A discrete isoperimetric inequality

E. Lucas Marín (eduardo.lucas@um.es) (joint work with D. Iglesias López (david.iglesias@um.es) and J. Yepes Nicolás (jesus.yepes@um.es))

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain*

Abstract

The isoperimetric inequality is one of the oldest and most outstanding results in mathematics, and can be summarized by saying that the Euclidean balls minimize the surface area measure $S(\cdot)$ (Minkowski content) among those compact convex sets with prescribed positive volume $vol(\cdot)$ (Lebesgue measure). There exist many different versions and extensions of this result, which have led to remarkable consequences in many branches of mathematics. It admits the following "neighbourhood form": for any compact convex set $K \subset \mathbb{R}^n$, and all $t \ge 0$,

$\operatorname{vol}(K+tB_n) \ge \operatorname{vol}(rB_n+tB_n),$

where r > 0 is such that $vol(rB_n) = vol(K)$ and B_n denotes the (closed) Euclidean unit ball. In this poster we discuss and show a discrete analogue of the isoperimetric inequality in the aforementioned form for the *lattice point enumerator* $G_n(K) = |K \cap \mathbb{Z}^n|$ of a bounded subset $K \subset \mathbb{R}^n$: we determine sets minimizing the functional $G_n(K + t[-1, 1]^n)$, for any $t \ge 0$, among those bounded sets K with given positive lattice point enumerator. We also show that this new discrete inequality implies the classical result for compact sets. 1. if $M(u) \prec M(v)$ then $u \prec v$;

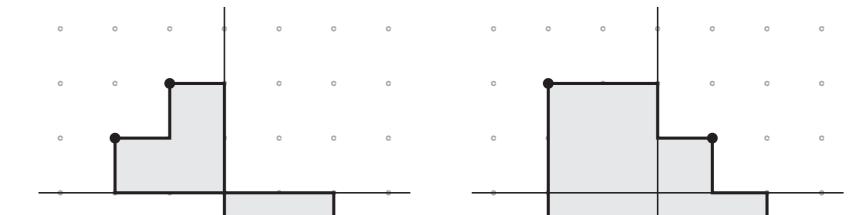
2. if M(u) = M(v) then $u \prec v$ if either $i_v < i_u$ or $(i_v = i_u \text{ and}) u' \prec v'$.

Moreover, we write $u \leq v$ if either $u \prec v$ or u = v.

This order will allow us to define the extended lattice cube \mathcal{I}_r of r points as the initial segment in \mathbb{Z}^n with respect to \prec . To define the sets \mathcal{C}_r , which will be referred to as *extended cubes*, first we need the following definition, which can be seen as a particular case of the family of *weakly unconditional sets*, first introduced in [7] (we refer the reader to this work for further properties and relations of them with certain Brunn-Minkowski type inequalities): for any non-empty finite set $A \subset \mathbb{R}^n$, we write

$$\mathcal{C}_A = \left\{ (\lambda_1 x_1, \dots, \lambda_n x_n) \in \mathbb{R}^n : (x_1, \dots, x_n) \in A, \lambda_i \in [0, 1] \text{ for } i = 1, \dots, n \right\}$$

(see Figure 1).



1 The classical isoperimetric inequality

The isoperimetric inequality in its classical form dates back to antiquity, and states that circles are the only closed plane curves maximizing the enclosed area for a prescribed length, or, alternatively, the only ones minimizing the length for a prescribed enclosed area. This can be succinctly expressed as

$$L^2 \ge 4\pi A,\tag{1}$$

where L is the length of the curve and A is the enclosed area.

This result was eventually generalized to arbitrary dimension in the 19th century, starting with the works of Steiner who exploited his then recently developed concept of *Steiner symmetrization* to show that if an optimal solution existed, it had to be the *n*-dimensional ball. The proof of existence was then completed by other authors. Its form for convex bodies in \mathbb{R}^n can be stated by saying that the volume $vol(\cdot)$ and surface area $S(\cdot)$ (Minkowski content) of any *n*-dimensional convex body *K* satisfy

$$\left(\frac{\mathcal{S}(K)}{\mathcal{S}(B_n)}\right)^n \ge \left(\frac{\operatorname{vol}(K)}{\operatorname{vol}(B_n)}\right)^{n-1},\tag{2}$$

where B_n denotes the Euclidean (closed) unit ball. Another equivalent formulation, analogous to (2) but in the spirit of (1), on account of the formula for the surface area of B_n , is

$$S(K) \ge n \operatorname{vol}(K)^{(n-1)/n} \operatorname{vol}(B_n)^{1/n}.$$
(3)

During the final years of the century, works by both Hermann Brunn and Hermann Minkowski produced the currently known as Brunn-Minkowski theorem, a powerful inequality that can yield the isoperimetric inequality (2) with a fairly straightforward proof.

2 Discrete isoperimetric inequalities

In order to discretize the isoperimetric inequality we may consider the following "*neighbourhood* form" (see e.g. [5, Proposition 14.2.1]): for any *n*-dimensional convex body $K \subset \mathbb{R}^n$, and all $t \ge 0$, we have

$$\operatorname{vol}(K+tB_n) \ge \operatorname{vol}(rB_n+tB_n),\tag{4}$$

where rB_n , r > 0, is a ball of the same volume as K. In fact, by subtracting $vol(K) = vol(rB_n)$ and dividing by t in both

Figure 1: Sets $\mathcal{C}_A \subset \mathbb{R}^2$ for different finite sets $A \subset \mathbb{Z}^2$.

Definition 2 Let $r \in \mathbb{N}$. By \mathcal{I}_r we denote the initial segment in (\mathbb{Z}^n, \prec) of length r, i.e., the set of the first r points with respect to the order \prec in \mathbb{Z}^n (see Figure 2, left). Moreover, by \mathcal{C}_r we denote the set given by $\mathcal{C}_r := \mathcal{C}_{\mathcal{I}_r}$ (see Figure 2, right).

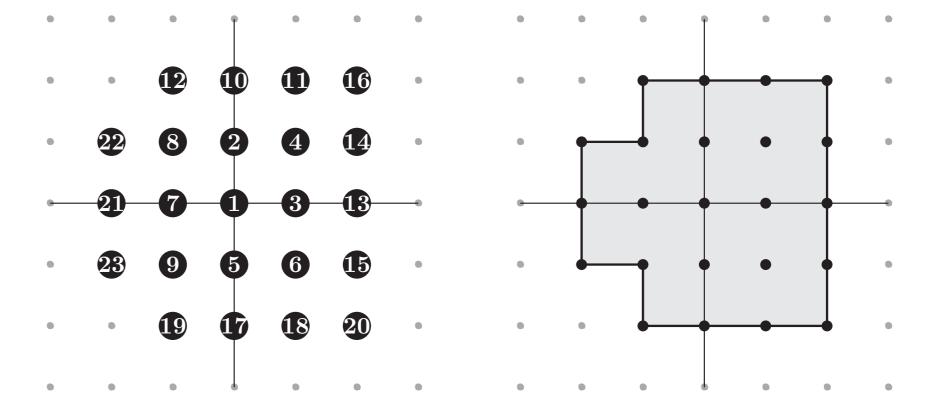


Figure 2: The extended lattice cube \mathcal{I}_{23} in \mathbb{Z}^2 (left) and the corresponding extended cube \mathcal{C}_{23} in \mathbb{R}^2 (right).

We note that if $r = m^n$ for some $m \in \mathbb{N}$ then \mathcal{I}_r is indeed a lattice cube. More precisely, $\mathcal{I}_r = \{-m/2 + 1, -m/2 + 2, \dots, m/2 - 1, m/2\}^n$ if m is even and $\mathcal{I}_r = \{-(m-1)/2, -(m-1)/2 + 1, \dots, (m-1)/2, (m-1)/2\}^n$ if m is odd (cf. Figure 2, left). This further implies that \mathcal{C}_r is a cube whenever $r = m^n$ for some $m \in \mathbb{N}$.

4 Main results

We are interested in studying an analogue of the discrete isoperimetric inequality obtained in Theorem 1 in the setting of arbitrary non-empty bounded sets in \mathbb{R}^n endowed with (the L_{∞} norm and) the lattice point enumerator $G_n(\cdot)$. In this way, one may consider neighbourhoods of a given set at any distance $t \ge 0$, not necessarily integer (cf. (6)). We show that the extremal sets will be the *extended cubes* C_r (cf. Definition 2), which satisfy $C_r \cap \mathbb{Z}^n = \mathcal{I}_r$ (and thus $G_n(C_r) = |\mathcal{I}_r| = r$)

sides of (4), and taking limits as $t \to 0^+$, one immediately gets (2) from (4).

The neighbourhood $K + tB_n$, $t \ge 0$, of the *n*-dimensional convex body K coincides with the set of all points of \mathbb{R}^n having (Euclidean) distance from K at most t. Exchanging the role of the unit ball B_n in (4) by another (*n*-dimensional) convex body $E \subset \mathbb{R}^n$, i.e., changing the involved "distance", one is naturally led to the fact

$$\operatorname{vol}(K+tE) \ge \operatorname{vol}(rE+tE) \tag{5}$$

for all $t \ge 0$, where again r > 0 is such that rE has the same volume as K. Thus, the advantage of using the volume of a neighbourhood of K, instead of its surface area, is that it can be extended to other spaces in which the latter notion makes no sense; it just suffices to consider a metric and a measure on the given space. Relevant examples of spaces in which isoperimetric inequalities in this form hold are the unit sphere, the *Gauss space* or the *n*-dimensional discrete cube $\{0,1\}^n$ (see e.g. [5, Section 14.2]). Similar inequalities also hold in discrete metric spaces, in the settings of combinatorics and graph theory (for which we refer the reader to [2]).

2.1 An inequality by Radcliffe and Veomett

Recently, in [6], a discrete isoperimetric inequality has been derived for the integer lattice \mathbb{Z}^n endowed with the L_∞ norm and the cardinality measure $|\cdot|$ (see also [1] for a related result in the case of the L_1 norm, where the author uses a method based on the solvability of a certain finite difference equations problem). To this aim, a suitable extension of *lattice cubes* (i.e., the intersection of cubes $[a, b]^n$ with \mathbb{Z}^n) is considered: we will call these sets *extended lattice cubes*, which will be denoted by \mathcal{I}_r (see Definition 2), for any $r \in \mathbb{N}$. In fact, when $r = m^n$ for some $m \in \mathbb{N}$, \mathcal{I}_r is indeed a *lattice cube*. Thus, the authors show that such sets \mathcal{I}_r minimize the cardinality of the suitable neighbourhood among all non-empty sets of fixed cardinality r. More precisely, [6, Theorem 1], combined with [6, Lemma 1], leads to the following discrete analogue of (5):

Theorem 1 (Radcliffe and Veomett, [6]) Let $A \subset \mathbb{Z}^n$ be a non-empty finite set and let $r \in \mathbb{N}$ be such that Then	$ \mathcal{I}_r = A .$
$\left A + \left((m[-1,1]^n) \cap \mathbb{Z}^n\right)\right \ge \left \mathcal{I}_r + \left((m[-1,1]^n) \cap \mathbb{Z}^n\right)\right $	(6)
for all $m \in \mathbb{N}$.	

Indeed, the authors prove the above theorem for m = 1 in [6, Theorem 1], and a simple inductive argument using [6, Lemma 1] allows one to obtain the result for arbitrary $m \in \mathbb{N}$.

and are furthermore characterized as the largest sets for which $C_r + (-1, 1)^n = \mathcal{I}_r + (-1, 1)^n$, for any $r \in \mathbb{N}$:

Theorem 2 ([3, Theorem 1.2]) Let $K \subset \mathbb{R}^n$ be a bounded set with $G_n(K) > 0$ and let $r \in \mathbb{N}$ be such that $G_n(\mathcal{C}_r) = G_n(K)$. Then $G_n(K + t[-1,1]^n) \ge G_n(\mathcal{C}_r + t[-1,1]^n)$ (7) for all $t \ge 0$.

Remark 1 From the proof of the previous result we note that the role of the extended cubes C_r could be played by other sets L_r , with $G_n(L_r) = r$, such that $L_r + (-1, 1)^n \subset \mathcal{I}_r + (-1, 1)^n$. However, C_r are the largest sets (with respect to set inclusion) satisfying this property (cf. [3, (2.8)]). Indeed, for any $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $x + (-1, 1)^n \subset \mathcal{I}_r + (-1, 1)^n$, it is enough to consider the point $y = (y_1, \ldots, y_n) \in (x + (-1, 1)^n) \cap \mathbb{Z}^n \subset (\mathcal{I}_r + (-1, 1)^n) \cap \mathbb{Z}^n = \mathcal{I}_r$ given by

$$y_i = \begin{cases} \begin{bmatrix} x_i \end{bmatrix} & \text{if } x_i > 0, \\ 0 & \text{if } x_i = 0, \\ \lfloor x_i \rfloor & \text{otherwise,} \end{cases}$$

which yields $x \in C_{\{y\}} \subset C_r$.

Remark 2 Theorem 2 can be extended to the setting of an arbitrary *n*-dimensional lattice $\Lambda \subset \mathbb{R}^n$. Indeed, if $\mathcal{B} = \{v_1 \dots, v_n\}$ is a basis of Λ , we may consider $\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ the linear (bijective) map given by $\varphi(x) = \sum_{i=1}^n x_i v_i$ for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Then, denoting by $G_{\Lambda}(M) = |M \cap \Lambda|$, Theorem 2 yields

 $G_{\Lambda}\left(K + t\varphi\left([-1,1]^{n}\right)\right) \ge G_{\Lambda}\left(\varphi(\mathcal{C}_{r}) + t\varphi\left([-1,1]^{n}\right)\right)$

for any bounded set $K \subset \mathbb{R}^n$ with $G_{\Lambda}(K) > 0$ and all $t \ge 0$, where $r \in \mathbb{N}$ is such that $G_{\Lambda}(\varphi(\mathcal{C}_r)) = G_{\Lambda}(K)$.

Finally, we also show that the classical isoperimetric inequality (5), in the setting of non-empty compact sets, can be derived as a consequence of this new discrete inequality for the lattice point enumerator $G_n(\cdot)$:

Theorem 3 ([3, Theorem 1.4]) The discrete isoperimetric inequality (7) implies the classical isoperimetric inequality (5), with $E = [-1, 1]^n$, for non-empty compact sets.

3 Defining optimal sets

Given a vector $u = (u_1 \dots, u_n) \in \mathbb{Z}^n$ and fixing $i_u \in \{1, \dots, n\}$, we will write

 $u' = (u_1 \dots, u_{i_u-1}, u_{i_u+1}, \dots, u_n) \in \mathbb{Z}^{n-1}.$

With this notation, in [6] the following well-order \prec in \mathbb{Z}^n is defined:

Definition 1 If n = 1 we define the order \prec given by

 $0 \prec 1 \prec -1 \prec 2 \prec -2 \prec \cdots \prec m \prec -m \prec \ldots$

For $n \geq 2$ we set, for $w = (w_1, \ldots, w_n) \in \mathbb{Z}^n$,

 $M(w) = \max_{i \in W} \{ w_i : i = 1, ..., n \}$ and $i_w = \min \{ i : w_i = M(w) \},$

and we define \prec recursively as follows: for any $u, v \in \mathbb{Z}^n$ with $u \neq v$,

References

[1] N. Hamamuki, A discrete isoperimetric inequality on lattices, *Discrete Comput. Geom.* 52 (2) (2014), 221–239.

- [2] L. H. Harper, *Global methods for combinatorial isoperimetric problems*. Cambridge Studies in Advanced Mathematics, 90. Cambridge: Cambridge University Press, 2004.
- [3] D. Iglesias, E. Lucas and J. Yepes Nicolás, On discrete Brunn-Minkowski and isoperimetric type inequalities. Submitted.
- [4] D. Iglesias and J. Yepes Nicolás, On discrete Borell-Brascamp-Lieb inequalities, *Rev. Mat. Iberoam.* 36 (3) (2020), 711–722.
- [5] J. Matoušek, Lectures on discrete geometry. Graduate Texts in Mathematics, 212. New York: Springer-Verlag, 2002.
- [6] A. J. Radcliffe and E. Veomett, Vertex Isoperimetric Inequalities for a Family of Graphs on Z^k, *Electr. J. Comb.* 19 (2) (2012), P45.

[7] M. Ritoré and J. Yepes Nicolás, Brunn-Minkowski inequalities in product metric measure spaces, Adv. Math. 325 (2018), 824–863.

*The work is partially supported by MICINN/FEDER project PGC2018-097046-B-I00 and by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.