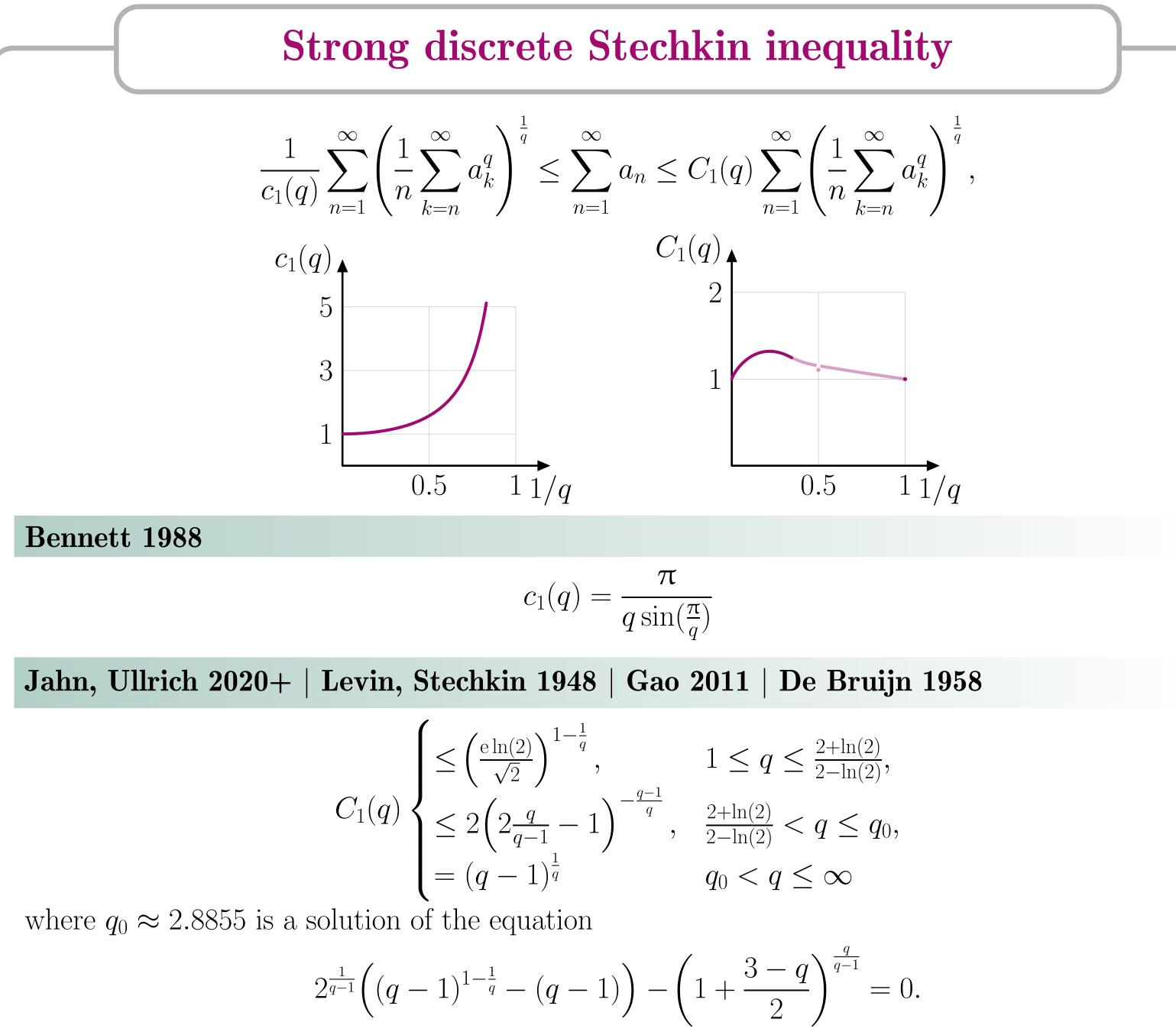
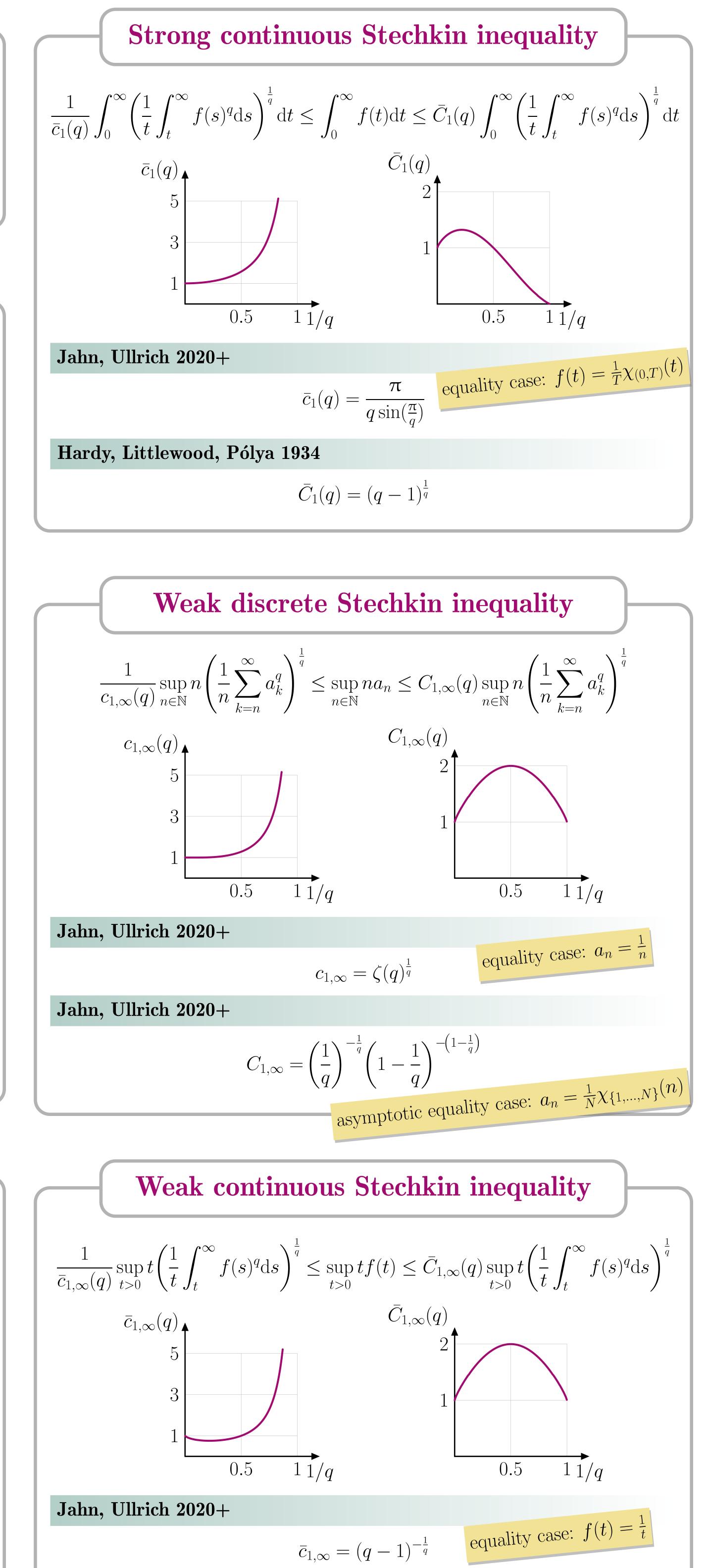
On the optimal constants in the two-sided Stechkin inequalities

Thomas Jahn, Tino Ullrich TU Chemnitz

Introduction

We improve the best known constants in some equivalences of quasinorms. These inequalities serve a central task of nonlinear approximation, namely the characterization of elements of infinitedimensional Hilbert spaces which can be approximated by *n*-sparse elements with a given error decay. Throughout this poster, sequences $(a_n)_{n\in\mathbb{N}}$ and functions $f: (0,\infty) \to [0,\infty)$ are assumed to be monotonically decreasing, and $1 \leq q \leq \infty$. The constants $c_1(q), \ldots, \overline{C}_{1,\infty}(q)$ are supposed to be minimal in their respective positions. But what are these minimal values?





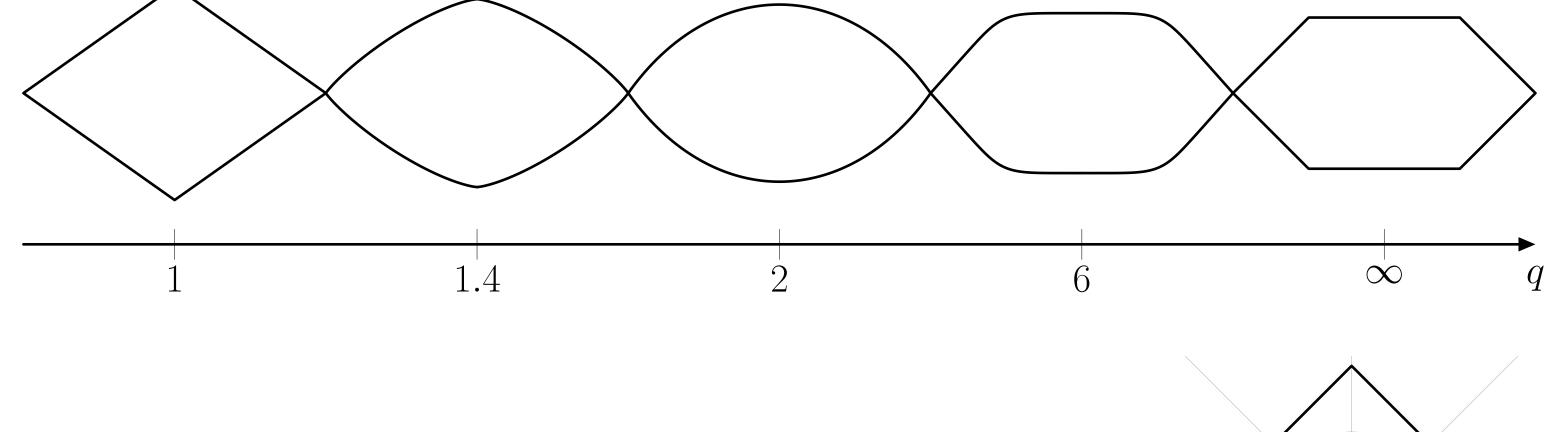
Also,

 $C_1(2) \approx 1.1064957714.$

The main ingredient of our proof an adaption of Stechkin's 1951 proof for $C_1(2) \leq \frac{2}{\sqrt{3}}$ (now using Hölder's inequality) to obtain upper bounds on $C_1(q)$ in terms of an auxiliary sequence, which we have to choose wisely.

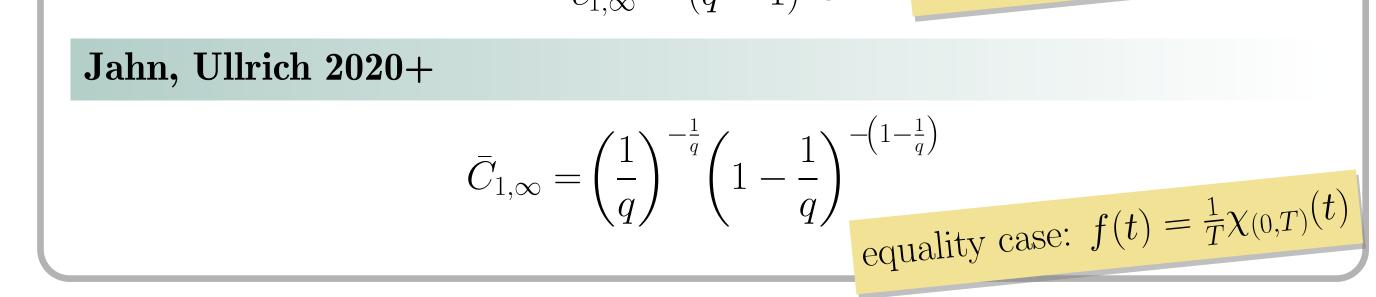
If we truncate the $\sum_{n=1}^{\infty}$ to $\sum_{n=1}^{N}$, the strong discrete Stechkin inequality turns into finding the optimal scaling factors for optimal containment of the ℓ_1^N unit ball and another convex body in \mathbb{R}^N , whose shape varies with q.

Geometric explanation



Here is the optimal containment situation for N = q = 2. The size

of the smaller copy of the ℓ_1^N unit ball can be increased if we pay attention to the monotonicity. However, the size of the larger copy cannot be decreased. This means that monotonicity is important for $c_1(q)$ but not for $C_1(q)$.



References

G. Bennett, Some elementary inequalities. II, Quart. J. Math. Oxford Ser. (2) 39, no. 156, pp. 385–400, 1988, doi: 10.1093/qmath/39.4.385.

P. Gao, On a result of Levin and Stečkin, Int. J. Math. Math. Sci. 2011, pp. 1-15, 2011, doi: 10.1155/2011/534391.

G.H. Hardy, J.E. Littlewood, and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, 1934. Russian version: *Hepasehcmea*, Gosudarstv. Izdat. Inostr. Lit., Moscow, 1948, with appendices by V.I. Levin and S.B. Stechkin.

T. Jahn and T. Ullrich, On the optimal constants in the two-sided Stechkin inequalities, 2020, arxiv: 2006.07441.

S.B. Stechkin, Об абсолютной сходимости ортогональных рядов. І., Mat. Sbornik N.S. 29(71), pp. 225–232, 1951.

Acknowledgments

The authors would like to acknowledge support by the DFG Ul-403/2-1.