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Abstract
The isoperimetric inequality is one of the oldest and most outstanding results in mathematics, and can be sum-
marized by saying that the Euclidean balls minimize the surface area measure S(·) (Minkowski content) among
those compact convex sets with prescribed positive volume vol(·) (Lebesgue measure). There exist many dif-
ferent versions and extensions of this result, which have led to remarkable consequences in many branches of
mathematics. It admits the following “neighbourhood form”: for any compact convex set K ⊂ Rn, and all t ≥ 0,

vol(K + tBn) ≥ vol(rBn + tBn),

where r > 0 is such that vol(rBn) = vol(K) and Bn denotes the (closed) Euclidean unit ball.
In this poster we discuss and show a discrete analogue of the isoperimetric inequality in the aforementioned form
for the lattice point enumerator Gn(K) = |K ∩ Zn| of a bounded subset K ⊂ Rn: we determine sets minimizing
the functional Gn

(
K + t[−1, 1]n

)
, for any t ≥ 0, among those bounded sets K with given positive lattice point

enumerator. We also show that this new discrete inequality implies the classical result for compact sets.

1 The classical isoperimetric inequality
The isoperimetric inequality in its classical form dates back to antiquity, and states that circles are the only closed plane
curves maximizing the enclosed area for a prescribed length, or, alternatively, the only ones minimizing the length for a
prescribed enclosed area. This can be succinctly expressed as

L2 ≥ 4πA, (1)

where L is the length of the curve and A is the enclosed area.
This result was eventually generalized to arbitrary dimension in the 19th century, starting with the works of Steiner who
exploited his then recently developed concept of Steiner symmetrization to show that if an optimal solution existed, it had
to be the n-dimensional ball. The proof of existence was then completed by other authors. Its form for convex bodies in
Rn can be stated by saying that the volume vol(·) and surface area S(·) (Minkowski content) of any n-dimensional convex
body K satisfy (

S(K)

S(Bn)

)n
≥
(

vol(K)

vol(Bn)

)n−1

, (2)

where Bn denotes the Euclidean (closed) unit ball. Another equivalent formulation, analogous to (2) but in the spirit of
(1), on account of the formula for the surface area of Bn, is

S(K) ≥ nvol(K)(n−1)/nvol(Bn)1/n. (3)

During the final years of the century, works by both Hermann Brunn and Hermann Minkowski produced the currently
known as Brunn-Minkowski theorem, a powerful inequality that can yield the isoperimetric inequality (2) with a fairly
straightforward proof.

2 Discrete isoperimetric inequalities
In order to discretize the isoperimetric inequality we may consider the following “neighbourhood form” (see e.g. [5,
Proposition 14.2.1]): for any n-dimensional convex body K ⊂ Rn, and all t ≥ 0, we have

vol(K + tBn) ≥ vol(rBn + tBn), (4)

where rBn, r > 0, is a ball of the same volume as K. In fact, by subtracting vol(K) = vol(rBn) and dividing by t in both
sides of (4), and taking limits as t→ 0+, one immediately gets (2) from (4).
The neighbourhood K + tBn, t ≥ 0, of the n-dimensional convex body K coincides with the set of all points of Rn having
(Euclidean) distance from K at most t. Exchanging the role of the unit ball Bn in (4) by another (n-dimensional) convex
body E ⊂ Rn, i.e., changing the involved “distance”, one is naturally led to the fact

vol(K + tE) ≥ vol(rE + tE) (5)

for all t ≥ 0, where again r > 0 is such that rE has the same volume as K. Thus, the advantage of using the vol-
ume of a neighbourhood of K, instead of its surface area, is that it can be extended to other spaces in which the latter
notion makes no sense; it just suffices to consider a metric and a measure on the given space. Relevant examples of
spaces in which isoperimetric inequalities in this form hold are the unit sphere, the Gauss space or the n-dimensional
discrete cube {0, 1}n (see e.g. [5, Section 14.2]). Similar inequalities also hold in discrete metric spaces, in the settings
of combinatorics and graph theory (for which we refer the reader to [2]).

2.1 An inequality by Radcliffe and Veomett

Recently, in [6], a discrete isoperimetric inequality has been derived for the integer lattice Zn endowed with the L∞ norm
and the cardinality measure | · | (see also [1] for a related result in the case of the L1 norm, where the author uses a
method based on the solvability of a certain finite difference equations problem). To this aim, a suitable extension of
lattice cubes (i.e., the intersection of cubes [a, b]n with Zn) is considered: we will call these sets extended lattice cubes,
which will be denoted by Ir (see Definition 2), for any r ∈ N. In fact, when r = mn for some m ∈ N, Ir is indeed a
lattice cube. Thus, the authors show that such sets Ir minimize the cardinality of the suitable neighbourhood among all
non-empty sets of fixed cardinality r. More precisely, [6, Theorem 1], combined with [6, Lemma 1], leads to the following
discrete analogue of (5):

Theorem 1 (Radcliffe and Veomett, [6]) Let A ⊂ Zn be a non-empty finite set and let r ∈ N be such that |Ir| = |A|.
Then ∣∣A +

(
(m[−1, 1]n) ∩ Zn

)∣∣ ≥ ∣∣Ir +
(
(m[−1, 1]n) ∩ Zn

)∣∣ (6)

for all m ∈ N.

Indeed, the authors prove the above theorem for m = 1 in [6, Theorem 1], and a simple inductive argument using [6,
Lemma 1] allows one to obtain the result for arbitrary m ∈ N.

3 Defining optimal sets
Given a vector u = (u1 . . . , un) ∈ Zn and fixing iu ∈ {1, . . . , n}, we will write

u′ = (u1 . . . , uiu−1, uiu+1, . . . , un) ∈ Zn−1.

With this notation, in [6] the following well-order ≺ in Zn is defined:

Definition 1 If n = 1 we define the order ≺ given by

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ · · · ≺ m ≺ −m ≺ . . .

For n ≥ 2 we set, for w = (w1, . . . , wn) ∈ Zn,

M(w) = max
≺
{wi : i = 1, . . . , n} and iw = min

{
i : wi = M(w)

}
,

and we define ≺ recursively as follows: for any u, v ∈ Zn with u 6= v,

1. if M(u) ≺M(v) then u ≺ v;

2. if M(u) = M(v) then u ≺ v if either iv < iu or (iv = iu and) u′ ≺ v′.

Moreover, we write u � v if either u ≺ v or u = v.

This order will allow us to define the extended lattice cube Ir of r points as the initial segment in Zn with respect to ≺. To
define the sets Cr, which will be referred to as extended cubes, first we need the following definition, which can be seen
as a particular case of the family of weakly unconditional sets, first introduced in [7] (we refer the reader to this work
for further properties and relations of them with certain Brunn-Minkowski type inequalities): for any non-empty finite set
A ⊂ Rn, we write

CA =
{

(λ1x1, . . . , λnxn) ∈ Rn : (x1, . . . , xn) ∈ A, λi ∈ [0, 1] for i = 1, . . . , n
}

(see Figure 1).

Figure 1: Sets CA ⊂ R2 for different finite sets A ⊂ Z2.

Definition 2 Let r ∈ N. By Ir we denote the initial segment in (Zn,≺) of length r, i.e., the set of the first r points with
respect to the order ≺ in Zn (see Figure 2, left). Moreover, by Cr we denote the set given by Cr := CIr (see Figure 2, right).
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Figure 2: The extended lattice cube I23 in Z2 (left) and the corresponding extended cube C23 in R2 (right).

We note that if r = mn for some m ∈ N then Ir is indeed a lattice cube. More precisely, Ir = {−m/2 + 1,−m/2 +

2, . . . ,m/2− 1,m/2}n if m is even and Ir =
{
−(m− 1)/2,−(m− 1)/2 + 1, . . . , (m− 1)/2, (m− 1)/2

}n if m is odd (cf. Figure
2, left). This further implies that Cr is a cube whenever r = mn for some m ∈ N.

4 Main results

We are interested in studying an analogue of the discrete isoperimetric inequality obtained in Theorem 1 in the setting of
arbitrary non-empty bounded sets in Rn endowed with (the L∞ norm and) the lattice point enumerator Gn(·). In this way,
one may consider neighbourhoods of a given set at any distance t ≥ 0, not necessarily integer (cf. (6)). We show that
the extremal sets will be the extended cubes Cr (cf. Definition 2), which satisfy Cr ∩ Zn = Ir (and thus Gn(Cr) = |Ir| = r)
and are furthermore characterized as the largest sets for which Cr + (−1, 1)n = Ir + (−1, 1)n, for any r ∈ N:

Theorem 2 ([3, Theorem 1.2]) Let K ⊂ Rn be a bounded set with Gn(K) > 0 and let r ∈ N be such that
Gn(Cr) = Gn(K). Then

Gn

(
K + t[−1, 1]n

)
≥ Gn

(
Cr + t[−1, 1]n

)
(7)

for all t ≥ 0.

Remark 1 From the proof of the previous result we note that the role of the extended cubes Cr could be played by other
sets Lr, with Gn(Lr) = r, such that Lr + (−1, 1)n ⊂ Ir + (−1, 1)n. However, Cr are the largest sets (with respect to set
inclusion) satisfying this property (cf. [3, (2.8)]). Indeed, for any x = (x1, . . . , xn) ∈ Rn such that x+(−1, 1)n ⊂ Ir+(−1, 1)n,
it is enough to consider the point y = (y1, . . . , yn) ∈

(
x + (−1, 1)n

)
∩ Zn ⊂

(
Ir + (−1, 1)n

)
∩ Zn = Ir given by

yi =


dxie if xi > 0,

0 if xi = 0,

bxic otherwise,

which yields x ∈ C{y} ⊂ Cr.

Remark 2 Theorem 2 can be extended to the setting of an arbitrary n-dimensional lattice Λ ⊂ Rn. Indeed, if
B = {v1 . . . , vn} is a basis of Λ, we may consider ϕ : Rn −→ Rn the linear (bijective) map given by ϕ(x) =

∑n
i=1 xivi

for any x = (x1, . . . , xn) ∈ Rn. Then, denoting by GΛ(M) = |M ∩ Λ|, Theorem 2 yields

GΛ

(
K + tϕ

(
[−1, 1]n

))
≥ GΛ

(
ϕ(Cr) + tϕ

(
[−1, 1]n

))
for any bounded set K ⊂ Rn with GΛ(K) > 0 and all t ≥ 0, where r ∈ N is such that GΛ

(
ϕ(Cr)

)
= GΛ(K).

Finally, we also show that the classical isoperimetric inequality (5), in the setting of non-empty compact sets, can be
derived as a consequence of this new discrete inequality for the lattice point enumerator Gn(·):

Theorem 3 ([3, Theorem 1.4]) The discrete isoperimetric inequality (7) implies the classical isoperimetric inequal-
ity (5), with E = [−1, 1]n, for non-empty compact sets.
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