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Abstract
Let K ⊂ Rn be a compact set with positive volume vol(K) (i.e, with positive n-dimensional Lebesgue measure).
According to a classical result by Grünbaum [3], if K is convex with centroid at the origin, then

vol(K−)

vol(K)
≥
(

n

n + 1

)n
,

where K− denotes the intersection of K with a halfspace bounded by the hyperplane H = {x ∈ Rn : 〈x, u〉 = 0},
for any given u ∈ Sn−1. Moreover, equality holds, for a fixed u ∈ Sn−1, if and only if K is a cone in the direction u.

Here we show that fixing the hyperplane H, one can find a sharp lower bound for the ratio vol(K−)/vol(K) de-
pending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K.
When K is convex, this inequality recovers the previous result by Grünbaum. To this respect, we also show that
the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality.

1. Introduction

Let K ⊂ Rn be a compact set with positive volume vol(K) (i.e., with positive n-dimensional Lebesgue measure). The
centroid of K is the affine-covariant point

g(K) :=
1

vol(K)

∫
K

x dx.

Furthermore, if we write [·]1 for the first coordinate of a vector with respect to the basis, by Fubini’s theorem, we get

[g(K)]1 =
1

vol(K)

∫ b

a

tf (t) dt. (1)

Given u ∈ Sn−1 and a hyperplane H = {x ∈ Rn : 〈x, u〉 = 0}, H− and H+ will represent the corresponding halfspaces(
{x ∈ Rn : 〈x, u〉 ≤ 0} and {x ∈ Rn : 〈x, u〉 ≥ 0}

)
bounded by H, whereas K− and K+ will denote the intersection of K

with H− and H+, respectively. The classical result we will focus on, originally proven in [3] and known in the literature as
Grünbaum’s inequality, reads as follows:

Theorem A (Grünbaum’s inequality). If K ⊂ Rn is an n-dimensional compact and convex set with centroid at
the origin, then

vol(K−)

vol(K)
≥
(

n

n + 1

)n
. (2)

Equality holds, for a fixed u ∈ Sn−1, if and only if K is a cone in the direction u, i.e., the convex hull of
{x} ∪ (K ∩ (y +H)), for some x, y ∈ Rn.

The underlying key fact in the original proof of (2) (see [3]) is the following classical result (see e.g. [1, Section 1.2.1]):

Theorem B (Brunn’s concavity principle). Let K ⊂ Rn be a non-empty compact and convex set and let H be
a hyperplane. Then, the function f : H⊥ −→ R≥0 given by f (x) = voln−1

(
K ∩ (x +H)

)
is (1/(n− 1))-concave.

In other words, for any given hyperplane H, the cross-sections volume function f to the power 1/(n − 1) is concave on
its support, which is equivalent (due to the convexity of K) to the well-known Brunn-Minkowski inequality.

Although this property cannot be in general enhanced, one can easily find compact convex sets for which f satisfies a
stronger concavity, for a suitable hyperplane H. Thus, on the one hand, it is natural to wonder about a possible enhanced
version of Grünbaum’s inequality (2) for the family of those compact convex sets K such that (there exists a hyperplane
H for which) f is p-concave, with 1/(n− 1) < p. On the other hand, one could expect to extend this inequality to compact
sets K, not necessarily convex, for which f is p-concave (for some hyperplane H), with p < 1/(n− 1).

2. Auxiliary results

Observing that the equality case in Grünbaum’s inequality (2) is characterized by cones, that is, those sets for which f

is (1/(n − 1))-affine (i.e., such that f 1/(n−1) is an affine function), the following sets of revolution, associated to p-affine
functions, arise as natural candidates to be the extremal sets, in some sense, of these inequalities.

Definition 1. Let p ∈ R and let c, γ, δ > 0 be fixed. Then

1. if p 6= 0, let gp : I −→ R≥0 be the non-negative function given by gp(t) = c(t+ γ)1/p, where I = [−γ, δ] if p > 0 and
I = (−γ, δ] if p < 0;

2. if p = 0, let g0 : (−∞, δ] −→ R≥0 be the non-negative function defined by g0(t) = ceγt.

Let u ∈ Sn−1 be fixed. By Cp we denote the set of revolution of radius (gp(t)/κn−1)
1/(n−1) with axis parallel to u.

Figure 1: Sets Cp in R3, with centroid at the origin, and C −p (coloured), for p = 1 (left) and p = 1/4 (right).

The sets Cp associated to (cross-sections volume) functions that are p-affine seem to be possible extremal sets of such
expected inequalities. So, we start by showing the precise value of the ratio vol(·−)/vol(·) for these sets.

Lemma 1 ([4]). Let p ∈ (−∞,−1) ∪ [0,∞) and let H be a hyperplane with unit normal vector u ∈ Sn−1. Let gp and
Cp, with axis parallel to u, be as in Definition 1, for any fixed c, γ, δ > 0. If Cp has centroid at the origin then

vol
(
C −p
)

vol(Cp)
=

(
p + 1

2p + 1

)(p+1)/p

where, if p = 0, the above identity must be understood as

vol
(
C −0
)

vol(C0)
= lim

p→0+

(
p + 1

2p + 1

)(p+1)/p

= e−1.

Before showing the general case, we have that if the cross-sections volume function f associated to a compact set K is
increasing in the direction of the normal vector of H, then the minimum of the ratios vol(K−)/vol(K) and vol(K+)/vol(K)

is attained at vol(K−)/vol(K), independently of the concavity nature of f .

Proposition 2 ([4]). Let K ⊂ Rn be a compact set with non-empty interior and with centroid at the origin.
Let H be a hyperplane, with unit normal vector u ∈ Sn−1, such that the function f : H⊥ −→ R≥0 given by
f (x) = voln−1

(
K ∩ (x +H)

)
is quasi-concave with f (bu) = maxx∈H⊥ f (x), where [au, bu] = K|H⊥. Then

vol(K+)

vol(K)
≥ 1

2
.

3. Main results

In this poster we show that the above-mentioned problem has a positive answer in the full range of p ∈ [0,∞]. Moreover,
we also prove that the log-concave case is the limit concavity assumption for this kind of generalization of Grünbaum’s
inequality.

3.1. Grünbaum’s inequality for sets with a p-concave cross-sections function

Denoting by σH⊥ the Schwarz symmetrization with respect to H⊥, our main result reads as follows:

Theorem 3 ([4]). Let K ⊂ Rn be a compact set with non-empty interior and with centroid at the origin. Let H be
a hyperplane such that the function f : H⊥ −→ R≥0 given by f (x) = voln−1

(
K ∩ (x + H)

)
is p-concave, for some

p ∈ [0,∞). If p > 0 then
vol(K−)

vol(K)
≥
(
p + 1

2p + 1

)(p+1)/p

with equality if and only if σH⊥(K) = Cp. If p = 0 then

vol(K−)

vol(K)
≥ e−1.

The inequality is sharp; that is, the quotient vol(K−)/vol(K) comes arbitrarily close to e−1.

Assuming that the support of the cross-sections volume function is symmetric with respect to the origin, instead of dealing
with sets with centroid at the origin, we get the following:

Corollary 4. Let K ⊂ Rn be a compact set with non-empty interior. Let H be a hyperplane such that the function
f : H⊥ −→ R≥0 given by f (x) = voln−1

(
K ∩ (x + H)

)
is p-concave, for some p ∈ (0,∞). If the support of f is

symmetric with respect to the origin, then

vol(K−)

vol(K)
≥
(
1

2

)(p+1)/p

with equality if and only if σH⊥(K) = Cp.

Note that the “limit case” p = ∞ in Theorem 3 is also trivially fulfilled. Indeed, if f is ∞-concave then f is constant on
[a, b] and thus 0 = [g(K)]1 = b + a (see (1)), which yields that a = −b and hence

vol(K−)

vol(K)
=

1

2
= lim

p→∞

(
p + 1

2p + 1

)(p+1)/p

.

We point out that Theorem 3 can be obtained from recent engaging results in the functional setting (more precisely, the
case p > 0 is derived from [6, Theorem 1] whereas the case p = 0 follows from [5, Theorem in p. 746] -see also [1,
Lemma 2.2.6]). Our goal here is to provide with a simpler geometric proof, inspired by the role of Brunn’s concavity
principle and comparing with the sets Cp, in the spirit of Grünbaum’s approach in [3]. Here we also consider the range
of p ∈ [−∞, 0) and we prove that [0,∞] is the largest set (where the parameter p lies) in which Cp provides us with the
infimum value for such a Grünbaum type inequality.

3.2. The case of p ∈ [−∞, 0)
Let K ⊂ Rn be a compact set with non-empty interior and with centroid at the origin, such that its cross-sections volume
function f is p-concave, with respect to a given hyperplane H. Moreover, if p ∈ (−∞,−1) ∪ (−1/2,∞), we write for short

αp :=

(
p + 1

2p + 1

)(p+1)/p

,

where, if p = 0, α0 is the value that is obtained “by continuity”, that is,

α0 = lim
p→0

(
p + 1

2p + 1

)(p+1)/p

= e−1.

We show that Theorem 3 cannot be extended to the range of p ∈ [−∞,−1). In fact, we have a more general result:

Proposition 5 ([4]). Let p ∈ [−∞,−1). There exists no positive constant βp such that

min

{
vol(K−)

vol(K)
,
vol(K+)

vol(K)

}
≥ βp

for all compact sets K ⊂ Rn with non-empty interior and with centroid at the origin, for which there exists H such
that f (x) = voln−1

(
K ∩ (x +H)

)
, x ∈ H⊥, is p-concave.

We conclude the poster by showing that the statement of Theorem 3 cannot be extended to the range of p ∈ (−1/2, 0)
either. To this aim, note that if p < q are parameters for which βp and βq are such sharp lower bounds for the ra-
tio vol(K−)/vol(K) then βp ≤ βq, because every q-concave function is also p-concave. We notice however that, if
p ∈ (−1/2, 0), the value obtained by Cp is not αp but 1 − αp and then 1 − αp ≥ 1 − α0 > 1/2 for any p ∈ (−1/2, 0)
whereas αp ≤ 1/2 for all p ≥ 0.

Therefore, this fact (jointly with the case in which p ∈ (−∞,−1), collected in Proposition 5) gives that [0,∞] is the
largest subset of the real line (with respect to set inclusion) for which Cp provides us with the infimum value for the ratio
vol(·−)/vol(·), among all compact sets with (centroid at the origin and) p-concave cross-sections volume function.
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