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In this work we prove the following result:
Let K be a strictly convex body in the
Euclidean space En, n ≥ 3, and let L be
a hypersurface, which is the image of an
embedding of the sphere Sn−1, such that
K is contained in the interior of L. Sup-
pose that, for every x ∈ L, there exists
y ∈ L such that the support double-cones
with apexes at x and y of K differ by a
translation. Then K and L are centrally
symmetric and concentric.

Introduction

A classical problem in convexity is to deter-
mine properties of a convex body K ⊂ Rn

from the information of its orthogonal pro-
jections, for instance, in dimension 3 one
can prove that if all the orthogonal projec-
tions of a body K in R3 are circles, then
K is a sphere. One can see this problem
from the following perspective: to consider
the family of the cylinders where K is in-
scribed and to impose a condition in a par-
ticular section of each of them, which is
obtained with a hyperplane perpendicular
to the lines which generates the cylinder.
In our example, this means that we have a
convex body K ⊂ R3 such that for every
cylinder Ω, where K is inscribed, the sec-
tion H∩Ω is a circle, where H is a plane or-
thogonal to the lines which determines Ω.

The general problem for
cylinders

We can formulate the following general
problem:
(I) Given a subgroup G of the general

lineal group GL(R, n) to determine a
convex body K ⊂ R, n ≥ 3 such
that, for every couple of different
cylinders Λ, Γ, which circumscribes K ,
there exists an element Φ ∈ G such
that Φ(Λ) = Γ.

Kuzminyh [1] proved, for n = 3, that the
assumption G = O(R, 3) implies that K
is a sphere, where O(R, 3) is the real or-
thogonal group. On the other hand, if
K ⊂ Rn, n ≥ 3, is centrally symmetric, in
virtue of the Aleksandrov Uniqueness The-

orem, it follows that K is a sphere since
all the projections have the same volume.
Recently L. Montejano [2] has considered
the case where G is the affine subgroup
A(R, n) and he has obtained that K is an
ellipsoid.
In virtue that the cylinders are cones with
apexes at the infinity, the original problem
can be generalized in the following man-
ner: To determine properties of convex
bodies imposing conditions on the sections
of cones where K is inscribed and whose
apexes are contained in a hyperplane.

Naturally, we can replace in the afore-
said problem the condition that that set
of apexes is situated in a hyperplane,
instead we can suppose that it is con-
tained in a hypersurface S , in particu-
lar, we can assume that S is the bound-
ary of a convex body M ⊂ Rn such
that K ⊂ intM . An interesting exam-
ple of this type is the well known Mat-
suura’s Theorem [3] where S is a sphere.

The general problem for
cones

Finally we present our version of the Pro-
blem I for cones.

(II) Given a subgroup G of the general
lineal group GL(R, n) to determine a
convex body K ⊂ Rn, n ≥ 3, and an
hypersurface S , which is the image of
an embedding of Sn−1, such that, for
every couple of different cones Λ, Γ,
which circumscribes K and with
apexes in S , there exists an element
Φ ∈ G such that Φ(Λ) = Γ.

A particularly interesting case of problem

II is when G is equal to O(R, n), i.e.,
we know that all the cones which circum-
scribes K and with apexes in S are con-
gruentes.
We denote by T (R, n) the family of the
translations of Rn. The main result of this
work was inspired by the Problem II, how-
ever, we involve T (R, n) which is not a
subgroup of GL(R, n) nevertheless it is an
isometry of Rn. Our main theorem claim
that if K ⊂ En, n ≥ 3, is a strictly con-
vex body and L is a hypersurface, which is
the image of an embedding of the sphere
Sn−1, K ⊂ int L, and for every x ∈ L,
there exists y ∈ L and Φ ∈ T (R, n)
such that Cy = Φ(Cy), then K and L
are centrally symmetric and concentric.

The main result

Let K ⊂ Rn be a convex body, n ≥ 3, and
let x ∈ Rn\K . We call the set⋃

y∈K

aff{x , y}

the solid cone generated by K and x ,
where aff{x , y} denotes the affine hull of
x and y . The boundary of the the solid
cone generated by K and x will be called
the cone that circumscribes K with vertex
at x and it will be denoted by Cx.
Our main result in this work is the follow-
ing theorem.
Theorem. Let K ⊂ Rn, n ≥ 3, be a
strictly convex body and let L be hypersur-
face which is an embedding of Sn−1 such
that K ⊂ int L. Suppose that for every
x ∈ L there exists y ∈ L and p ∈ Rn

such that Cy = p +Cx. Then K and L are
centrally symmetric and concentric.
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