A NON LINEAR MAP FOR MLUR RENORMING
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ABSTRACT. We provide a criterion for MLUR renormability of normed spaces
involving the class of-slicely continuous maps, recently introduced in [11]. As

a consequence of this result, we obtain a theorem of G. Alexandrov concerning
the three space problem for MLUR renormings of Banach spaces.

A normed spacé€X, || - ||) (or its norm) is said to be midpoint locally uniformly
rotund (MLUR for short) if for everyr € X and every sequende, ),, in X such
that||z,, + z|| — ||=|| and||z,, — z| — ||z|] we have||z,| — 0.

Recall also thakX is locally uniformly rotund (LUR for short) if for every € X
and every sequende,,),, C X such thatim, ||z,| = ||z|| andlim,, ||z, + z|| =
2||x|| we havelim,, ||z, — x| = 0, and thatX is strictly convex or rotund (R for
short) if x = y wheneverz andy are elements oX such that||z|| = |y|| =
Iz +y)/2l.

Itis clear that LUR= MLUR and that MLUR=- R. In the paper [5], devoted
to the renorming of spaces of continuous functions on trees, R. Haydon provides
the first example (the only known to date) of MLUR space with no equivalent
LUR renorming. There, he also shows that for every ffeghe existence of an
equivalent strictly convex norm o@'(Y) implies MLUR renormability on this
space. This coincidence is not true in general: an example of strictly convexifiable
space without MLUR renorming i&,, (see [2, 6]).

Our aim in this paper is to provide a criterion for MLUR renorming of spaces
that have images in MLUR spaces through special non linear maps. These are the
o-slicely continuous maps recently introduced in [11], where a non linear transfer
technique for LUR renormability has been developed.

Definition 1. Let X andY be normed spaces, and ldtbe a subset oK. A map

® : A — Y is said to bes-slicely continuous if for every > 0 we may write
A =lJ,, An.c insuch a way that for every € A, . there exists an open half space
H C X suchthatr € H anddiam ®(H N A,¢) < e.

Recall that an open half space &fis a set of the forr{z : f(z) > ¢}, with
geRandf e X*\ {0}.

In [9] (see also [12]), there is a characterization of LUR renormable spaces
X given in terms of countable decompositionsXfby sets which are union of
slices with small diameter. From this characterization it follows thak iér Y
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is LUR renormable, then every linear bounded operétor X — Y is o-slicely
continuous, and the same holds for any composifioa= B(Q : X — Z with
B :Y — Z continuous (see [11, Proposition 1.14]).

We shall user-slicely continuous maps in order to obtain our main result as
follows.

Theorem 1. Let X be a normed space. Suppose that there existséicely con-
tinuous map® : X — X and a MLUR renormable subspagé of X such that
x—®x €Y, forall x € X. Then,X admits an equivalent MLUR norm.

We apply this theorem to the three space problem for MLUR renormability. The
three space problem for a property of Banach spaces is the question whether a
Banach space& possesses this property provided that for some closed subspace
Y of X, bothY and X/Y have it. To admit an equivalent LUR norm is a three
space property [4]. In the case of MLUR (and rotund) renormings, the problem was
negatively solved in [5]. It was however shown in [1] the following weak version
of it, which is a consequence of Theorem 1.

Theorem 2. Let X be a Banach space, and suppose that there is a closed MLUR
renormable subspacg of X such that the quotienk /Y has an equivalent LUR
norm. Then X admits an equivalent MLUR norm.

Proof. We consider the quotient map, from X onto X/Y. By the Bartle-Graves
theorem (see e.g. [3, Chapter VII.3]), there is a continuous selgctoX /Y — X
suchthatB Qx € Qux, forallx € X. If we define® = B Q, thenx — oz € Y, for
everyr € X. SinceX/Y is LUR renormable() and® areo-slicely continuous
and Theorem 1 gives the MLUR renormability &n g

Let us mention that a similar result to the previous was obtained in [7] for Kadec
renormability (recall that a normed space is Kadec if the norm and the weak topolo-
gies coincide on its unit sphere).

An equivalent definition for MLUR norms can be stated in terms of the notion
of strongly extreme point of a subset of a normed space, introduced in [8].

Definition 2. Let A be a subset of a normed spag¥, || - ||), ande,§ > 0. An
element: € A is said to be ar{e, 6)-strongly extreme point of if

|u —v|| < e whenevew, v € A and|jz — “£2|| < ¢

The pointz is called ane-strongly extreme point ofl it there exists) > 0 such
thatz is an (e, 6)-strongly extreme point of.

A normed space is MLUR if, and only if, every element of its unit sphere is an
e-strongly extreme point of the unit ball, for eaeh- 0.

In the proof of Theorem 1 we use the following covering type characterization
for the class of MLUR renormable spaces given in [10, TheoremAlfiormed
spaceX admits an equivalent MLUR norm if, and only if, for every 0 we can
write X = |J,, Xn, in such a way that each € X, . is ane-strongly extreme
point ofco( X, ¢).
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Proof of Theorem 1. First step. The countable coverlrgg.us fixe > 0, and take
the countable decomposition of the MLUR renormable space

y=Jym
n,m

withn,m € N, L < £ and such that every poipte Y™™ is a(e, 1 )-strongly
extreme point ofo(Y"").
Let denotel (z) = z — ®(z) € Y, and lift the decomposition frorii to X,

X =[Jxmm
n,m
whereX™™ = {z € X : U(z) € Y™™},
Now, we use the fact thai is o-slicely continuous on eack™™ to get count-
able coverings
n,m
- U Ch
k,q

with & € N andg € Q, such that for each € C}" i """ there exist a positive rational
numberr, and an half spacél, = {y € X : f.(y) > ¢}, defined byf, € X*
with || .|| = 1, that satisfy

1

1) diam ®(H, N C;") < S

and

folx) >q+1:>¢q
We can assume without loss of generality titds bounded orC,?’qm having
sup{[|@(x)| : = € Cp7"} < My

for some constant/y, ,.

In order to get more control on the values of functionflswe decompose a
little more the piece€”,”". At this point we use some technical ideas taken from
[10, Proposition 1] and [11, Lemma 4.21].

Let us consider, for each ¢ C , anumbe < s,
for each pair of positive ratlonaisands the sets

, and define

< l()m Mk

ks = £ € Cly 18 <szandg+r < sup {fy(x)} <q+r+s
yeC

Observe that for each € C” " we haver + s > 7.
Second step. A particular sllcélx x € Cpl  takey, € €, such that
(2) q+r+s> fy,(2)>q+r>q (xe€H, NCL"),

and consider the half spa¢€, = {z : f,, (z) > f,.(z) —r}.
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For each: € C;"™" N H. we have

k,q,r,s

(3) Jye(2) > fy.(x) =7 >q (2€ Hy, N C’,Z’:l)
fr(z) <q+7r+s<fy(x)+s and

(4) fuo (@) = fa(2) > —5 > —s5.

Inequalities (1), (2) and (3) ensure us that

©) 2(z) - 2(:)] < 5 -

On the other hand, for € C"" \ H; we have

(6) fye (@) = fy.(2) > 7

Third step. A good estimation for convex combinatidreg.us consider two convex
combinations  of vectors; € C,7" (i € I) andv; € O (€ J): u =
Eie] Al and v = EjeJ HjiUj, with )\Z', i > 0 andziel A = Z]EJ Hi = 1.
Now, for any vector: € C,’j’;";s, we take the half spacH/, given in the above
step, and define the subsets of indekes- {i € I : u; ¢ H.} andJy = {j € J :

vj & Hp}.
As in the proof of [10, Lemma 4], we take advantage of the inequalities (4) and
(6) to obtain an upper bound fQr, ;i + Zje,o i

lz = #5201 = fu (= = 45)

3 (SN U @) = Fu () + 52, 5 (Fy (@) = fua(0)))
> 1 (Sien M+ Sgen ) 7= 3 (Signg N+ Ly 1) 5
= 1 (Sien N+ Sges 1) (r+5) = 50

>3 <Zielo Ai+2 e s, Mj) Tz = Sa

From this inequality we deduce the following upper bound:

(7) L (S M+ Syen ) < (o — 552 +50) =

Last step. Strongly extreme pointslow, we are going to prove that each point
x € Gyl is ane-strongly extreme point afo(Cy" ). Thus, the cited covering
charaterization [10, Theorem 1] will finish the proof.

Let us fixz € G}, and taked < 0, < g5 min{1, 77=~}. We will prove

k7qar75 ,q

that if u andv are inco(C;", ) and||z — *32|| < &, thenfu — v|| <e.
We takeu = > ,c; Aiw; and v = 3. ; pujv; with the same notation as in

the previous step. Using that the identity map is just the $um¥, we get

@) lu—wll = 11225 Xi(®(ui) + W(ui)) = 325 i (P(v5) + P (v5))]]
2 Xi®(ua) = 225 @) |+ 11 D25 AW (ua) — 325 15 ()
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The first member of this last sum is less thabecause of the-slice continuity.
In fact, using the inequalities (5) and (7) we have
12252 @ (ui) = 325 1@ (v))|

<1225 Ai(@(ui) = (@) + 1| 325 13 (P(v)) — ()]

< (Zielo Ait i ﬂj) gm T (Eielo Ai + e, Nj) 2Mpq

< g 42002 + 52) - 2My

<Tmtim—im <%
To obtain the same bound for the second summand in (8) we use the MLUR de-
composition in the beginning of the proof. Let us consider the vectarg ¥i™™):
u' =3 NP (u;) andv’ = 7. u;¥(v;). Now, bearing in mind tha¥(z) is an
(&, L)-strongly extreme point ofo(Y™™), if we are able to prove thdt¥ (z) —

v < L we can conclude thgu/ — || < § and finish the proof.
The next inequalities give the estimation wanted:

u + o
() - ) =

= llo =52 — 3 2 Mi(®(x) — @(ui) — 355 15((x) — 2(vy))]
< lw =520+ 51 X2 (@ (ui) — () + 325 115(P () — ()|
<Oyt o <
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