On the optimal constants in the two-sided Stechkin inequalities

Thomas Jahn, Tino Ullrich
TU Chemnitz

Introduction

We improve the best known constants in some equivalences of quasinorms. These inequalities serve a central task of nonlinear approximation, namely the characterization of elements of infinitedimensional Hilbert spaces which can be approximated by n-sparse elements with a given error decay. Throughout this poster, sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and functions $f:(0, \infty) \rightarrow[0, \infty)$ are assumed to be monotonically decreasing, and $1 \leq q \leq \infty$. The constants $c_{1}(q), \ldots, \bar{C}_{1, \infty}(q)$ are supposed to be minimal in their respective positions. But what are these minimal values?

Bennett 1988

$$
c_{1}(q)=\frac{\pi}{q \sin \left(\frac{\pi}{q}\right)}
$$

Jahn, Ullrich 2020+ | Levin, Stechkin 1948 | Gao $2011 \mid$ De Bruijn 1958

$$
C_{1}(q) \begin{cases}\leq\left(\frac{e \ln (2)}{\sqrt{2}}\right)^{1-\frac{1}{q}}, & 1 \leq q \leq \frac{2+\ln (2)}{2-\ln (2)} \\ \leq 2\left(2 \frac{q}{q-1}-1\right)^{-\frac{q-1}{q}}, & \frac{2+\ln (2)}{2-\ln (2)}<q \leq q_{0} \\ =(q-1)^{\frac{1}{q}} & q_{0}<q \leq \infty\end{cases}
$$

where $q_{0} \approx 2.8855$ is a solution of the equation

$$
2^{\frac{1}{q-1}}\left((q-1)^{1-\frac{1}{q}}-(q-1)\right)-\left(1+\frac{3-q}{2}\right)^{\frac{q}{q-1}}=0
$$

Also,

$$
C_{1}(2) \approx 1.1064957714
$$

The main ingredient of our proof an adaption of Stechkin's 1951 proof for $C_{1}(2) \leq \frac{2}{\sqrt{3}}$ (now using Hölder's inequality) to obtain upper bounds on $C_{1}(q)$ in terms of an auxiliary sequence, which we have to choose wisely

Geometric explanation

If we truncate the \sum^{∞} to \sum^{N}, the strong discrete Stechkin inequality turns into finding the optimal scaling factors for optimal containment of the ℓ_{1}^{N} unit ball and another convex body in \mathbb{R}^{N}, whose shape varies with q.

Here is the optimal containment situation for $N=q=2$. The size of the smaller copy of the ℓ_{1}^{N} unit ball can be increased if we pay attention to the monotonicity. However, the size of the larger copy cannot be decreased. This means that monotonicity is important for $c_{1}(q)$ but not for $C_{1}(q)$.

References

G. Bennett, Some elementary inequalities. II, Quart. J. Math. Oxford Ser. (2) 39, no. 156, pp. 385-400, 1988, doi: 10.1093/qmath/39.4.385. P. Gao, On a result of Levin and Stečkin, Int. J. Math. Math. Sci. 2011, pp. 1-15, 2011, doi: 10.1155/2011/534391.
\qquad Gosudarstv. Izdat. Inostr. Lit., Moscow, 1948, with appendices by V.I. Levin and S.B. Stechkin.
T. Jahn and T. Ullrich, On the optimal constants in the two-sided Stechkin inequalities, 2020, arxiv: 2006.07441.
S.B. Stechkin, Об абсолютной сходимости ортогональных рядов. I., Mat. Sbornik N.S. 29(71), pp. 225-232, 1951

Strong continuous Stechkin inequality
$\frac{1}{\bar{c}_{1}(q)} \int_{0}^{\infty}\left(\frac{1}{t} \int_{t}^{\infty} f(s)^{q} \mathrm{~d} s\right)^{\frac{1}{q}} \mathrm{~d} t \leq \int_{0}^{\infty} f(t) \mathrm{d} t \leq \bar{C}_{1}(q) \int_{0}^{\infty}\left(\frac{1}{t} \int_{t}^{\infty} f(s)^{q} \mathrm{~d} s\right)^{\frac{1}{q}} \mathrm{~d} t$

Jahn, Ullrich 2020+

$$
\bar{c}_{1}(q)=\frac{\pi}{q \sin \left(\frac{\pi}{q}\right)} \quad \text { equality case: } f(t)=\frac{1}{T} \chi_{(0, T)}(t)
$$

Hardy, Littlewood, Pólya 1934

$$
\bar{C}_{1}(q)=(q-1)^{\frac{1}{q}}
$$

Weak discrete Stechkin inequality
$\frac{1}{c_{1, \infty}(q)} \sup _{n \in \mathbb{N}} n\left(\frac{1}{n} \sum_{k=n}^{\infty} a_{k}^{q}\right)^{\frac{1}{q}} \leq \sup _{n \in \mathbb{N}} n a_{n} \leq C_{1, \infty}(q) \sup _{n \in \mathbb{N}} n\left(\frac{1}{n} \sum_{k=n}^{\infty} a_{k}^{q}\right)^{\frac{1}{q}}$

Jahn, Ullrich 2020+

$$
c_{1, \infty}=\zeta(q)^{\frac{1}{q}}
$$

Jahn, Ullrich 2020+

$$
C_{1, \infty}=\left(\frac{1}{q}\right)^{-\frac{1}{q}}\left(1-\frac{1}{q}\right)^{-\left(1-\frac{1}{q}\right)}
$$

asymptotic equality case: $a_{n}=\frac{1}{N} \chi_{\{1, \ldots, N\}}(n)$

Weak continuous Stechkin inequality
$\frac{1}{\overline{c_{1, \infty}(q)}} \sup _{t>0} t\left(\frac{1}{t} \int_{t}^{\infty} f(s)^{q} \mathrm{~d} s\right)^{\frac{1}{q}} \leq \sup _{t>0} t f(t) \leq \bar{C}_{1, \infty}(q) \sup _{t>0} t\left(\frac{1}{t} \int_{t}^{\infty} f(s)^{q} \mathrm{~d} s\right)$

$\bar{C}_{1, \infty}(q)$

Jahn, Ullrich 2020+

Jahn, Ullrich 2020+

$$
\bar{C}_{1, \infty}=\left(\frac{1}{q}\right)^{-\frac{1}{q}}\left(1-\frac{1}{q}\right)^{-\left(1-\frac{1}{q}\right.}
$$

Acknowledgments

[^0]
[^0]: The authors would like to acknowledge support by the DFG Ul-403/2-1.

