A Characterization of centrally symmetric convex body in terms of visual cones

J. Jeronimo-Castro ${ }^{1}$ \& E. Morales -Amaya ${ }^{2}$ \& D. J. Verdusco Hernández ${ }^{2}$
${ }^{1}$ Facultad de Ingeniería Universidad Autónoma de Querétaro, México
${ }^{2}$ Facultad de Matemáticas-Acapulco, Universidad Autónoma de Guerrero, México

In this work we prove the following result: Let K be a strictly convex body in the Euclidean space $\mathbb{E}^{n}, n \geq 3$, and let L be a hypersurface, which is the image of an embedding of the sphere \mathbb{S}^{n-1}, such that K is contained in the interior of L. Suppose that, for every $x \in L$, there exists $y \in L$ such that the support double-cones with apexes at x and y of K differ by a translation. Then K and L are centrally symmetric and concentric.

Introduction

A classical problem in convexity is to determine properties of a convex body $K \subset \mathbb{R}^{n}$ from the information of its orthogonal projections, for instance, in dimension 3 one can prove that if all the orthogonal projections of a body K in \mathbb{R}^{3} are circles, then K is a sphere. One can see this problem from the following perspective: to consider the family of the cylinders where K is inscribed and to impose a condition in a particular section of each of them, which is obtained with a hyperplane perpendicular to the lines which generates the cylinder. In our example, this means that we have a convex body $K \subset \mathbb{R}^{3}$ such that for every cylinder Ω, where K is inscribed, the section $H \cap \Omega$ is a circle, where H is a plane orthogonal to the lines which determines Ω.

The general problem for cylinders

We can formulate the following general problem:
(I) Given a subgroup G of the general lineal group $\mathrm{GL}(\mathbb{R}, n)$ to determine a convex body $K \subset \mathbb{R}, n \geq 3$ such that, for every couple of different cylinders Λ, Γ, which circumscribes K, there exists an element $\Phi \in G$ such that $\Phi(\Lambda)=\Gamma$.
Kuzminyh [1] proved, for $n=3$, that the assumption $G=O(\mathbb{R}, 3)$ implies that K is a sphere, where $O(\mathbb{R}, 3)$ is the real orthogonal group. On the other hand, if $K \subset \mathbb{R}^{n}, n \geq 3$, is centrally symmetric, in virtue of the Aleksandrov Uniqueness The-
orem, it follows that K is a sphere since all the projections have the same volume. Recently L. Montejano [2] has considered the case where G is the affine subgroup $A(\mathbb{R}, n)$ and he has obtained that K is an ellipsoid.
In virtue that the cylinders are cones with apexes at the infinity, the original problem can be generalized in the following manner: To determine properties of convex bodies imposing conditions on the sections of cones where K is inscribed and whose apexes are contained in a hyperplane.

Naturally, we can replace in the aforesaid problem the condition that that set of apexes is situated in a hyperplane, instead we can suppose that it is contained in a hypersurface S, in particular, we can assume that S is the boundary of a convex body $M \subset \mathbb{R}^{n}$ such that $K \subset \operatorname{int} M$. An interesting example of this type is the well known Matsuura's Theorem [3] where S is a sphere.

The general problem for cones

Finally we present our version of the Problem I for cones.
(II) Given a subgroup G of the general lineal group $\mathrm{GL}(\mathbb{R}, n)$ to determine a convex body $K \subset \mathbb{R}^{n}, n \geq 3$, and an hypersurface S, which is the image of an embedding of \mathbb{S}^{n-1}, such that, for every couple of different cones Λ, Γ, which circumscribes K and with apexes in S, there exists an element $\Phi \in G$ such that $\Phi(\Lambda)=\Gamma$.
A particularly interesting case of problem

II is when G is equal to $O(\mathbb{R}, n)$, i.e., we know that all the cones which circumscribes K and with apexes in S are congruentes.
We denote by $T(\mathbb{R}, n)$ the family of the translations of \mathbb{R}^{n}. The main result of this work was inspired by the Problem II, however, we involve $T(\mathbb{R}, n)$ which is not a subgroup of $G L(\mathbb{R}, n)$ nevertheless it is an isometry of \mathbb{R}^{n}. Our main theorem claim that if $K \subset \mathbb{E}^{n}, n \geq 3$, is a strictly convex body and L is a hypersurface, which is the image of an embedding of the sphere $\mathbb{S}^{n-1}, K \subset \operatorname{int} L$, and for every $x \in L$, there exists $y \in L$ and $\Phi \in T(\mathbb{R}, n)$ such that $C_{y}=\Phi\left(C_{y}\right)$, then K and L are centrally symmetric and concentric.

The main result

Let $K \subset \mathbb{R}^{n}$ be a convex body, $n \geq 3$, and let $x \in \mathbb{R}^{n} \backslash K$. We call the set

$$
\bigcup_{y \in K} \operatorname{aff}\{x, y\}
$$

the solid cone generated by K and x, where aff $\{x, y\}$ denotes the affine hull of x and y. The boundary of the the solid cone generated by K and x will be called the cone that circumscribes K with vertex at x and it will be denoted by C_{x}.
Our main result in this work is the following theorem.
Theorem. Let $K \subset \mathbb{R}^{n}, n \geq 3$, be a strictly convex body and let L be hypersurface which is an embedding of \mathbb{S}^{n-1} such that $K \subset \operatorname{int} L$. Suppose that for every $x \in L$ there exists $y \in L$ and $p \in \mathbb{R}^{n}$ such that $C_{y}=p+C_{x}$. Then K and L are centrally symmetric and concentric.

- A.V. Kuzminyh, The isoprojection property of the sphere. soviet Math. Dokl. Vol. 14 (1973), No. 3.
- L. Montejano. Convex bodies with affinely equivalent projections and affine bodies of revolution. arXiv:2005.02290v1.
- S. Matsura. A problem in solid geometry. J. Math.. Osaka City Univ. Vol. 12, A 12, pp 89-95. 1961.

