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Introduction

We improve the best known constants in some equivalences of quasinorms. These inequalities
serve a central task of nonlinear approximation, namely the characterization of elements of infinite-
dimensional Hilbert spaces which can be approximated by n-sparse elements with a given error decay.
Throughout this poster, sequences (an)n∈N and functions f : (0,∞) → [0,∞) are assumed to be
monotonically decreasing, and 1 ≤ q ≤ ∞. The constants c1(q), . . . , C̄1,∞(q) are supposed to be
minimal in their respective positions. But what are these minimal values?
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Also,
C1(2) ≈ 1.1064957714.

The main ingredient of our proof an adaption of Stechkin’s 1951 proof for C1(2) ≤ 2√
3

(now using

Hölder’s inequality) to obtain upper bounds on C1(q) in terms of an auxiliary sequence, which we
have to choose wisely.

Geometric explanation

If we truncate the
∞∑

to
N∑

, the strong discrete Stechkin inequality turns into finding the optimal
scaling factors for optimal containment of the `N1 unit ball and another convex body in RN , whose
shape varies with q.

1 1.4 2 6 ∞ q

Here is the optimal containment situation for N = q = 2. The size
of the smaller copy of the `N1 unit ball can be increased if we pay
attention to the monotonicity. However, the size of the larger copy
cannot be decreased. This means that monotonicity is important for
c1(q) but not for C1(q).
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Weak discrete Stechkin inequality
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