Ψ(x) −
u′+v′

2 ‖ < 1
m , we can conclude that‖u′ − v′‖ < ε

2 and finish the proof.
The next inequalities give the estimation wanted:

‖Ψ(x)− u′ + v′

2
‖ =

= ‖x− u+v
2 − 1

2

∑
i λi(Φ(x)− Φ(ui))−

∑
j µj(Φ(x)− Φ(vj))‖

≤ ‖x− u+v
2 ‖+ 1

2‖
∑

i λi(Φ(ui)− Φ(x)) +
∑

j µj(Φ(vj)− Φ(x))‖

< δx + 3
4 m < 1

m .

�
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