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Abstract. We introduce the notions of pointwise modulus of squareness and
local modulus of squareness of a normed space X. This answers a question
of C. Benitez, K. PrzesÃlawski and D. Yost about the definition of a sensible
localization of the modulus of squareness. Geometrical properties of the norm
of X (Fréchet smoothness, Gâteaux smoothness, local uniform convexity or
strict convexity) are characterized in terms of the behaviour of these moduli.

1. Introduction

Let us recall the modulus of squareness, which was originally defined in [7], where
it arose naturally from studying Lipschitz continuous set-valued functions. Given
a normed space X, one observes that for any x, y ∈ X with ‖y‖ < 1 < ‖x‖, there
is a unique z = z(x, y) in the line segment [x, y] with ‖z‖ = 1. We put

ω(x, y) =
‖x− z(x, y)‖
‖x‖ − 1

and define ξ = ξX : [0, 1) → [1,∞] by

ξ(β) = sup{ω(x, y) : ‖y‖ ≤ β < 1 < ‖x‖}.
It is shown in [7] that for an inner product space, ξ(β) = ξ2(β) = 1/

√
1− β2,

and that for any normed space containing l1(2), ξ(β) = ξ1(β) = (1 + β)/(1 − β).
The following theorem [1, Theorem O] puts together all the known properties of
this modulus.

Theorem 1.1. Let X be any normed space, ξ its modulus of squareness. Then
(a) ξ(β) = sup{ξM (β) : M ⊂ X, dim M = 2},
(b) ξ is strictly increasing and convex,
(c) ξ < ξ1 everywhere on (0, 1), unless X contains arbitrarily close copies of

l1(2),
(d) ξ′ ≤ ξ′1 almost everywhere on (0, 1),
(e) ξ > ξ2 everywhere on (0, 1), unless X is an inner product space,
(f) X is uniformly convex if and only if limβ→1(1− β)ξ(β) = 0,
(g) X is uniformly smooth if and only if ξ′(0) = 0,
(h) ξX∗(β) = 1/ξ−1(1/β), for β ∈ [0, 1),
(i) if ξ(β) < 1/(1− β) for some β, then X has uniformly normal structure.
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The proof of these properties can be found in [1, 7] and also some of them as
well as a more geometrical characterization of ξ in [9, 10, 11].

Let us observe in particular that the behaviour of ξ near one is related to con-
vexity, and that the behaviour of ξ near zero is related to smoothness.

The question of the existence of a sensible localization of the modulus of square-
ness was posed in [1]. In order to answer this question we define here two new
moduli.

From now on and for the sake of clearness, for any norm one vector x, λ > 0 and
y with ‖y‖ < 1, we will put ωx(λ, y) = ω((1 + λ)x, y) and zx(λ, y) = z((1 + λ)x, y).
Therefore ωx(λ, y) = ‖(1 + λ)x− zx(λ, y)‖ /λ. Besides, we can deduce that for
y ∈ span{x} and for any λ > 0, ωx(λ, y) = 1, since zx(λ, y) would be x.

Definition 1.2 (Pointwise modulus of squareness). For any pair of norm one vec-
tors x, y the pointwise modulus of squareness at x in the direction y is the function
ξX,x,y = ξx,y : [0, 1) → [1,∞) defined by

ξx,y(β) = sup{ωx(λ, γy) : |γ| ≤ β, λ > 0}.
Definition 1.3 (Local modulus of squareness). For any norm one vector x the local
modulus of squareness at x is the function ξX,x = ξx : [0, 1) → [1,∞) defined by

ξx(β) = sup{ωx(λ, y) : ‖y‖ ≤ β, λ > 0} = sup
‖y‖=1

{ξx,y(β)}.

Observe that for any subspace M ⊂ X of dimension 2 containing the pair of
norm one vectors x, y we have that ξx,y = ξM,x,y. For ξx we establish an analogue
to (a) of theorem 1.1. Indeed,

ξx(β) = sup{ξM,x(β) : x ∈ M ⊂ X, dim M = 2}.
One can realize that for any β ∈ [0, 1),

ξ(β) = sup{ξx(β) : x ∈ SX} = sup{ξx,y(β) : x, y ∈ SX}.
We shall show how these moduli are related to various geometrical properties

of the norm of X. In particular, in section 3 we recall the notions of Gâteaux
smoothness and Fréchet smoothness and show whether or not a normed space X
is Fréchet (resp. Gâteaux ) smooth depending on the behaviour of the local (resp.
pointwise) modulus of squareness near zero. In section 4 we recall the notions of
local uniform convexity and strict convexity and show whether or not X is locally
uniformly (resp. strictly) convex depending on the behaviour of the local (resp.
pointwise) modulus of squareness near one. More precisely we shall establish :

Theorem 1.4. Let X be a normed space and x a norm one vector. Then
(a) X is Gâteaux smooth at x iff ξ′x,y(0) = 0 for all y with ‖y‖ = 1.
(b) X is Fréchet smooth at x iff ξ′x(0) = 0.
(c) X is strictly convex at x iff limβ→1(1−β)ξx,y(β) = 0 for all y with ‖y‖ = 1.
(d) X is locally uniformly convex at x iff limβ→1(1− β)ξx(β) = 0.

In the following section we focus on the properties of the ratio ωx(·, ·).
2. Properties of ωx(λ, y)

For a normed space we mean the pair (X, ‖·‖), where X is a linear space and
‖·‖ is a norm, although sometimes we will say X instead of (X, ‖·‖). From now on
we will denote by BX and SX the sets BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈
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X : ‖x‖ = 1}. We will speak indifferently of norm one vectors or of vectors lying
in SX .

The following lemma can be found in [1] as a part of the proof that ξ is locally
Lipschitz continuous.

Lemma 2.1. Let X be a normed space and x, y ∈ SX . Then, for any λ > 0 and
0 ≤ β < γ < 1,

ωx(λ, γy)− ωx(λ, βy) ≤ ξ1(γ)− ξ1(β).

If we fix two norm one vectors x, y, one can realize that the modulus ξx,y can
be expressed in a more simpler way. Indeed, we have the following result.

Proposition 2.2. Let X be a normed space and x, y two norm one vectors. Then,
for all β ∈ [0, 1),

ξx,y(β) = sup {ωx(λ,±βy) : λ > 0} .

Proof. It is enough to show that for any fixed λ > 0 and any γ ≤ β we have that
ωx(λ, βy) ≥ ωx(λ, γy). We use the following result which can be found in [3, 4, 8].

Lemma 2.3. Let X be a two-dimensional normed space and let K1, K2 be closed
convex subsets of X with nonempty interior. If K1 ⊂ K2 then r(K1) ≤ r(K2),
where r(Ki) denotes the length of the circumference of Ki, i = 1, 2.

This lemma can be applied to the triangles : K1 with vertexes the origin,
zx(λ, γy) and (1+λ)x; K2 with vertexes the origin, zx(λ, βy) and (1+λ)x. Therefore

r(K1) = ‖(1 + λ)x‖+ ‖zx(λ, γy)‖+ ‖(1 + λ)x− zx(λ, γy)‖
≤ ‖(1 + λ)x‖+ ‖zx(λ, βy)‖+ ‖(1 + λ)x− zx(λ, βy)‖ = r(K2)

Simplifying and dividing by λ, we have the desired inequality. ¤
Proposition 2.4. Let X be a normed space. If x, y is a pair of norm one vectors
and 0 ≤ β < γ < 1, then

ξx,y(γ)− ξx,y(β) ≤ ξ1(γ)− ξ1(β)(2.1)
ξx(γ)− ξx(β) ≤ ξ1(γ)− ξ1(β), .(2.2)

In particular, ξx,y and ξx are locally Lipschitz continuous functions.

Proof. From lemma 2.1 we deduce that ωx(λ, γy)− ξx,y(β) ≤ ξ1(γ)− ξ1(β) and, by
proposition 2.2, we obtain inequality (2.1) taking suprema over λ > 0. Inequality
(2.2) follows similarly from inequality (2.1), taking suprema over y ∈ SX . ¤

Trying to simplify the expression for ξx,y obtained in proposition 2.2, one can

study the behaviour of the function ωx(·, y) for fixed x ∈ SX and y ∈
◦

BX . At first
sight one can observe the next useful result.

Proposition 2.5. Let X be a normed space and x ∈ SX . Then,

1 ≤ ωx(λ) := sup{ωx(λ, y) : y ∈
◦

BX} ≤ 1 +
2
λ

.

We now prove that the limit of the function ωx(λ, y) when λ goes to zero always
exists and we compute it.

Recall that in a normed space X and for any pair x, y ∈ X \ {0}, one can define
the right derivative of the norm at x in the direction y as the limit

N+(x, y) = lim
λ↘0

‖x + λy‖ − ‖x‖
λ

.
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Proposition 2.6. Let X be any normed space x ∈ SX , and y with ‖y‖ < 1. Then

lim
λ↘0

ωx(λ, y) =
‖x− y‖

1−N+(x, y)
.

In order to prove this result we need to introduce some preliminary notation.

Let us fix a normed space X, x ∈ SX and y ∈
◦

BX with y /∈ span{x}. We denote
by z′(λ) the unique vector which lies in span{zx(λ, y)} and in the ray which starts
at x and has direction y, this is

z′(λ) = {x + µy : µ ≥ 0} ∩ span{zx(λ, y)}.
We can write z′(λ) = x + µ(λ)y, for some µ(λ) ≥ 0. Denote by fλ a continuous
functional on X satisfying fλ(x) = fλ(zx(λ, y)) = 1. We can also write zx(λ, y) =
(1 + λ)x + ν(λ)(y − (1 + λ)x), for some ν(λ) ∈ [0, 1].

Lemma 2.7. Let X be a normed space, x ∈ SX and y ∈
◦

BX such that y /∈ span{x}.
Then

(a) limλ↘0 zx(λ, y) = x.
(b) limλ↘0 µ(λ) = 0.
(c) limλ↘0 fλ(y) = N+(x, y).

Proof of lemma 2.7. For proving (a) it is enough to show that ν(λ) tends to 0 as
λ → 0. Firstly, let us observe that the function ϕ(t) = ‖(1 + λ)x + t(y − (1 + λ)x)‖
is a convex function satisfying ϕ(1) = ‖y‖ and ϕ(0) = 1 + λ. Therefore ϕ(t) ≤
(1 + λ) + t(‖y‖ − (1 + λ)) for t ∈ [0, 1]. Secondly, since zx(λ, y) ∈ SX , then
ϕ(ν(λ)) = 1, this is, 1 ≤ (1 + λ) + ν(λ)(‖y‖ − (1 + λ)). Finally, since ν(λ) ∈ [0, 1],
we obtain limλ↘0 ν(λ) = 0 and (a) is proved.

For proving (b), observe that zx(λ, y) = (1 + λ)(1− ν(λ))x + ν(λ)y. Since z′(λ)
lies in span{zx(λ, y)}, there exists α(λ) ∈ R such that

x + µ(λ)y = z′(λ) = α(λ)zx(λ, y),

from which α(λ) = (1 + λ)−1(1− νx(λ))−1 and then

µ(λ) = ν(λ)/[(1 + λ)(1− ν(λ))].

Since ν(λ) converges to 0 as λ → 0, then (b) is proved.
In order to show (c), observe that, since (b), we have

N+(x, y) = lim
λ↘0

‖x + µ(λ)y‖ − ‖x‖
µ(λ)

= lim
λ↘0

‖z′(λ)‖ − ‖x‖
µ(λ)

.

Since z′(λ) ∈ span{z}, ‖z′(λ)‖ = fλ(z′(λ)). Hence, since fλ(x) = ‖x‖,

N+(x, y) = lim
λ↘0

fλ(z′(λ))− fλ(x)
µ(λ)

= lim
λ↘0

µ(λ)fλ(y)
µ(λ)

= lim
λ↘0

fλ(y). ¤

Proof of Proposition 2.6. First of all, if y ∈ span{x} then 1−N+(x, y) = ‖x− y‖,
and since ωx(λ, y) = 1, this case is clear. So, let us assume that y /∈ span{x}
and consider w(λ) the unique vector satisfying the conditions fλ(w(λ)) = 1 and
w(λ) ∈ {µ((1+λ)x−y) : µ ≥ 0}. One can easily see, by comparing similar triangles,
that ωx(λ, y) = ‖w(λ)‖. Since fλ(w(λ)) = 1, it is clear that

w(λ) = (1 + λ− fλ(y))−1[(1 + λ)x− y],

this is, ωx(λ, y) = ‖(1+λ)x−y‖
1+λ−fλ(y) .
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Using the continuity of the norm and the item (c) of the previous lemma we
obtain the desired equality. ¤
Remark 2.8. However this last fact does not help to compute ξx,y(β), since the
function ωx(·, y) is neither convex nor monotonic as the following example shows.

Example 2.9. For any 0 < ε < 1/2, let us consider in R2 the norm defined by
‖x‖ = max{(1−ε)−1 ‖x‖∞ , ‖x‖1}, and the vectors x = (1−ε, 0) and y = (ε, 1−ε).
Let us also fix β ≥ 1 − ε. Here is the graph of the function ωx(·, βy) for ε = 0.2
and β = 0.88.
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Figure 1

3. On Differentiability and localized squareness moduli

Throughout this section X will be a normed space endowed with the norm ‖·‖.
The collection of support functionals for a norm one vector x is defined as

D(x) = {f ∈ X∗ : ‖f‖ = 1, f(x) = ‖x‖ = 1}.
We recall that the modulus of smoothness of a normed space is the function

% : [0,∞) → R+ defined by

%(β) = sup
{( ‖x + βy‖+ ‖x− βy‖ )

/2− 1 : ‖x‖ = ‖y‖ = 1
}

.

The different localizations of this modulus are the local modulus of smoothness,
which is defined for any x ∈ SX and for all β ∈ [0,∞) by

%x(β) = sup
{( ‖x + βy‖+ ‖x− βy‖ )

/2− 1 : ‖y‖ = 1
}

,

and the pointwise modulus of smoothness , which is defined for any pair of norm
one vectors x, y and for all β ∈ [0,∞) by

%x,y(β) =
( ‖x + βy‖+ ‖x− βy‖ )

/2− 1.

Let us recall that a normed space is: Gâteaux smooth at x ∈ SX in the direction
y ∈ SX iff %x,y(β)/β → 0 as β → 0; Gâteaux smooth at x ∈ SX iff it is Gâteaux
smooth at x in every direction y ∈ SX ; Gâteaux smooth iff it is Gâteaux smooth
at any x ∈ SX ; Fréchet smooth at x ∈ SX iff %x(β)/β → 0 as β → 0; and Fréchet
smooth iff it is Fréchet smooth at any x ∈ SX .

For any pair of norm one vectors x, y, we define the function εx,y : [0,∞) →
[0,∞) by the formula

εx,y(β) = sup
{‖x + βw‖ − ‖x‖

β
− f(w) : w ∈ Y, f ∈ DY (x)

}
,
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where Y = span{x, y} and DY (x) denotes the set {f |Y : f ∈ D(x)}. One can
observe that this function is increasing and that the space is Gâteaux smooth at
x in the direction y if and only if εx,y(β) → 0 as β → 0. Let us show the relation
between εx,y and the pointwise modulus of squareness ξx,y.

Proposition 3.1. For every pair of norm one vectors x, y and for all β ∈ [0, 1)

ξx,y(β) ≤ 1 +
2β

(1− β)2
εx,y

(
2β

1− β

)
.

Proof. Let us fix vectors x, y ∈ SX , values λ > 0, β ∈ [0, 1) and a linear functional
f ∈ DY (x). Then, there exists z0 ∈ [βy, (1 + λ)x] such that f(z0) = 1. One
can take a vector u such that f(u) = 0 and z0 ∈ [u, (1 + λ)x]. It follows that
there exists µ ≥ 0 such that u = (1 − µ)(1 + λ)x + µβy and, since f(u) = 0, that
µ = (1 + λ)/(1 + λ− βf(y)). Thus, one can estimate

‖u‖ ≤ (1 + λ)β
1 + λ− βf(y)

(|f(y)|+ 1) ≤ 2β

1− β
.

Since z0 ∈ [u, (1+λ)x], there exists α ∈ (0, 1) such that z0 = (1−α)(1+λ)x+αu.
Using that f(z0) = 1, it is easily seen that α = λ/(1 + λ). Therefore

‖z0 − x‖
λ

=
‖u‖

1 + λ
≤ ‖u‖ ≤ 2β

1− β
,(3.1)

‖z0 − x‖ =
λ

1 + λ
‖u‖ ≤ ‖u‖ ≤ 2β

1− β
.(3.2)

Let us observe now that, from the definition of εx,y, it follows

‖(1 + λ)x− z0‖ − ‖λx‖ ≤ ‖x− z0‖ εx,y

(‖x− z0‖
λ

)
.

Dividing by λ, and using (3.1) one obtains the inequality

(3.3)
‖(1 + λ)x− z0‖

λ
≤ 1 +

2β

1− β
εx,y

(
2β

1− β

)
.

Now, let us put z = zx(λ, βy) and denote by ξX the modulus of squareness
of X. One can realize easily that ‖z − z0‖ ≤ (‖z0‖ − 1)ξX(β), and (‖z0‖ − 1) ≤
‖x− z0‖ εx,y(‖x− z0‖). Putting both together, and using (3.1), (3.2) and ξX ≤ ξ1,
one has

(3.4)
‖z − z0‖

λ
≤ ξ1(β)

(
2β

1− β

)
εx,y

(
2β

1− β

)
.

Finally, since

ωx(λ, βy) ≤ ‖(1 + λ)x− z0‖
λ

+
‖z − z0‖

λ
,

using (3.3) and (3.4) one obtains

ωx(λ, βy) ≤ 1 +
2β

1− β
εx,y

(
2β

1− β

)
(1 + ξ1(β)) ,

which, taking suprema over λ > 0, finishes the proof. ¤

Now we establish the relation between the pointwise modulus of squareness ξx,y,
and the pointwise modulus of smoothness ρx,y.
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Proposition 3.2. For any pair of norm one vectors x, y and for every β ∈ [0, 1):

(3.5) %x,y(β) ≤ ξx,y(β)− 1,

(3.6) %x(β) ≤ ξx(β)− 1,

Proof. Observe that the second inequality follows from the first one taking suprema
over y ∈ SX . Therefore we just have to show inequality (3.5). In order to do so,
let us fix two norm one vectors x, y. For a fixed β ∈ [0, 1) and for λ > 0, we denote
by y1 = y1(λ, βy) = −(1 + λ)βy, y2 = y2(λ, βy) = (1 + λ)βy, x′ = (1 + λ)x and
zi = (1− αi)x′ + αiyi, where αi ∈ [0, 1] for i = 1, 2.

On one hand, let us observe that 1 = ‖zi‖ ≥ f(zi) for any f ∈ D(x). Therefore
αi ≥ λ/(1 + λ − f(yi)). On the other hand, ‖x′ − yi‖ = (1 + λ) ‖x± βy‖. Since,
for λ < (1− β)/β,

αi(λ) ‖x′ − yi‖
λ

= ωx(λ,±(1 + λ)βy) ≤ ξx,y((1 + λ)β),

we have that

‖x′ − y1‖+ ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)
(

λ

α1
+

λ

α2

)
.

Since αi ≥ λ/(1 + λ− f(yi)) we deduce that

‖x′ − y1‖+ ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)(2 + 2λ− (f(y1) + f(y2)))
= ξx,y((1 + λ)β)(2 + 2λ)
= 2ξx,y((1 + λ)β)(1 + λ),

and therefore

‖x + βy‖+ ‖x− βy‖ ≤ ‖x′ − y1‖+ ‖x′ − y2‖
(1 + λ)

≤ 2ξx,y((1 + λ)β),

which means that
%x,y(β) ≤ ξx,y((1 + λ)β)− 1.

Since it is true for λ < (1− β)/β, we can take the limit as λ tends to 0 and, by the
continuity of ξx,y, we obtain the desired inequality. ¤
Theorem 3.3. Let ξx and ξx,y be the localized squareness moduli of X. Then

(a) X is Gâteaux smooth at x ∈ SX in the direction y ∈ SX if and only if
ξx,y

′(0) = 0.
(b) X is Gâteaux smooth at x ∈ SX if and only if ξx,y

′(0) = 0 for all y ∈ SX .
(c) X is Gâteaux smooth if and only if ξx,y

′(0) = 0 for all pairs x, y ∈ SX .
(d) X is Fréchet smooth at x ∈ SX if and only if ξx

′(0) = 0.
(e) X is Fréchet smooth if and only if ξx

′(0) = 0 for all x ∈ SX .

Proof. (a) Firstly, considering inequality (3.5) of proposition 3.2, it is straightfor-
ward that if ξ′x,y(0) = 0 then %x,y(β)/β tends to 0 when β goes to 0, i.e. the norm
is differentiable at x in the direction y.

Secondly, let us assume that X is Gâteaux smooth at x in the direction y. If x
and y are linearly dependent the result is trivial. Let us suppose then that x and
y are linearly independent, then applying proposition 3.1 one has that

ξx,y(β)− 1
β

≤ 2
(1− β)2

εx,y

(
2β

1− β

)
.
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Since the norm of X is Gâteaux smooth at x in the direction y, we have εx,y(t) →
0 as t → 0. This implies that ξx,y

′(0) = 0.
(b) It follows from (a) since for convex functions the existence of all directional

derivatives at x implies Gâteaux smoothness at x.
(c) Evident from (b).
(d) On one hand, considering inequality (3.6), of proposition 3.2, it is clear that

if ξx
′(0) = 0 then %x(β)/β tends to 0 when β goes to 0, i.e. the space is Fréchet

smooth at x.
On the other hand, if we assume that X is Fréchet smooth at x, then applying

proposition 3.1, for any y ∈ SX we have

ξx,y(β)− 1
β

≤ 2
(1− β)2

εx,y

(
2β

1− β

)
.

Taking suprema over y ∈ SX we obtain

ξx(β)− 1
β

≤ 2
(1− β)2

sup
y∈SX

{
εx,y

(
2β

1− β

)}
.

Since the space is Fréchet smooth at x, the righthand side of the inequality tends
to 0 as β goes to 0. Therefore ξx

′(0) = 0.
(e) It follows from (d). ¤

4. On convexity and localized squareness moduli

This section is devoted to show the relation between the behaviour of the lo-
calized moduli of squareness near one and the properties of convexity of a normed
space X. In the first subsection the local modulus of squareness ξx is related with
local uniform convexity and in the second subsection the pointwise modulus of
squareness ξx,y is related with strict convexity.

4.1. Local Uniform Convexity.
Let us fix a normed space X and x ∈ SX . The space X is said to be locally

uniformly convex at x if its local modulus of convexity

δx(ε) = inf
{

1−
∥∥∥∥

x + y

2

∥∥∥∥ : ‖y‖ = 1, ‖x− y‖ ≥ ε

}

is strictly positive, for each ε > 0. The number ε0(x) = sup{ε : δx(ε) = 0} will
be called the characteristic of convexity at x. Obviously, a normed space is locally
uniformly convex at x if and only if ε0(x) = 0.

One defines D(x, β) = co({x} ∪ βBX) as the drop of βBX with respect to the
point x, and R(x, β) = D(x, β) \ βBX as the residue. In [1] the authors observe
that X is locally uniformly convex at x iff diamR(x, β) → 0 as β → 0.

Recall that the radius of a set A relative to a point x is defined by rad(x,A) =
supa∈A ‖x− a‖. It is clear that diam(A)/2 ≤ rad(x,A) ≤ diam(A) whenever x ∈ A.
For ‖x‖ = 1 and 0 < β < 1, Kadets [6] defined the set G(x, β) = {y : [y, z] ⊂
BX\

◦
βBX}, and noted that X is locally uniformly convex at x iff rad(x,G(x, β)) → 0

as β → 1. Moreover it is known that the function ε(x, β) = rad(x,G(x, β)) is
uniformly continuous on the set SX × [0, r] for all r < 1 and that ε is continuous at
(x, 1) if the norm is locally uniformly convex at x ∈ SX (see [2, 5]).
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It is also well known that the norm is locally uniformly convex at x if and only
if whenever a sequence {xn}n satisfies

lim
n→∞

2(‖x‖2 + ‖xn‖2)− ‖x + xn‖2 = 0,

then limn ‖xn − x‖ = 0. This can be shown easily using the local modulus of
convexity defined above. Finally, we say that the norm of X is locally uniformly
convex if it is locally uniformly convex at all x ∈ SX .

Lemma 4.1. If a normed space is locally uniformly convex at x ∈ SX , then

lim
λ→0

sup
y∈

◦
BX

‖x− zx(λ, y)‖ = 0.

Proof. Observe that for any λ > 0 and y with ‖y‖ < 1 all points of the segment
[(1 + λ)x, zx(λ, y)] different of zx(λ, y) are outside of the closed unit ball. Indeed,
the function f(α) = ‖α(1 + λ)x + (1− α)z(λ, y)‖ satisfies f(0) = 1 and there exists
α0 < 0 such that f(α0) = ‖y‖ < 1. Since f is a convex function we obtain that
f(α) > 1 whenever α > 0. In particular, f(1/2) = (1+λ)

2

∥∥∥x + zx(λ,y)
1+λ

∥∥∥ > 1.
Therefore,

0 ≤ 2 ‖x‖2 + 2
∥∥∥∥

zx(λ, y)
1 + λ

∥∥∥∥
2

−
∥∥∥∥x +

zx(λ, y)
1 + λ

∥∥∥∥
2

< 2 +
1

(1 + λ)2
− 4

(1 + λ)2

= 2− 2
(1 + λ)2

whose last term tends to 0 uniformly over all y ∈
◦

BX and, since the space is locally

uniformly convex at x, zx(λ, y) converges to x uniformly over y ∈
◦

BX . ¤
Theorem 4.2. For any normed space X and for any x ∈ SX , the following are
equivalent :

(a) X is locally uniformly convex at x.
(b) diam G(x, β) → 0 as β → 1.
(c) diam R(x, β) → 0 as β → 1.
(d) lim supβ→1(1− β)ξx(β) = 0.
(e) lim infβ→1(1− β)ξx(β) = 0.

Moreover, lim infβ→1(1− β)ξx(β) ≥ ε0(x).

Proof. The equivalence between (a), (b) and (c) are known. We claim that for all
0 ≤ β < 1,

(4.1) ε0(x)− 1 + β ≤ (1− β)ξx(β).

Letting β go to 1, this inequality proves the last assertion and (e)⇒(a).
Inequality (4.1) is trivial if ε0(x) = 0, so suppose that X is not locally uniformly

convex at x. This means that, given any λ > 0 we can find a norm one vector y,
at distance at least ε0(x) from x, and such that for all γ, µ ≥ 0

(1 + λ2) ‖γx + µy‖ ≥ γ + µ.

Let us consider x′ = (1+λ)x and y′ = βy, so that ‖x′ − y′‖ ≥ ε0(x)−λ−(1−β).
Then z = zx(λ, y′) = (1− α)x′ + αy′ must satisfy

1 = ‖z‖ ≥ 1 + λ− α(1 + λ− β)
1 + λ2

and so α ≥ λ− λ2

1 + λ− β
.
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But then
‖x′ − z‖

λ
=

α ‖x′ − y′‖
λ

≥ (1− λ)(ε0(x)− λ− (1− β))
1 + λ− β

.

Letting λ go to 0, we see that ξx(β) ≥ (ε0(x)−1+β)/(1−β). And the inequality
has been obtained.

It is obvious that (d) implies (e). Then, it only remains to show the implication
(a)⇒(d). In order to do so, let us consider a sequence {βn}n tending to 1, and the
following sequences: {δn}n tending to 0, λn > 0 and vectors yn ∈ βnBX in such a
way

ξx(βn) < ωx(λn, yn) + δn.

We have to distinguish between two cases:
(a) If lim infn λn > 0, lemma 2.5 shows that M = supn{ωx(λn)} < ∞ and then

ξx(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.

Therefore,

lim sup
n→∞

(1− βn)ξx(βn) ≤ lim
n→∞

(1− βn)(M + δn) = 0.

(b) If lim infn λn = 0, we can assume, passing to a subsequence, that λn → 0. If
it is necessary we can choose y′n in such a way ‖y′n‖ = βn and y′n ∈ [yn, (1+λn)x]∩
G(zx(λn, yn), βn)). Let us write zn = zx(λn, yn) = αn(1+λn)x+(1−αn)y′n. Then,
1 = ‖zn‖ ≤ αn(1 + λn) + (1−αn)βn, from which it follows that (1−αn)(1− βn) ≤
αnλn and

(1− αn)(1− βn)ωx(λn, y′n) ≤ αn ‖(1 + λn)x− zn‖ = (1− αn) ‖y′n − zn‖
≤ (1− αn)rad(zn, G(zn, β)).

This is, (1 − βn)ωx(λn, yn) = (1 − βn)ωx(λn, y′n) ≤ ε(zn, βn). Lemma 4.1 tells
that zn tends to x and therefore, since ε(·, ·) is continuous at (x, 1) we have that

lim sup
n→∞

(1− βn)ξx(βn) ≤ lim sup
n→∞

(1− βn)ωx(λn, yn)

≤ lim
n→∞

ε(zn, βn) = ε(x, 1) = 0,

which is what we want to show. ¤
From this proposition arises a new characterization of what a locally uniformly

convex space is.

Corollary 4.3. For any normed space X the following are equivalent :
(a) X is locally uniformly convex.
(b) diam G(x, β) → 0 as β → 1 for all x ∈ SX .
(c) diam R(x, β) → 0 as β → 1 for all x ∈ SX .
(d) lim supβ→1(1− β)ξx(β) = 0 for all x ∈ SX .
(e) lim infβ→1(1− β)ξx(β) = 0 for all x ∈ SX .

4.2. Strict Convexity.
Let X be a normed space and x, w ∈ SX . The norm of X is said to be strictly

convex at x in the direction w if there is no proper segment included on the unit
sphere starting at x with direction w. Similarly, it is said to be strictly convex at
x if there is no proper segment included in the unit sphere starting at x in any
direction. X is said to be strictly convex if it is strictly convex at all its norm one
vectors. We define the number ε0(x,w) as the supremum of all those ε > 0 such
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that the segment [x, x + εw] or [x, x− εw] is included on the unit sphere. We also
define the set Cw

x = {y ∈ SX : ∃λ ∈ R, y = x + λw}.
Proposition 4.4. Let X be a normed space and x, w two norm one vectors. If
lim infβ→1(1 − β)ξx,y(β) = 0 for all y ∈ Cw

x , then X is strictly convex at x in the
direction w. Moreover, supy∈Cw

x
lim infβ→1(1− β)ξx,y(β) ≥ ε0(x,w).

Proof. Let us assume that X is not strictly convex at x in the direction w. It
means that ε0(x,w) > 0, and that for any ε0(x,w) > δ > 0 there exits y ∈ Cw

x such
that ‖y − x‖ ≥ ε0(x, w) − δ. Let us denote z = zx(λ, βy). There exists α ∈ [0, 1]
such that z = (1 − α)(1 + λ)x + αβy. Let us compute α. Fix f ∈ D(x) such that
f([x, y]) = 1. We have 1 = f(z) = (1−α)(1+λ)+αβ. Therefore α = λ/(1+λ−β).

On the other hand, ‖(1 + λ)x− βy‖ ≥ ‖x− y‖ − ‖λx + (1− β)y‖ ≥ ε0(x,w) −
δ − λ− (1− β). Therefore,

ξx,y(β) ≥ ωx(λ, βy) = α
‖(1 + λ)x− βy‖

λ
≥ ε0(x, w)− δ − λ− (1− β)

1 + λ− β
.

Taking the limit as λ → 0, we obtain (1 − β)ξx,y(β) ≥ ε0(x,w) − δ − (1 − β).
Therefore

lim inf
β→0

(1− β)ξx,y(β) ≥ ε0(x,w)− δ.

This implies that lim infβ→0(1−β)ξx,y(β) > 0, which shows the first and, when-
ever ε0(x,w) > 0, second assertion of the theorem. The proof is finished, since the
second assertion is clear when ε0(x,w) = 0. ¤
Theorem 4.5. For any normed space X and for any x ∈ SX the following are
equivalent :

(a) X is strictly convex at x.
(b) lim supβ→1(1− β)ξx,y(β) = 0, for all y ∈ SX .
(c) lim infβ→1(1− β)ξx,y(β) = 0, for all y ∈ SX .

Proof. The implication (b)⇒(c) is evident. The implication (c)⇒(a) follows from
proposition 4.4. In order to see (a)⇒(b), let us fix y ∈ SX , consider a {βn}n

tending to 1, and the following sequences: {δn}n tending to 0, λn > 0 and vectors
yn = γny ∈ βnBX in such a way

ξx,y(βn) < ωx(λn, yn) + δn.

We have to distinguish between two cases:
(a) If lim infn λn > 0, lemma 2.5 shows that M = supn{ωx(λn)} < ∞ and then

ξx,y(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.

Therefore,

lim sup
n→∞

(1− βn)ξx,y(βn) ≤ lim
n→∞

(1− βn)(M + δn) = 0.

(b) If lim infn λn = 0, we can assume, passing to a subsequence, that λn → 0.
If it is necessary we can choose y′n in such a way ‖y′n‖ = βn and y′n ∈ [yn, (1 +
λn)x]∩GY (zx(λn, yn), βn)), where Y = span{x, y}. Let us write zn = zx(λn, yn) =
αn(1 + λn)x + (1−αn)y′n. Then, 1 = ‖zn‖ ≤ αn(1 + λn) + (1−αn)βn, from which
it follows that (1− αn)(1− βn) ≤ αnλn and

(1− αn)(1− βn)ωx(λn, y′n) ≤ αn ‖(1 + λn)x− zn‖ = (1− αn) ‖y′n − zn‖
≤ (1− αn)rad(zn, GY (zn, β)).
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This is, (1−βn)ωx(λn, yn) = (1−βn)ωx(λn, y′n) ≤ εY (zn, βn). Since Y is locally
uniformly convex at x, lemma 4.1 tells that zn tends to x and therefore, since εY (·, ·)
is continuous at (x, 1), we have that

lim sup
n→∞

(1− βn)ξx,y(βn) ≤ lim sup
n→∞

(1− βn)ωx(λn, yn)

≤ lim
n→∞

εY (zn, βn) = εY (x, 1) = 0,

which is what we want to show. ¤
From this theorem one can easily deduce the following one.

Theorem 4.6. For any normed space X the following are equivalent :
(a) X is strictly convex.
(b) lim supβ→1(1− β)ξx,y(β) = 0, for all x, y ∈ SX .
(c) lim infβ→1(1− β)ξx,y(β) = 0, for all x, y ∈ SX .
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8. J. J. Schäffer, Geometry of spheres in normed spaces, Marcel Dekker Inc., New York, 1976,

Lecture Notes in Pure and Applied Mathematics, No. 20. MR MR0467256 (57 #7120)
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