
Review

Hepatitis C virus entry into host cells
F. Helle and J. Dubuisson*

Hepatitis C Laboratory, CNRS-UMR8161, Institut de Biologie de Lille, 1 rue Calmette, BP447,
59021 Lille cedex (France), Fax: +33 3 20 87 12 01, e-mail: jean.dubuisson@ibl.fr

Received 27 June 2007; received after revision 2 August 2007; accepted 29 August 2007
Online First 4 October 2007

Abstract. The recent development of functional
models to analyze the early steps of the hepatitis C
virus (HCV) life cycle has highlighted that HCV entry
is a slow and complex multistep process involving the
presence of several entry factors. Initial host cell
attachment may involve glycosaminoglycans and the
low-density lipoprotein receptor, after which the
particle appears to interact sequentially with three
entry factors: the scavenger receptor class B type I, the
tetraspanin CD81 and the tight-junction protein

claudin-1. Several serum components may also mod-
ulate HCV entry, while the recently discovered CD81
partner EWI-2wint can block the interaction of the
viral particle with CD81, potentially preventing in-
fection in the cell types in which it is expressed. After
binding to the host cell, the HCV particle is internal-
ized by clathrin-mediated endocytosis, with fusion
likely occuring in early endosomes. This review
summarizes our current knowledge on HCV entry.
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Introduction

The mission of a virion is to transport the viral genome
from an infected cell to a naive host cell. To initiate an
infectious cycle, the viral particle must cross the
plasma membrane to gain access to the inner content
of the target cell. Virus entry into host cells involves a
complex series of events which are tightly coordinated
in time and space. For an enveloped virus, this involves
binding to cellular attachment factors and specific
receptors as well as fusion of the lipid envelope with a
cell membrane, which allow the release of the viral
genome into the cytoplasm of the target cell. Since
membrane fusion does not necessarily occur at the
plasma membrane, virus entry can also involve
endocytosis and vesicular trafficking. Regardless,

once in the cytosol, the viral genome also needs to
be transported to its final destination where replica-
tion can be initiated.
Hepatitis C virus (HCV) is a small, enveloped,
positive-stranded RNA virus that belongs to the
Hepacivirus genus in the Flaviviridae family [1].
Since the hepatocytes are the major target cells of
HCV, infection by this virus often leads to chronic
hepatitis, liver cirrhosis and hepatocellular carcinoma.
To initiate its life cycle, HCV has to cross the plasma
membrane of hepatocytes and gain access to the
cytosol. The HCV particle consists of a nucleocapsid
surrounded by a lipid bilayer where the two envelope
glycoproteins, E1 and E2, are anchored. These two
proteins form noncovalent heterodimers [2], which
play a major role in HCV entry [3].
Due to the lack of a cell culture system supporting
efficient production of infectious particles, studying
HCV entry has been very difficult. For this reason,* Corresponding author.
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several surrogate models have been developed [re-
viewed in refs. 4 – 6]. Some of these models allowed
the identification of cellular proteins potentially
involved in HCV entry and helped to characterize
the role of HCVenvelope glycoproteins in virus entry.
However, the recent development of a cell culture
system for HCV now enables confirmation of the
results obtained with surrogate models. Here, we
summarize the knowledge that has recently been
accumulated on the early steps of the HCV life cycle.

Recent model systems to study HCV entry

Although the cloning of the HCV genome allowed a
rapid analysis of the genomic organization and a
biochemical characterization of its proteins, the lack
of a cell culture system allowing efficient amplification
of this virus has long been an obstacle for the study of
its life cycle. Therefore, several laboratories used a
truncated soluble form of E2 envelope protein (sE2)
recombinant virus-like particles produced in insect
cells or vesicular stomatitis virus pseudoparticles to
identify cell surface proteins potentially involved in
HCVentry [reviewed in refs. 4 – 6]. More recently, two
major advances have enabled progress to be made in
the study of HCVentry: the development of retroviral
particles pseudotyped with HCV envelope glycopro-
teins (HCVpps) and native virus amplified in cell
culture (HCVccs).
HCVpps consist of full-length HCV envelope glyco-
proteins assembled onto retroviral core particles
containing a retrovirus-derived genome harboring a
marker gene [7 – 9]. HCVpps are produced by trans-
fecting 293T cells with three expression vectors
encoding the E1E2 polyprotein, the retroviral core
proteins and a packaging-competent, retrovirus-de-
rived genome containing a marker gene. Retroviruses
were chosen as platforms for HCV pseudotype
particle assembly because their cores can incorporate
a variety of cellular and viral glycoproteins [10, 11] and
because they can easily package and integrate genetic
markers into host cell DNA [12]. However, the
assembly process of HCVpps is not well understood.
Indeed, murine leukemia virus and HIVare supposed
to assemble at the plasma membrane or in multi-
vesicular bodies, whereas HCV glycoproteins are
retained in the endoplasmic reticulum (ER) [2].
However, due to saturation of the ER retention
machinery, the cells used to produce HCVpps have
been shown to express a small fraction of HCV
envelope glycoproteins at the plasma membrane and
in multivesicular bodies [3, 7– 9, 13]. This accumu-
lation at the plasma membrane or in multivesicular
bodies might therefore be sufficient to incorporate

full-length HCV envelope glycoproteins into retro-
viral pseudotyped particles. Due to their preferential
tropism for liver cells and to the specific neutralization
of these particles by antibodies directed against E2
protein, HCVpps have been validated for the study of
HCV entry [7, 14]. This model system is particularly
useful for the functional characterization of large
series of envelope protein mutants.
Recently, the development of a cell culture system
that allows a relatively efficient amplification of HCV
(HCVcc) has finally been reported [15 – 17]. This
system is based on the transfection of the human
hepatoma cell line Huh-7 with genomic HCV RNA
derived from a cloned viral genome of an HCV isolate
from a Japanese patient with fulminant hepatitis.
Interestingly, the viral particles produced in cell
culture can infect chimpanzees and mice transplanted
with human hepatocytes [15, 16]. HCVcc is now the
most relevant system to study the HCV life cycle, but
restriction to a single isolate remains a problem for
some experiments. This can in part be overcome by
making chimeric viruses containing structural pro-
teins of different isolates or genotypes [16, 18 – 23].

HCV envelope glycoproteins

The genome of HCV encodes a single polyprotein of
about 3000 amino acids, which is cleaved co- and post-
translationnaly by cellular and viral proteases to yield
at least ten mature products. Cleavage of the viral
polyprotein by a cellular signal peptidase gives rise to
the envelope glycoproteins, E1 and E2. These are type
I membrane proteins containing a large N-terminal
ectodomain and a C-terminal transmembrane do-
main. During their synthesis, E1 and E2 ectodomains
are directed to the lumen of the ER and their
transmembrane domains are inserted in the mem-
brane of this compartment. Indeed, the C terminus of
the immature form of the capsid protein is a signal
sequence responsible for the translocation of the E1
ectodomain into the ER lumen [24]. Furthermore, the
C-terminal sequences of E1 and E2 contain signals
which lead to a reinitiation of translocation in the ER
lumen [25].
E1 and E2 are anchored in the ER membrane by their
transmembrane domains. These domains are multi-
functional. They contain heterodimerization sequen-
ces and ER retention signals [26– 29]. Thus, during
their biogenesis, E1 and E2 assemble as noncovalent
heterodimers which are retained in the ER [2].
Importantly, pseudotyped retroviral particles gener-
ated with E1 or E2 alone are noninfectious [7, 9],
indicating that both proteins need to be coexpressed
to be functional in virus entry. Therefore, the E1E2
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heterodimer is probably the form of functional HCV
glycoproteins present at the surface of viral particles
and involved in the entry process [7, 9]. Interestingly,
mutation of specific residues in the transmembrane
domains of E1 and E2 alters the fusion property of
these envelope glycoproteins, suggesting that these
domains also play a major role in the fusion process
[30].
The N terminus of E2 contains a hypervariable region
called HVR1 (residues 384 – 410; Fig. 1) whose high
variability may contribute to HCV escape from the
immune response [31 – 35]. A virus with this region
deleted remains infectious in chimpanzees, but has a
lower infectivity [36]. Nevertheless, it seems that the
properties of some residues are conserved across
different genotypes [37]. Indeed, this region contains
several basic amino acids which modulate HCVpp
infectivity [38], suggesting that this region may be
involved in HCV entry (see below). Other hyper-
variable regions in E2 glycoprotein that might also
play a role in viral entry have been described: HVR2
(residues 474– 482) and HVR3 (residues 431 – 466)
[39 – 41].
E1 and E2 also contain 4 and 11 conserved glycosy-
lation sites, respectively (Fig. 1) [42 –44], all of which
have been shown to be modified by N-glycosylation
[45]. Despite variability in the sequences of HCV
envelope glycoproteins, the glycosylation sites are
highly conserved, suggesting that the glycans associ-
ated with these proteins play an essential role in the
HCV life cycle. Studies of the functional role of these
glycans have shown that they play a major role in
protein folding, in HCV entry and in protection
against neutralization (Fig. 1) [44 – 46]. Indeed, the

lack of a glycan at position 196, 305, 556 or 623 (E1N1,
E1N4, E2N8 or E2N10) strongly affects the incorpo-
ration of HCV glycoproteins into HCVpps, suggesting
that these glycans are necessary for protein folding.
Furthermore, mutation of the glycosylation sites at
position 423 or 448 (E2N2 or E2N4) alters the
infectivity of HCVpps despite normal incorporation
into pseudoparticles, suggesting an essential role for
the corresponding glycans in viral entry. Since E1E2
heterodimers produced in the absence of E2N2 or
E2N4 glycans still interact with CD81, the best-
characterized entry factor for HCV, these glycans
might be important for E2 interaction with another
entry factor or in the fusion process [45]. Finally,
glycans at positions 417, 532 and 645 (E2N1, E2N6 and
E2N11) were shown to reduce the sensitivity of
HCVpps to antibody neutralization and to reduce
the access of CD81 to its binding site on E2, suggesting
that HCV glycans can contribute to the evasion of
HCV from the humoral immune response by masking
the CD81 binding site.

Cellular entry factors for HCV

Glycosaminoglycans
Glycosaminoglycans (GAGs) present at the surface of
cells represent a first site of binding for several viruses
including Flaviviridae [47 – 50]. There are several
different types of GAG: chrondroitin sulfate, derma-
tan sulfate, keratan sulfate, heparan sulfate, heparin
and hyaluronan. By using different model systems
(sE2, HCVpps, HCVccs, virus isolated from plasma),
several authors have shown that heparin, a heparan

Figure 1. Schematic representation of HCV envelope glycoproteins E1 and E2. Glycosylation sites are indicated by N followed by the
number of the site position in the sequence. The positions of the glycosylation sites in the polyprotein of reference strain H (GenBank
accession no. AF009606) are shown. Glycans involved in protein folding, virus entry or protection against neutralization are indicated in
pink, green and orange, respectively. Residues 420, 437, 438, 441, 442, 527, 530 and 535, involved in the E2-CD81 interaction [81, 82], are
indicated by arrows. TMD, transmembrane domain; HVR1, hypervariable region 1.
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sulfate homolog, and heparinase, an enzyme able to
degrade heparan sulfates at the cell surface, inhibit
HCVattachment to target cells [22, 51– 56]. However,
other GAGs do not exhibit any inhibitory activity. The
affinity of an intracellular form of sE2 for heparin is
strong and HVR1 has been proposed as necessary for
this interaction [52]. However, in the case of E1E2
heterodimers isolated from HCVpps, no interaction
was observed between E2 and heparin [38], suggesting
that the heparin-binding domain of E2 is not acces-
sible on the functional heterodimer. To better under-
stand the role of GAGs in HCV entry further experi-
ments need to be done in the context of envelope
glycoproteins isolated from HCVccs. It is worth noting
that no heparin-binding motif has been identified in
the E2 sequence [57]. However, it is possible that such
a motif is formed at the surface of the folded E2
protein. Finally, one cannot exclude the possibility
that HCV interacts indirectly with GAGs, e.g. through
lipoproteins associated with HCV particles. Interest-
ingly, a recent study suggests that the lipoprotein
lipase plays an indirect role in the interactions
between HCV and GAGs [58]. However, lipoprotein
lipase-mediated binding of viral particles seems to
promote nonproductive virus uptake.

Low-density lipoprotein receptor
The density of HCV in sera of infected patients is
heterogeneous and surprisingly low. This has been
attributed to the association of HCV with low-density
and very low density lipoproteins (LDL and VLDL)
even if the details of HCV-lipoprotein interaction
remain unclear [59 – 62]. In favor of this association
HCVcc production in Huh-7 hepatoma cells has been
shown to depend on the assembly and secretion of
VLDL [63]. As a result of the potential interaction
between HCV and lipoproteins, the LDL receptor
(LDL-R) has been proposed as a potential entry
factor for HCV [64 –66]. Cell surface adsorption of
HCV particles isolated from patients and accumula-
tion of viral RNA in cells can be inhibited by
antibodies directed against the LDL-R as well as by
purified LDL and VLDL [51, 65, 67]. Furthermore, a
correlation has been shown between the accumulation
of HCV RNA into primary hepatocytes, expression of
LDL-R mRNA and LDL entry [67]. Finally, the
inhibition of HCVcc entry by anti-apolipoprotein B
antibodies is another argument in favor of a role for
the LDL-R in HCV entry [58]. In contrast, there is no
evidence that HCVpps use the LDL-R to enter
hepatocytes [7, 9]. However, unlike HCVccs [63],
HCVpps are surmised to assemble independently of
VLDL [13].

CD81
The cell surface protein CD81 has been identified as a
potential entry factor for HCV using sE2 [68]. CD81
belongs to the tetraspanin family, whose members are
involved in various cellular functions such as adhe-
sion, morphology, proliferation or differentiation [69].
Like all members of the tetraspanin family, CD81 is
composed of four transmembrane passages, a small
extracellular loop (SEL) and a large extracellular loop
(LEL) (Fig. 2) [70]. Since its identification as a
molecule interacting with sE2, CD81 involvement in
HCV entry has been confirmed in different models.
Indeed, anti-CD81 monoclonal antibodies as well as a
soluble form of CD81 LEL are able to inhibit HCVpp
and HCVcc infectivity [7, 9, 15, 17, 71 – 74]. Further-
more, CD81 knock-down hepatoma cells are no
longer permissive to HCVpp and HCVcc [72, 75].
Finally, HepG2 or HH29 hepatoma cells, which do not
express CD81, become permissive to HCVpps and
HCVccs after ectopic expression of CD81 [9, 16, 71 –
73, 76]. Other studies have also shown that suscept-
ibility of cells to HCV infection is closely related to the
CD81 expression level [75, 77]. Interestingly, enrich-
ment of the plasma membrane in ceramide through
sphingomyelin hydrolysis has a strong inhibitory
effect on HCV entry [C. Voisset, M. Lavie, F. Helle,
A. Op De Beeck, A. Bilheu, J. Bertrand-Michel, F.
Terc�, L. Cocquerel, C. Wychowski, N. Vu-Dac and J.
Dubuisson, unpublished data]. Likewise, ceramide
enrichment of the plasma membrane lead to a
decrease in the level of CD81 present at the cell
surface, due to a massive ATP-independent endove-
siculation of CD81, suggesting that ceramide enrich-
ment of the plasma membrane can impair HCV entry
by inducing CD81 internalization.
Residues of CD81 involved in the interaction with E2
have been mapped in the LEL [68, 72, 78 –80]. On the
E2 glycoprotein, amino acid residues 420, 437, 438,
441, 442, 527, 529, 530 and 535 have been shown to
play a role in E2-CD81 interaction (Fig. 1) [81, 82].
Furthermore, it has been shown that E1E2 hetero-
dimers have stronger CD81 interactions than sE2,
suggesting that E1 can modulate the binding of E2 to
CD81 [83]. As discussed above, access to the CD81-
binding site on E2 is reduced by the presence of
glycans at positions 417, 532 and 645 (E2N1, E2N6 and
E2N11) [44, 46], suggesting that these glycans sur-
round the CD81-binding site. Several studies suggest
that CD81 acts at a post-binding step, and the half-
maximal time of CD81-mediated HCVpp entry into
target cells has been determined to be approximately
17 min [22, 71, 80, 84]. However, the exact role of
CD81 in HCV entry remains to be elucidated.
The tropism of HCV is restricted to human liver cells
expressing CD81 [7, 9, 71, 72], but ectopic expression
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of CD81 in nonhepatic cells does not render them
permissive to infection [9, 76], indicating that other
molecules are essential for HCV entry. Members of
the tetraspanin family are able to interact with each
other and with other protein partners to form multi-
molecular complexes called �tetraspanin webs� [69,
85]. The two major partners involved in primary
complexes with CD81 are EWI-F (also called CD9P-1,
FPRP or CD315) and EWI-2 (also called PGRL,
IgSF8 or CD316) which belong to a novel family of
immunoglobulin proteins [86, 87]. Members of this
family are type I transmembrane proteins, which share
a conserved EWI motif and contain an ectodomain
composed of four immunoglobulin domains. Very
recently, a cleavage product of EWI-2 has been
identified which is a partner of CD81 and inhibits
HCVcc entry into Huh-7 cells [V. Rocha-Perugini, C.
Montpellier, D. Delgrange, C. Wychowski, F. Helle, A.
Pillez, H. Drobecq, F. Le Naour, S. Charrin, S. Levy, E.
Rubinstein, J. Dubuisson and L. Cocquerel, unpub-
lished data]. This protein, called EWI-2wint, corre-
sponds to EWI-2 without its first immunoglobulin
domain. Ectopic expression of EWI-2wint in permis-
sive cells inhibits HCVpp and HCVcc infection by
reducing E2-CD81 interactions. EWI-2wint though
expressed in different cell lines is absent from
hepatocytes, but it is not yet known whether this
expression profile is due to a differential expression of
the protease responsible for EWI-2wint production or
if the accessibility of EWI-2 to protease is cell type
specific. Nevertheless, these findings suggest that, in
addition to the presence of specific entry factors in the
hepatocytes, the absence of a specific inhibitor may
contribute to the hepatotropism of HCV.

SR-BI
The human scavenger receptor class B type I (SR-BI,
also called CLA-1) is a cell surface protein which has
been identified as another potential entry factor for
HCV [88]. SR-BI is a 509-amino-acid protein con-
taining two short cytoplasmic domains, two trans-
membrane passages and one large extracellular loop
(Fig. 2) [89 – 91]. Although the interaction between
sE2 and SR-BI seems specific [88, 92], no interaction
with E1E2 heterodimers has yet been observed [6].
Nevertheless, the involvement of SR-BI in HCVentry
has been confirmed with the HCVpp and HCVcc
systems [74, 76, 93 – 96]. Indeed, it has been shown that
pre-incubation of Huh-7 cells with anti-SR-BI anti-
bodies significantly decreases HCV entry [74, 76, 96].
Furthermore, SR-BI knock-down hepatoma cells
seem to be less permissive to HCVpps and HCVccs
[93, 97]. SR-BI is expressed in the majority of
mammalian cells, but its expression is particularly
high in the liver [76, 91, 98 – 101]. Interestingly, the SR-
BI gene allows expression of different isoforms by
alternative splicing. In particular, the SR-BII isoform
which differs from SR-BI at its C-terminal extremity
can also play a role in HCV entry. Indeed, over-
expression of SR-BII increases HCV infectivity,
although to a lower extent than SR-BI [95].
SR-BI is a receptor for acetylated and oxidized LDL
but also for high-density lipoproteins (HDLs) [90,98].
Although oxidized LDL inhibits HCVpp and HCVcc
infectivity [102], HDL has been shown to facilitate
HCV entry, a process which depends on the lipid
transfer function of SR-BI [94, 103 – 105]. Several
studies suggest that the presence of HVR1 on E2 is
important for its interaction with SR-BI [7, 38, 88].
Along these lines, deletion of HVR1 abolishes the
enhancing effect of HDL on HCVpp entry [94, 104].
Recently, SR-BI has also been shown to bind and
internalize the serum amyloid A (SAA) apolipopro-
tein [106, 107]. SAA is a protein mainly produced by
the liver immediately after infection, tissue damage or
inflammation [108], suggesting a beneficial role for
this protein in host defense. Interestingly, SAA
inhibits HCV entry [109, 110]. However, its inhibitory
effect is not due to competition between HCV and
SAA for SR-BI binding, but rather to a direct
interaction between SAA and the viral particle.
HDL has also been shown to modulate the antiviral
activity of SAA, suggesting a tight relationship
between SAA and HDL in modulating HCV infec-
tivity [109].
The exact role of SR-BI in HCV entry is not well
understood. Recent data suggest a direct interaction
between the viral particle and SR-BI [84, 96], but it
has also been proposed that HCV may interact with
SR-BI through its associated lipoproteins [111].

Figure 2. Schematic representation of SR-BI, CD81 and CLDN1.
SR-BI is composed of two transmembrane passages, two intra-
cellular domains [11 and 45 amino acids (aa)] and a large
extracellular loop (411 aa). SR-BI contains nine potential glyco-
sylation sites represented in green. CD81 is composed of four
transmembrane passages, two intracellular domains (each of 12
aa), a small intracellular loop (5 aa) and two extracellular loops,
SEL (30 aa) and LEL (89 aa). CLDN1 is composed of four
transmembrane passages, a short intracellular N-terminal peptide
(7 aa), an intracellular loop (13 aa), an intracellular C-terminal tail
(27 aa) and two extracellular domains, EL1 (53 aa) and EL2 (27 aa).
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Kinetics of inhibition with anti-SR-BI antibodies
suggest that SR-BI might act concomitantly with
CD81 [97]. However, the binding of HCVccs to CHO
cells expressing SR-BI together with the absence of
binding of HCVccs to CHO cells expressing CD81
suggest that a first contact with SR-BI might be
necessary before the particle interacts with CD81 [84].
Finally, SR-BI is able to modify the lipid composition
of the plasma membrane [112 – 119], and it is possible
that the enhancing activity on HCV entry is the
consequence of such a modification, facilitating some
early step in the HCV life cycle. In line with this
hypothesis, it has been shown that HDL accelerates
HCVpp endocytosis [103].

Claudin-1
By screening a complementary DNA library derived
from HCV-permissive cells for genes that render cells
susceptible to HCVpp infection, Evans et al. [84] have
recently identified a new protein involved in HCV
entry: claudin-1 (CLDN1). CLDN1, which is predom-
inantly expressed in the liver [120], belongs to a family
composed of 24 members responsible for the forma-
tion of tight junctions. These small proteins (between
20 and 27 kDa) contain two extracellular loops, three
intracellular domains and four transmembrane pas-
sages (Fig. 2) and are characterized by the presence of
a highly conserved motif W-GLWC-C in the EL1
[121]. Expression of CLDN1 in non-hepatic 293T cells
renders them permissive to infection by HCVpps and
HCVccs. Given that 293T cells naturally express
CD81 and SR-BI [76], CLDN1 is thus the first protein
described which confers susceptibility to HCV infec-
tion on nonhepatic cells. CLDN1 knock-down cells
are less permissive to infection by HCVpps and
HCVccs, although overexpression of CLDN1 in
permissive cells does not increase infectivity. The
region of CLDN1 involved in HCV entry corresponds
to the first extracellular loop, particularly residues I32
and E48. It is worth noting that palmitoylation sites
and the C-terminal intracellular domain, which allows
interaction with other proteins involved in the tight
junction, do not seem necessary for HCVentry. Lastly,
an antibody directed against an epitope inserted in the
first extracellular loop of CLDN1 inhibits HCV
infectivity in a dose-dependent manner. Furthermore,
in this approach, the half-maximal time of inhibition
of HCVpp entry into target cells has been determined
to be approximately 73 min [84], suggesting that
CLDN1 plays a role in a late step of the entry process,
probably after virus binding and interaction with
CD81. Thus far, no direct interaction between
CLDN1 and the HCV particle has been reported,
but one cannot exclude the idea that such an
interaction requires a conformational change in the

envelope glycoproteins triggered by a first interaction
between E2 and another entry factor, e.g. CD81 or SR-
BI. The precise role of CLDN1 in HCV entry remains
to be determined. However, since CLDN1 is strictly
localized to the tight junctions in polarized hepato-
cytes, it is tempting to speculate that CLDN1 acts after
lateral migration of a virus-receptor complex to the
tight junctions.

Endocytosis of HCV particle

After binding to specific receptor(s) virus entry into
host cells involves fusion of the lipid envelope with a
cellular membrane. This process is tightly coordinated
in time and space and requires drastic conformational
changes in the fusion proteins, which are triggered by
cellular factors. Enveloped viruses enter target cells in
two different ways. Some of them (e.g. the majority of
retroviruses) enter by fusing their envelope directly
with the plasma membrane. This process does not
depend on pH, and conformational changes in the
envelope proteins are induced by interactions be-
tween the envelope proteins and a (co)receptor. Other
enveloped viruses, e.g. influenza virus or vesicular
stomatitis virus, enter target cells by endocytosis. In
this case, the acidic pH of endosomes triggers con-
formational changes in the envelope proteins. The
viral genome is released into the cytosol after fusion
between the viral envelope and an endosomal mem-
brane.
The use of endosome acidification inhibitors, such as
bafilomycin A1, concanamycin A, ammonium chlo-
ride or chloroquine, has shown that HCV entry is pH
dependent [9, 22, 23, 76, 122, 123]. Furthermore, the
use of small interfering RNAs targeting clathrin
indicates that HCV enters target cells by clathrin-
mediated endocytosis [122, 123]. Finally, data ob-
tained with dominant-negative mutants of proteins
involved in endocytosis suggest that HCV fuses with
early endosomes [122].

Fusion

Two major classes of viral fusion proteins have been
described, class I and II [124]. Class I fusion proteins
are synthesized as a precursor that is cleaved into two
subunits by host cell proteases, with a membrane-
anchored subunit containing an N-terminal (or N-
proximal) fusion peptide. This proteolytic processing
event creates a metastable state of the fusion protein.
Class II fusion proteins have a completely different
structure. They are predominantly nonhelical, having
instead a b-sheet type structure. They are not cleaved

Cell. Mol. Life Sci. Vol. 65, 2008 Review Article 105



during their biosynthesis, and they possess an internal
fusion peptide with a loop conformation [124]. Class II
fusion proteins are synthesized as a complex with a
companion membrane glycoprotein, which acts as a
chaperone. Furthermore, cleavage of the companion
protein activates the fusogenic potential of the fusion
protein. Following a trigger by a cellular factor (low
pH and/or receptor interaction) changes in the con-
formation of the fusion protein occur, leading to the
formation of thermodynamically stable trimers. This
oligomeric reorganization leads to the exposure of the
fusion peptide and its insertion into a cellular mem-
brane. Such a conformational change brings together
the transmembrane domain and the fusion peptide,
which is essential for the fusion process. It is worth
noting that mutations in the transmembrane domains
of E1 and E2 affect the fusion properties of HCV
envelope glycoproteins, possibly by affecting the
oligomeric reorganization of the fusion protein [30].
As discussed above HCV entry is pH dependent,
suggesting that the low pH of an endosomal compart-
ment triggers the conformational changes in HCV
envelope proteins which initiate virus-cell membrane
fusion. Interestingly, an in vitro assay based on
HCVpps and liposomes has recently been developed
to better characterize the fusion process [125]. Fusion
between HCVpps and liposomes is also pH dependent
with a threshold pH of 6.3 and an optimum at about
5.5. The assay showed that fusion is dependent on
temperature and facilitated by the presence of cho-
lesterol but does not require the presence of any
protein at the surface of liposomes [125]. For many
enveloped viruses, an acidic pH induces an irrever-
sible conformational change, which is necessary for
fusion between viral and endosomal membranes. Such
viruses are generally inactivated by acid pH treat-
ment. Surprisingly, exposure of cell-surface-bound
virions to acid pH followed by a return to neutral pH
does not affect HCV infectivity [23, 122], suggesting
that HCV envelope proteins need an additional
trigger, such as receptor interaction, to become
sensitive to low pH.
Based on its classification in the Flaviviridae family, it
is currently thought that HCV envelope proteins have
a folding pattern similar to class II fusion proteins
[126]. However, there remains some controversy
regarding the identity of the HCV fusion protein. A
potential structural homology with other class II
fusion proteins suggests that E2 could be the fusion
protein [127], making E1 the companion protein. On
the other hand E1 has been proposed as a good
candidate because sequence analyses suggest that it
may contain a putative fusion peptide in its ectodo-
main [128, 129], raising the possibility that E1 is a
truncated class II fusion protein [130]. It is worth

noting that E1 and E2 chaperone each other to form
the fully functional heterodimer [131, 132], suggesting
that the interdependence of the two proteins is slightly
different from other type II fusion proteins. By
analyzing a peptide library of HCV envelope proteins
for their activity on model membranes, Perez-Berna et
al. [133] have identified peptides in both E1 and E2
which have potential fusion activity, suggesting that
distinct regions in both HCV E1 and E2 may
cooperate to drive the fusion process to completion.
In keeping with this observation, a recent site-directed
mutagenesis study in the HCVpp system has identified
three regions important for fusion with liposomes
[134]. The first one (residues 272 – 287) is located in
E1, whereas the other two (residues 419 – 433 and
597 – 620) are in E2. Whether the involvement of these
regions in fusion is direct or indirect remains to be
determined. A high-resolution structure of HCV
envelope proteins will be useful to solve this question.

Conclusion

The recent development of functional models to
analyze the early steps of the HCV life cycle has led
to the identification of several cell surface proteins
involved in HCV entry. The data that have recently
been accumulated suggest that HCV entry is a slow
and complex multistep process. The exact role of each
molecule involved in HCV entry remains to be
determined, but our current knowledge allows us to
draw a model (Fig. 3). GAGs and the LDL-R may
facilitate initial attachment to the host cell. This
interaction is probably mediated by the lipoproteins
associated with HCV virions (represented by a beige
sphere in Fig. 3). However, one cannot exclude direct
contact between HCV envelope proteins and these
cellular proteins. After the initial binding step, the
particle likely interacts with SR-BI and CD81. Al-
though the sequence of HCV interaction with these
two entry factors has not been unequivocally deter-
mined, current understanding suggests that a first
contact with SR-BI might be necessary before the
particle interacts with CD81 (see above). The inter-
action with SR-BI can potentially be direct [88] or
indirect, through HCV-associated lipoproteins [111].
Importantly, these early steps of HCV entry may be
modulated by different components of the serum,
which can enhance (HDL) or inhibit (oxidized
LDLox, lipoprotein lipase and serum amyloid A)
HCV infectivity. Furthermore, the presence of EWI-
2wint in some cell types can block the interaction of
the viral particles with CD81, thus potentially pre-
venting these cells from being infected. As discussed
above, CLDN1 acts at a late stage of the entry process,
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after interactions with SR-BI and CD81 and probably
after a lateral migration of the virus-receptor complex
to the tight junctions. Then, HCV is internalized by
clathrin-mediated endocytosis, and fusion probably
occurs in early endosomes. HCVentry thus appears to
be controlled by the presence of several entry factors
and might also require the absence of a specific
inhibitory factor.
The HCV entry process may be even more complex
than already elucidated. Indeed, some human cell
lines expressing CD81, SR-BI and CLDN1 remain
resistant to HCV entry [84], suggesting that one or
more human-specific HCV entry factor(s) remain to
be discovered. Further studies will also be necessary to
understand the precise role of each entry factor in the
HCV life cycle. Indeed, it remains to be determined
whether interactions with some entry factors lead to
conformational changes in HCV envelope glycopro-
teins that are required for subsequent contacts with
other molecules. Live cell imaging will also be
necessary to analyze the dynamics of particle-receptor
complex migration to microdomains and/or subcellu-
lar compartments of the host cell. Identifying the
signaling events induced by early contacts between
the HCV particle and the host cell will also contribute
to the understanding of the entry process. Further-

more, high-resolution structures of the HCV particle
and envelope proteins will be necessary to better
understand the early events of the HCV life cycle,
particularly the fusion process. These structures would
also contribute to the molecular understanding of the
interactions of the virion with lipoproteins and hence
with some attachment factors. Finally, a detailed
knowledge of HCV entry mechanisms will also be
helpful for the characterization of new entry inhib-
itors, as already illustrated by the recent character-
ization of broad-spectrum antiviral compounds which
have been shown to block HCV entry (e.g., cyanovir-
in-N, pradimicin-A and arbidol) [135 –138].
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