Metrics and Isometries for Convex Functions

Ben Li and Fabian Mussnig

Ningbo University and University of Florence

Summary

- Metrics for common spaces of convex functions are introduced.
- It is shown that convergence with respect to these metrics is equivalent to epi-convergence.
- All isometries with respect to a large class of functional analogs of the symmetric difference metric are classified.

Main Results

Let $M^{n-1} := \{ \zeta : \mathbb{R} \to (0, \infty) : \zeta \text{ is continuous, strictly decreasing,} \\ \int_0^\infty \zeta(t) t^{n-1} \, \mathrm{d}t < +\infty \}.$

A functional analog of the symmetric difference metric on $\operatorname{Conv}_{c}^{n}(\mathbb{R}^{n})$ is given by

$$\delta_{\zeta}(u,v) := \|\zeta(u) - \zeta(v)\|_1 = \int_{\mathbb{R}^n} |\zeta(u(x)) - \zeta(v(x))| \,\mathrm{d}x$$

Convex Bodies

Let \mathcal{K}^n denote the set of *convex bodies*, i.e., non-empty, compact, convex subsets of \mathbb{R}^n . Usually this space is equipped with the *Hausdorff metric*

 $d_H(K,L) = \inf\{\varepsilon \ge 0 \colon K \subseteq L + \varepsilon B^n \text{ and } L \subseteq K + \varepsilon B^n\}$

for every $K, L \in \mathcal{K}^n$, where $\varepsilon B^n = \{x \in \mathbb{R}^n : |x| \leq \varepsilon\}$ denotes the Euclidean ball of radius $\varepsilon \geq 0$ in \mathbb{R}^n and where $C + D = \{x + y : x \in C, y \in D\}$ denotes the Minkowski sum of the convex bodies $C, D \in \mathcal{K}^n$.

For many applications also other metrics for (subsets of) convex bodies are used. Most importantly, the set of convex bodies with non-empty interiors, \mathcal{K}_n^n , is frequently considered together with the *symmetric difference metric*

 $d_S(K,L) = V_n(K\Delta L)$

for $K, L \in \mathcal{K}_n^n$, where $K \Delta L = K \setminus L \cup L \setminus K$ is the symmetric difference of K and L. Note that a convex body $K \in \mathcal{K}^n$ has non-empty interior and is therefore an element of \mathcal{K}_n^n if and only if $V_n(K) > 0$. It was shown by Shephard and Webster [4] that the Hausdorff metric and the symmetric difference metric are equivalent on \mathcal{K}_n^n , that is

 $d_H(K_i, K) \to 0 \quad \Longleftrightarrow \quad d_S(K_i, K) \to 0$

for $u, v \in \operatorname{Conv}_{c}^{n}(\mathbb{R}^{n})$. We have the following result.

Theorem

For $\zeta \in M^{n-1}$ the functional δ_{ζ} defines a metric on $\operatorname{Conv}_{c}^{n}(\mathbb{R}^{n})$. Furthermore, convergence with respect to this metric is equivalent to epi-convergence, that is, for every $u_{k}, u \in \operatorname{Conv}_{c}^{n}(\mathbb{R}^{n})$ we have

 $\delta_{\zeta}(u_k, u) \to 0 \quad \Longleftrightarrow \quad u_k \stackrel{epi}{\longrightarrow} u$

as $k \to \infty$.

The metric δ_{ζ} corresponds to a measure of the symmetric difference of the epigraphs of the functions. Following ideas of Gruber [2] and also Cavallina and Colesanti [1] we give a full classification of all isometries on $(\operatorname{Conv}_{c}^{n}(\mathbb{R}^{n}), \delta_{\zeta})$. For $\zeta \in M^{n-1}$ let

 $\Phi(\zeta) := \{\phi \in \operatorname{GL}(n) : t \mapsto \zeta^{-1}(\zeta(t)/|\det \phi|) \text{ is well-defined and convex on } \mathbb{R}\}.$ Observe that $\Phi(\zeta)$ is not empty since every $\phi \in \operatorname{GL}(n)$ with $|\det \phi| = 1$ satisfies the necessary conditions.

as $i \to \infty$ for every sequence $K_i \in \mathcal{K}_n^n$ and $K \in \mathcal{K}_n^n$.

In [2], Gruber classified all *isometries* on the metric space (\mathcal{K}_n^n, d_S) and thereby characterized measure-preserving affinities. That is, a map $I : \mathcal{K}_n^n \to \mathcal{K}_n^n$ satisfies

 $d_S(I(K), I(L)) = d_S(K, L)$

for every $K, L \in \mathcal{K}_n^n$ if and only if there exist $\phi \in \operatorname{GL}(n)$ with $|\det \phi| = 1$ and $x_0 \in \mathbb{R}^n$ such that

$$I(K) = \phi K + x_0$$

for every $K \in \mathcal{K}_n^n$.

Convex Functions

The standard space of convex functions is

 $\operatorname{Conv}(\mathbb{R}^n) = \{ u : \mathbb{R}^n \to \mathbb{R} : u \not\equiv +\infty, u \text{ is lower semicontinuous} \}$

and it is usually equipped with the topology induced by epi-convergence. Here, we say that a sequence of convex functions $u_k \in \text{Conv}(\mathbb{R}^n)$ is *epi-convergent* to $u \in \text{Conv}(\mathbb{R}^n)$ if for every $x \in \mathbb{R}^n$

• $\liminf_{k\to\infty} u_k(x_k) \ge u(x)$ for every sequence $x_k \in \mathbb{R}^n$ such that $x_k \to x$,

Let $\zeta \in M^{n-1}$. A map $I : (\operatorname{Conv}_{c}^{n}(\mathbb{R}^{n}), \delta_{\zeta}) \to (\operatorname{Conv}_{c}^{n}(\mathbb{R}^{n}), \delta_{\zeta})$ is an isometry if and only if there exist $\phi \in \Phi(\zeta)$ and $x_{0} \in \mathbb{R}^{n}$ such that

 $I(u) = f(u \circ \alpha^{-1})$

for every $u \in \operatorname{Conv}_{c}^{n}(\mathbb{R}^{n})$, where $\alpha(x) = \phi(x) + x_{0}$ for $x \in \mathbb{R}^{n}$ and $f(t) = \zeta^{-1}(\zeta(t)/|\det \phi|)$ for $t \in \mathbb{R}$.

Further Results

We also consider a generalization of δ_{ζ} where for $p \in [1, \infty)$ the L_p distance of the associated functions $\zeta(u)$ and $\zeta(v)$, $u, v \in \operatorname{Conv}_c^n(\mathbb{R}^n)$, is considered. Moreover, we introduce further metrics on related function spaces which can be interpreted as functional analogs of the Hausdorff metric. For all these metrics we show that convergence is equivalent to epi-convergence. In addition, we establish a functional analog of the Blaschke selection theorem. For details we refer to [3].

References

[1] L. Cavallina and A. Colesanti, Monotone valuations on the space of convex functions,

• $\limsup_{k\to\infty} u_k(x_k) \le u(x)$ for some sequence $x_k \in \mathbb{R}^n$ such that $x_k \to x$.

In this case we will also write $u_k \xrightarrow{epi} u$. This topology is in fact metrizable but precise descriptions of such a metric seem to be cumbersome for many practical purposes.

A functional analog of the volume is given by the map

$$u \mapsto \int_{\mathbb{R}^n} e^{-u(x)} \, \mathrm{d}x$$

for $u \in \operatorname{Conv}(\mathbb{R}^n)$. Similar to the space \mathcal{K}_n^n , one is often interested in the space $\operatorname{Conv}_{\mathrm{c}}^n(\mathbb{R}^n) = \{ u \in \operatorname{Conv}(\mathbb{R}^n) \colon 0 < \int_{\mathbb{R}^n} e^{-u(x)} \, \mathrm{d}x < +\infty \}$ $= \{ u \in \operatorname{Conv}(\mathbb{R}^n) \colon \lim_{|x| \to \infty} u(x) = +\infty, \text{ dim dom } u = n \},$

the space of proper, l.s.c., convex, coercive functions with full-dimensional domain, dom $u = \{x \in \mathbb{R}^n : u(x) < +\infty\}.$

- Anal. Geom. Metr. Spaces $\mathbf{3}$ (2015), 167–211.
- P. M. Gruber, Isometries on the space of convex bodies of E^d, Mathematika 25 (1978), 270-278.

[3] B. Li and F. Mussnig, *Metrics and isometries for convex functions*, arXiv:2010.12846.

[4] G. C. Shephard and R. J. Webster, *Metrics for sets of convex bodies*, Mathematika **12** (1965), 73–88.

Acknowledgements

The research for this project was carried out while both authors were postdoctoral fellows at Tel Aviv University in the group of Shiri Artstein-Avidan and received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 770127).

Ben Li: liben@nbu.edu.cn Fabian Mussnig: fabian.mussnig@alumni.tuwien.ac.at