Isodiametric problem in the spherical and hyperbolic spaces Károly J. Böröczky, Ádám Sagmeister

Introduction

Let \mathcal{M}^n be either the Euclidean space \mathbb{R}^n , hyperbolic space H^n or spherical space S^n for $n \geq 2$. We write $V_{\mathcal{M}^n}$ to denote the *n*dimensional Lebesgue measure on \mathcal{M}^n , and $d_{\mathcal{M}^n}(x,y)$ to denote the geodesic distance between $x, y \in \mathcal{M}^n$. For a bounded set $X \subset \mathcal{M}^n$, its diameter diam $_{\mathcal{M}^n} X$ is the supremum of the geodesic distances $d_{\mathcal{M}^n}(x,y)$ for $x,y \in X$. For D > 0 and $n \geq 2$, our goal is to determine the maximal volume of a subset of \mathcal{M}^n of diameter at most D. For any $z \in \mathcal{M}^n$ and r > 0, let

be the *n*-dimensional ball centered at *z* where it is natural to assume $r < \pi$ if $\mathcal{M}^n = S^n$.

The isodiametric problem was solved in \mathbb{R}^2 by *Bieberbach*[2], while Urysohn[4] solved the *n*-dimensional Euclidean case. The following generalization is by *Böröczky* and *Sagmeister*:

Isodiametric inequality [3]

If \mathcal{M}^n is either \mathbb{R}^n , S^n or H^n , D > 0 (with $D < \pi$ if $\mathcal{M}^n = S^n$) and $X \subset \mathcal{M}^n$ is measurable and bounded with $\operatorname{diam}_{\mathcal{M}^n} X \leq D$, then

and equality holds if and only if the closure of X is a ball of radius D/2.

Isodiametric stability

If \mathcal{M}^n is either $X\subset \mathcal{M}^n$ is n

then there ex $V_{\mathcal{\Lambda}}$

and

$$\begin{array}{l} \displaystyle \operatorname{er} \, \mathbb{R}^n, \, S^n \ \mathrm{or} \ H^n, \, D > 0 \ (\text{where} \ D < \frac{\pi}{2} \ \mathrm{if} \ \mathcal{M}^n = S^n) \ \mathrm{and} \\ \displaystyle \operatorname{heasurable} \ \mathrm{with} \ \mathrm{diam}_{\mathcal{M}^n} X \leq D \ \mathrm{and} \\ \displaystyle V_{\mathcal{M}^n}(X) \geq V_{\mathcal{M}^n} \left(B_{\mathcal{M}^n} \left(z_0, D/2 \right) \right) - \varepsilon, \\ \displaystyle \operatorname{kists} \ \mathrm{a} \ y_0 \in \mathcal{M}^n \ \mathrm{such} \ \mathrm{that} \\ \displaystyle \operatorname{hat} \\ \displaystyle \operatorname{hat} \left(\operatorname{conv}_{\mathcal{M}^n} \left(X \right) \bigtriangleup B_{\mathcal{M}^n} \left(y_0, \frac{D}{2} \right) \right) \leq \gamma_{\mathcal{M}^n} \left(D \right) \cdot \varepsilon^{\frac{2}{3n+2}} \\ \displaystyle B_{\mathcal{M}^n} \left(z, \frac{D}{2} - \widetilde{\gamma}_{\mathcal{M}^n} \left(D \right) \cdot \varepsilon^{\frac{2}{3n+2}} \right) \subseteq \operatorname{conv}_{\mathcal{M}^n} \left(X \right) \\ \displaystyle \operatorname{conv}_{\mathcal{M}^n} \left(X \right) \subseteq B_{\mathcal{M}^n} \left(z, \frac{D}{2} + \widetilde{\gamma}_{\mathcal{M}^n} \left(D \right) \cdot \varepsilon^{\frac{2}{3n+2}} \right), \\ \displaystyle \operatorname{hat} \ \operatorname{hat} \ \mathrm{results} \ \mathrm{have} \ \mathrm{already} \ \mathrm{been} \ \mathrm{proved} \ \mathrm{for} \ \mathrm{the} \end{array}$$

and also

er
$$\mathbb{R}^n$$
, S^n or H^n , $D > 0$ (where $D < \frac{\pi}{2}$ if $\mathcal{M}^n = S^n$) and
measurable with $\operatorname{diam}_{\mathcal{M}^n} X \leq D$ and
 $V_{\mathcal{M}^n}(X) \geq V_{\mathcal{M}^n} (B_{\mathcal{M}^n} (z_0, D/2)) - \varepsilon$,
xists a $y_0 \in \mathcal{M}^n$ such that
 $_{\mathcal{M}^n} (\operatorname{conv}_{\mathcal{M}^n}(X) \bigtriangleup B_{\mathcal{M}^n} (y_0, \frac{D}{2})) \leq \gamma_{\mathcal{M}^n}(D) \cdot \varepsilon^{\frac{2}{3n+2}}$
 $B_{\mathcal{M}^n} \left(z, \frac{D}{2} - \widetilde{\gamma}_{\mathcal{M}^n}(D) \cdot \varepsilon^{\frac{2}{3n+2}} \right) \subseteq \operatorname{conv}_{\mathcal{M}^n}(X)$
 $\operatorname{conv}_{\mathcal{M}^n}(X) \subseteq B_{\mathcal{M}^n} \left(z, \frac{D}{2} + \widetilde{\gamma}_{\mathcal{M}^n}(D) \cdot \varepsilon^{\frac{2}{3n+2}} \right)$,
 $_{\mathcal{M}^n}(X)$ denotes the convex hull of X in \mathcal{M}^n .
ilar results have already been proved for the

where $\operatorname{conv}_{\mathcal{N}}$ Partially simi non-convex case.

 $B_{\mathcal{M}^n}(z,r) = \{x \in \mathcal{M}^n:\, d_{\mathcal{M}^n}(x,z) \leq r\}$

 $V_{\mathcal{M}^n}(X) \leq V_{\mathcal{M}^n}\left(B_{\mathcal{M}^n}\left(z_0,D/2
ight)
ight),$

Two-point symmetrization

Let H^+ be a closed halfspace bounded by the (n - 1)-dimensional subspace H in \mathcal{M}^n , and let $X \subset \mathcal{M}^n$ be compact. We write H^- to denote the other closed halfspace of \mathcal{M}^n determined by H and $\sigma_H X$ to denote the reflected image of X through the (n-1)-subspace H. The two-point symmetrization $au_{H^+}X$ of X with respect to H^+ is a rearrangement of X by replacing $(H^- \cap X) \setminus \sigma_H X$ by its reflected image through *H* where readily this reflected image is disjoint from X.

Two-point symmetrization can be effectively used for the isodiametric problem, as it preserves Lebesgue measure while not increasing diameter. Aubrun and Fradelizi showed[1] for $\mathcal{M}^n = \mathbb{R}^n$ and $\mathcal{M}^n = H^n$, that $\tau_{H^+} X$ is convex for a convex body X for any H hyperplane iff X is a ball. This is also true in the spherical case (see[3]). Two-point symmetrization also played a key role proving the stability versions. We investigated parallel domains of convex bodies as they have a nice boundary.

References

- [1] G. Aubrun, M. Fradelizi, *Two-point symmetrization and* convexity, Arch. Math., 82 (2004), 282-288.
- [2] L. Bierbach Über eine Extremaleigenschaft des Kreises, Jber. Deutsch. Math.-Verein., 24 (1915), 247-250.
- [3] K. J. Böröczky, Á. Sagmeister, The isodiametric problem on the sphere and in the hyperbolic space, Acta Math. Hungar. 160, 13-32 (2020).
- [4] P. Urysohn, Mittlere Breite und Volumen der konvexen Körper im *n-dimensionalen Raume*, Matem. Sb. SSSR 31 (1924), 477-486.t

