Isodiametric problem in the spherical and hyperbolic spaces Károly J. Böröczky, Ádám Sagmeister

Introduction

Let \mathcal{M}^{n} be either the Euclidean space \mathbb{R}^{n}, hyperbolic space \boldsymbol{H}^{n} or spherical space S^{n} for $n \geq 2$. We write $V_{\mathcal{M}^{n}}$ to denote the n dimensional Lebesgue measure on \mathcal{M}^{n}, and $d_{\mathcal{M}^{n}}(x, y)$ to denote the geodesic distance between $x, y \in \mathcal{M}^{n}$.
For a bounded set $\boldsymbol{X} \subset \mathcal{M}^{n}$, its diameter $\operatorname{diam}_{\mathcal{M}^{n}} \boldsymbol{X}$ is the supremum of the geodesic distances $d_{\mathcal{M}^{n}}(\boldsymbol{x}, \boldsymbol{y})$ for $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{X}$. For $\boldsymbol{D}>\boldsymbol{0}$ and $n \geq 2$, our goal is to determine the maximal volume of a subset of \mathcal{M}^{n} of diameter at most \boldsymbol{D}. For any $\boldsymbol{z} \in \mathcal{M}^{n}$ and $r>0$, let

$$
B_{\mathcal{M}^{n}}(z, r)=\left\{x \in \mathcal{M}^{n}: d_{\mathcal{M}^{n}}(x, z) \leq r\right\}
$$

be the n-dimensional ball centered at z where it is natural to assume $r<\pi$ if $\mathcal{M}^{n}=S^{n}$.
The isodiametric problem was solved in \mathbb{R}^{2} by Bieberbach[2], while Urysohn[4] solved the n-dimensional Euclidean case. The following generalization is by Böröczky and Sagmeister:

Isodiametric inequality [3]

If \mathcal{M}^{n} is either \mathbb{R}^{n}, S^{n} or $\boldsymbol{H}^{n}, \boldsymbol{D}>0$ (with $\boldsymbol{D}<\boldsymbol{\pi}$ if $\mathcal{M}^{n}=S^{n}$) and $\boldsymbol{X} \subset \mathcal{M}^{n}$ is measurable and bounded with $\operatorname{diam}_{\mathcal{M}^{n} \boldsymbol{X}} \leq \boldsymbol{D}$, then

$$
V_{\mathcal{M}^{n}}(X) \leq V_{\mathcal{M}^{n}}\left(B_{\mathcal{M}^{n}}\left(z_{0}, D / 2\right)\right)
$$

and equality holds if and only if the closure of \boldsymbol{X} is a ball of radius $D / 2$.

Isodiametric stability

If \mathcal{M}^{n} is either \mathbb{R}^{n}, S^{n} or $\boldsymbol{H}^{n}, \boldsymbol{D}>0$ (where $D<\frac{\pi}{2}$ if $\mathcal{M}^{n}=S^{n}$) and $\boldsymbol{X} \subset \mathcal{M}^{n}$ is measurable with $\operatorname{diam}_{\mathcal{M}^{n}} \boldsymbol{X} \leq \boldsymbol{D}$ and

$$
V_{\mathcal{M}^{n}}(X) \geq \boldsymbol{V}_{\mathcal{M}^{n}}\left(B_{\mathcal{M}^{n}}\left(z_{0}, D / 2\right)\right)-\varepsilon
$$

then there exists a $y_{0} \in \mathcal{M}^{n}$ such that

$$
\boldsymbol{V}_{\mathcal{M}^{n}}\left(\operatorname{conv}_{\mathcal{M}^{n}}(\boldsymbol{X}) \triangle \boldsymbol{B}_{\mathcal{M}^{n}}\left(\boldsymbol{y}_{0}, \frac{D}{2}\right)\right) \leq \gamma_{\mathcal{M}^{n}}(\boldsymbol{D}) \cdot \varepsilon^{\frac{2}{3 n+2}}
$$

and

$$
B_{\mathcal{M}^{n}}\left(z, \frac{D}{2}-\widetilde{\gamma}_{\mathcal{M}^{n}}(D) \cdot \varepsilon^{\frac{2}{3 n+2}}\right) \subseteq \operatorname{conv}_{\mathcal{M}^{n}}(X)
$$

and also

$$
\operatorname{conv}_{\mathcal{M}^{n}}(X) \subseteq B_{\mathcal{M}^{n}}\left(z, \frac{D}{2}+\widetilde{\gamma}_{\mathcal{M}^{n}}(D) \cdot \varepsilon^{\frac{2}{3 n+2}}\right)
$$

where $\operatorname{conv}_{\mathcal{M}^{n}}(\boldsymbol{X})$ denotes the convex hull of \boldsymbol{X} in \mathcal{M}^{n}. Partially similar results have already been proved for the non-convex case.

Two-point symmetrization

Let H^{+}be a closed halfspace bounded by the ($n-1$)-dimensional subspace \boldsymbol{H} in \mathcal{M}^{n}, and let $\boldsymbol{X} \subset \mathcal{M}^{n}$ be compact. We write \boldsymbol{H}^{-}to denote the other closed halfspace of \mathcal{M}^{n} determined by \boldsymbol{H} and $\boldsymbol{\sigma}_{\boldsymbol{H}} \boldsymbol{X}$ to denote the reflected image of \boldsymbol{X} through the $(n-1)$-subspace \boldsymbol{H}. The two-point symmetrization $\tau_{\boldsymbol{H}^{+}} \boldsymbol{X}$ of \boldsymbol{X} with respect to \boldsymbol{H}^{+}is a rearrangement of \boldsymbol{X} by replacing $\left(\boldsymbol{H}^{-} \cap \boldsymbol{X}\right) \backslash \sigma_{H} \boldsymbol{X}$ by its reflected image through \boldsymbol{H} where readily this reflected image is disjoint from \boldsymbol{X}.

Two-point symmetrization can be effectively used for the isodiametric problem, as it preserves Lebesgue measure while not increasing diameter. Aubrun and Fradelizi showed[1] for $\mathcal{M}^{n}=\mathbb{R}^{n}$ and $\mathcal{M}^{n}=\boldsymbol{H}^{n}$, that $\boldsymbol{\tau}_{\boldsymbol{H}^{+}} \boldsymbol{X}$ is convex for a convex body \boldsymbol{X} for any \boldsymbol{H} hyperplane iff \boldsymbol{X} is a ball. This is also true in the spherical case (see[3]). Two-point symmetrization also played a key role proving the stability versions. We investigated parallel domains of convex bodies as they have a nice boundary.

References

[1] G. Aubrun, M. Fradelizi, Two-point symmetrization and convexity, Arch. Math., 82 (2004), 282-288.
[2] L. Bierbach Über eine Extremaleigenschaft des Kreises, Jber. Deutsch. Math.-Verein., 24 (1915), 247-250.
[3] K. J. Böröczky, Á. Sagmeister,The isodiametric problem on the sphere and in the hyperbolic space, Acta Math. Hungar. 160, 13-32 (2020).
[4] P. Urysohn, Mittlere Breite und Volumen der konvexen Körper im n-dimensionalen Raume, Matem. Sb. SSSR 31 (1924), 477-486.t

