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Abstract

Thermal fluctuation of the cantilever position sets a fundamental limit for the precision of any

Scanning Force Microscope. In the present work we analyse how these fluctuations limit the deter-

mination of the resonance frequency of the tip-sample system. The basic principles of frequency

detection in Dynamic Scanning Force Microscopy are revised and the precise response of a typical

frequency detection unit to thermal fluctuation of the cantilever is analysed in detail. A general

relation for thermal frequency noise is found as a function of measurement bandwidth and can-

tilever oscillation. For large oscillation amplitude and low bandwidth, this relation converges to

the result known from the literature, while for low oscillation amplitude and large bandwidth we

find that the thermal frequency noise is equal to the width of the resonance curve and therefore

stays finite, contrary to what is predicted by the relation known so far. The results presented in

this work fundamentally determine the ultimate limits of Dynamic Scanning Force Microscopy.
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I. INTRODUCTION

Since its invention Scanning Force Microscopy (SFM)[1] has become an extremely pow-

erful tool for a huge variety of nanoscale investigations. With respect to resolution and

sensitivity, Dynamic Scanning Force Microscopy (DSFM)[2] seems to be the most promising

technique. Even though (true) atomic resolution was first achieved with contact mode in

liquid environment[3], now atomic resolution studies are generally performed with DSFM

working in UHV environment[4—6]. Recently even sub-atomic resolution has been reported

using DSFM [7]. In spite of the impressing advances of SFM and DSFM we believe that

the ultimate limit of these techniques is still an open issue. For most applications, the

temperature at which quantum limits become relevant, TQ = ~ω0/k ' 1µK, is well below
typical temperature ranges used in SFM. Correspondingly, either thermal vibration of the

cantilever[8—10], or fundamental limits of the detection technique used[11—13] - related to

shot noise of the “detection particles” - determine the resolution in SFM and DSFM. In

most practical applications, the fundamental limit of SFM and DSFM is set by thermal

noise. Thermal noise in an SFM set up is the consequence of the equipartition theorem,

which relates the mean energy of the cantilever with the thermal energy kT ,

1

2
c a2th =

1

2
kT (1)

where a2th is the (mean square) displacement of the cantilever induced by thermal fluctuation,

and c is its force constant. For high resolution distance measurements stiff cantilevers[14, 15]

should be used (δz =
p
kT/c, with δz fluctuation of tip-sample distance), while for high

resolution force measurements soft cantilevers[16] are needed (δFth = c · ath =
√
c kT ).

Although the mean displacement and the mean force fluctuation of the cantilever are im-

portant quantities, in many applications they do not directly determine resolution, either

because appropriate filtering significantly reduces the measured noise, or because the SFM

technique used -as for example DSFM- is not directly limited by the displacement or the

force.

In typical DSFM applications the cantilever is excited at or near its natural frequency

and the variation of its resonant properties -oscillation amplitude, resonance frequency or

quality factor - are recorded. For imaging applications in liquids or air usually the oscillation

amplitude is used as control parameter that defines constant tip-sample distance and the

frequency shift is measured as secondary channel. In Ultra High Vaccum (UHV) applications
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DSFM operation is the other way, the frequency shift is the control parameter for tip-

sample distance and the oscillation amplitude -dissipation energy- is measured as secondary

channel. At the moment DSFM is the most sensitive SFM technique to measure tip-sample

interaction, which is detected as a shift of the resonance frequency. Therefore, with regard to

the ultimate limits of SFM a key issue -to be discussed in the present work- is to understand

in detail the effect of thermal fluctuations on DSFM detection schemes and in particular on

frequency detection. At present, the thermal noise density of a frequency measurement is

assumed to be[17, 18, 20]

∆νth
ν0

=

s
kT

π c a2 ν0 Q

√
bw (2)

with Q the quality factor, ν0 the resonance frequency, a the (root mean square) oscillation

amplitude and bw the bandwidth of the measurement. Note that this relation diverges

for small oscillation amplitude and is proportional to the square root of the measurement

bandwidth.

In the present work we will revise in detail how thermal fluctuation limits the measure-

ment of frequency shift. We find that neither for large bandwidth measurements nor for

low oscillation amplitude relation 2 is correct. We present a general relation valid for all

ranges of amplitude and bandwidth that agrees with relation 2 in the low bandwidth and

large amplitude range. Finally, we present experimental data that unambiguously proves

the validity of the general relation obtained in this work.

II. FREQUENCY DETECTION IN DYNAMIC SCANNING FORCE MI-

CROSCOPY

A. Mathematical modelling of a Dynamic Scanning Force Microscopy detection

electronics

A thorough discussion of frequency detection and DSFM is out of the scope of the present

work (see the excellent original works[17, 18] or recent reviews by Garcia and Perez[19] and

Giessibl[20]), nevertheless we think it is important to revise some of its basic principles. The

focus of this revision is rather on a comprehensive physical explanation of the technique

than on a profound analysis of the underlying physiscs and statistical mechanics (see[18])

or the electronic details of its implementation(see [18, 21]).
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An externally driven SFM cantilever -usually driven by inertial forces- is a textbook

example of a harmonic oscillator. In many aspects SFM and modern gravitational wave

detectors are governed by the same basic principles (see, for example, [22]). As described in

detail in appendix A, the dynamic properties of such a system are described by the quality

factor Q, by a driving amplitude a0 and by its natural angular frequency ω0 = 2πν0 =p
c/meff , with ν0 natural frequency and meff effective mass of the cantilever[23]. In the

steady state regime, the response of the system to a harmonic excitation a0ω
2
0 cos(2πνt)

can be described by a (complex) amplitude A(ν), or by two components X(ν) and Y (ν),

the in-phase and out of phase components of the oscillation, corresponding to the real and

complex parts of the complex amplitude A(ν). The time response of the system is then

a(t) = X(ν) cos(2πνt) + Y (ν) sin(2πνt) = |A(ν)| cos (2πνt+ ϕ(ν)) where ϕ(ν) is the phase

between the driving force and the response. At its natural frequency ν0 the phase is−π/2, the
(complex) oscillation amplitude is A(ν0) = −iY (ν0) = −ia0Q and the in-phase component

X(ν0) vanishes.

Figure 1 shows a schematic set-up of the main components used in a DSFM detection

electronics. The multiplication stages together with the filters essentially calculate the two

componentsX(ν) and Y (ν) -relations 19 and 20 in appendix A- from the measured oscillation

of the cantilever a(t). When enabled, the PI-controller of the DSFM detection electronics

adjusts the driving frequency ν of the excitation signal in order to have X(ν) = 0. In this

way, the system is locked to the natural frequency of the cantilever, tracks this frequency

if it varies due to tip-sample interaction and generates an output proportional to the shift

of the resonance frequency. In addition to the main DSFM components figure 1 shows the

signals (in the frequency domain) along the different points in the DSFM detection path.

A key component of any DSFM detection unit is the voltage (VCO) or numerically (NCO)

controlled oscillator that generates the excitation and reference signals for the lock-in de-

tection scheme. In most applications this oscillator drives the piezo that induces motion

of the cantilever. The corresponding deflection a(t) is analyzed by multiplication with two

reference signals in quadrature. We will first assume the most general case where the fre-

quency ν of the cantilever motion and that of the reference oscillator are different. Then,

multiplication of the deflection signal a(t) = a0 cos(2πνt + ϕ(ν)) with the reference sig-

nal aref(t) = cos(2πνref t) results in two quadrature signals xq(t) = a(t) cos (2πνref t) and

yq(t) = a(t) sin (2πνref t) with frequency components at ν∆ = ν−νref , and νΣ = ν+νref . As
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shown in appendix A, xq(t) and yq(t) can be obtained fromX(ν) and Y (ν) by multiplication

with (M∆(t) +MΣ(t)), where M∆(t) is a rotation matrix generating a clockwise rotation

with frequency ν∆, andMΣ(t) is a rotation matrix generating a counter-clockwise rotation

with frequency νΣ. In the frequency domain the signal a(t) is thus splitted and shifted to the

sum and to the difference frequency (see figure 1). After the multiplication stages the two

quadrature signals xq(t) and yq(t) are low-pass filtered over a timespan proportional to the

time constant τ of the filter. The precise time domain signals are determined in appendix A.

Again, two matrices Mτ∆(t) and MτΣ(t) can be defined (relations 25 and 26 in appendix

A), corresponding to a clockwise and counter-clockwise rotation with the frequencies ν∆ and

νΣ. As compared to the first matrices, these “filtered” matrices have delay angles ϕ∆ (τ)

and ϕΣ (τ) as well as multiplicative factors 1/(1 + 4π2τ 2ν2∆) and 1/(1 + 4π
2τ 2ν2Σ).

Usually, in DSFM the signal entering the DSFM detection unit is at the natural frequency

ν0, and the reference is at the same frequency νref = ν0. Then multiplication of the input

signal with the reference signals will result in spectra around ν = 0 and ν = 2ν0. In this

case Mτ∆(t) = Id/2 , with Id the identity matrix, and we find, using relations 25 and 26

(see Appendix A):

hxq(t)iτ =
X(ν)

2
+

X(ν)(cos(2ω0t)− 2ω0τ sin(2ω0t))
2 (1 + 4ω20τ

2)
+

Y (ν)(sin(2ω0t) + 2ω0τ cos(2ω0t))

2 (1 + 4ω20τ
2)

(3)

hyq(t)iτ =
Y (ν)

2
+

X(ν)(sin(2ω0t) + 2ω0τ cos(2ω0t))

2 (1 + 4ω20τ
2)

+
Y (ν)(− cos(2ω0t) + 2ω0τ cos(2ω0t))

2 (1 + 4ω20τ
2)

(4)

These signals can be conveniently represented in the frequency domain (see fig.1), where

the first peak at ν = 0 is one-sided (since no negative frequency exists) and the second

at ν = 2ν0 is two-sided. In typical DSFM applications the filter is usually set so that

ν0 >> 1/τ , then it blocks the 2ν0 component and passes the signals from DC to νfil ≈ 1/τ .
The value of τ determines the speed and the “cleanness” of the signals. Large time constants

(small bandwidth) results in clean but slow response, while, conversely, small-time constants

will result in “unclean” signals — in particular with significant 2ν0 component - but with

fast response. In our system we have found that time constants of 3/ν0 to 10/ν0 give the

optimum compromise between speed and “cleanness”.
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In the frequency domain, the Fourier transforms of the signals xq(t) and yq(t) are simply

multiplied by the frequency-dependent gain of the filter. Depending on the time constant of

the filter, the total amount of signal may be decreased. The calculation of the total signal

∆ubw (νc) measured around a frequency νc within a certain bandwidth bw is performed most

conveniently in frequency domain:

∆ubw (νc) =

sZ νc+bw/2

νc−bw/2
dν υ2(ν) (5)

where υ(ν) is the (spectral) signal density (unit: V/
√
Hz) and bw = 1/τ the effective

bandwidth of the filter. The signal densities corresponding to hx(t)iτ and hy(t)iτ in the
frequency domain are Xq(ν)Gfil(ν) and Yq(ν)Gfil(ν), respectively, being Xq(ν) and Yq(ν)

the Fourier transforms of the quadrature signals xq(t) and yq(t), and Gfil(ν) = 1/(1+i2πντ)

the (complex) gain of the filter (see figure 1).

B. Phase Locked Loop operation

If theQ factor is low -as in air and in liquids- the signals hx(t)iτ and hy(t)iτ can be directly
used for DSFM. In fact, for low Q factors and low tip-sample interaction the frequency

shift ∆νint induced by tip-sample interaction is smaller than the width of the resonance

(∆νint < ν0/Q). Assuming the validity of the harmonic approximation for the dynamics of

the cantilever, the signal hx(t)iτ is then proportional to the frequency shift, and the signal
hy(t)iτ is proportional to the oscillation amplitude, which in air and liquids is generally used
as control parameter. For high Q factors, however, the width of the resonance is smaller

than the frequency shifts induced by tip-sample interaction. Moreover, high Q-factors imply

that the oscillation amplitude needs a long settling time (of the order of Q/ν0) to reach its

steady state value[17]. In this case it is necessary to track the resonance frequency using

Phase Locked Loop techniques[17, 18, 21]. This is implemented with a PI-controller that

essentially adjusts the frequency of the voltage or numerically controlled oscillator (VCO

or NCO, see fig. 1) so that the hx(t)iτ component vanishes; the phase of the oscillation is
then kept at −π/2 and the system is always at resonance. The output of the PI-controller

is then directly proportional to the frequency shift, and this is the signal used in typical

DSFM applications. The PI-controller represents, from an electronic point of view, a filter

with a well defined bandwidth and gain. The time constant of the filters following the
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multiplication stages and the bandwidth and gain of the PI-controller have to be chosen so

that the overall closed loop system is stable[18]. Since the precise set up of the PI-controller

does not modify the essential physics to be discussed here we will assume - to simplify the

discussion - an ideal controller that instantaneously transmits variations of hx(t)iτ to the
VCO. The time response of the overall system is then determined by the time constant of

the filters after the multiplication stage, which induce a delay of order τ .

III. THERMAL FLUCTUATION OF THE CANTILEVER POSITION

In addition to the “coherent” signal aex(t) induced by the external excitation of the

cantilever, in the present context also the “incoherent” contribution due to thermal noise,

ath(t), is important[18]. The total motion of the cantilever is thus a(t) = aex(t) + ath(t).

When this motion is transduced into an electrical signal, the position detector will add

some instrumental noise n(t), the total signal entering the DSFM detection unit is then

uDSFM(t) = e (aex(t) + ath(t)) + n(t), where e is a constant that describes the sensitivity

(unit:V/nm) of the photodetector electronics. The key question is now: how does this signal

pass the DSFM detection unit and what is the final noise of the frequency output?

The Equipartition Theorem discussed above (relation 1) relates the total thermal dis-

placement to the force constant of the cantilever and the temperature of the system. How-

ever, since the DSFM detection system performs non-trivial processing of the input signal,

the precise spectrum of the thermal noise has to be taken into account in order to cal-

culate the noise of the frequency output and thus the precise limit of DSFM. A detailed

discussion of thermal noise in SFM set-ups is out of the scope of the present work (see, for

example[9, 10, 18, 24]). In a simple picture, the noise density of the cantilever motion can

be obtained by observing that the Equipartition Theorem (equation 1) relates the mean

energy of the cantilever with the thermal energy kT . Assuming that the effective thermal

noise “force” driving the cantilever has a constant spectral density αth (unit: nm/
√
Hz),

this density and the mechanical gain G (ν) of the cantilever (relation 18, Appendix A) deter-

mine the spectral response of the of the cantilever: ath (ν) = αth G (ν). The Equipartition

Theorem (relation 1) then implies:

1

2
kT =

Z ∞

0

dν
c

2
a2th (ν) =

c

2
α2th ν0

Z ∞

0

dν

ν0

1

(1− (ν/ν0)2)2 + ((ν/ν0)/Q)2
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The second integral gives Q π/2, therefore the thermal noise density αth is

αth =

s
2 kT

π c ν0 Q
(6)

The thermal noise density defines the coupling of the thermal bath into the SFM system.

It depends on the quality factor and thus on the dissipation properties of the system. As

the quality factor increases, thermal fluctuations induce less “thermal force” on the system,

that is, coupling of the thermal bath and the tip-sample system becomes weaker.

The thermal fluctuation of the cantilever position measured experimentally with a DSFM

detection unit is calculated from the noise density in analogy to relation 5:

∆ath (νc, bw) = αth

sZ νc+bw/2

νc−bw/2
dν |G(ν)|2 (7)

For low frequencies, that is, for frequencies well below the resonance frequency G (ν) = αth

and the total thermal fluctuation within a bandwidth bw is

∆ath (νc, bw) ' αth

√
bw (8)

At the resonance frequency G (ν) = αthQ and the total thermal fluctuation is

∆ath (ν0, bw) ' αthQ
√
bw =

r
2 kT Q

π c ν0

√
bw (9)

as is well known from the literature [17, 18, 20]. While relation 8 is correct for static SFM

applications, relation 9 requires the condition that the measurement bandwidth is smaller

than the width of the resonance curve: bw ' 1/τ ¿ ν0/Q. We note that in general this

assumption may not be correct. In fact, for typical imaging applications (scan speed of

1 second/line, 250 points/line) a minimum bandwidth of 250Hz is required, which implies

Q ¿ 4000 for typical cantilevers (ν0 ' 100 kHz) in order to fulfill the “small bandwidth”
approximation. However, in UHV much higher Q values have been reported[25]. Relation 9

overestimates the thermal noise for large bandwidth. In fact, for bw > (π/2)(ν0/Q) the total

thermal noise according to relation 9 would be larger than
p
kT/c, which is non-physical

since it is in contradiction with the Equipartition Theorem (rel. 1). As discussed below, for

a sufficiently large bandwidth the total thermal noise is ∆ath =
p
kT/c and is independent

of the measuring bandwidth.

A simple illustrative approximation for the spectral noise density of the tip-sample system

is
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αappr(ν) =


q

Q
Q+1

αth for 0 ≤ ν < ν0 (1− δ) and ν0 (1 + δ) < ν < ν0 (1 + 2δ)q
Q

Q+1
Q αth for ν0 (1− δ) < ν < ν0 (1 + δ)

0 for ν ≥ ν0 (1 + 2δ)


with δ = π/(4 Q). This approximation shown in figure 2 satisfies, as the correct noise

density, the relations αappr(ν0) = Q αappr(0), width of the peak of the order ν0/Q, total

noise ∆a =
¡R

dν α2appr(ν)
¢1/2

=
p
kT/c and, for large Q, α(0) = αth. The relation of

noise in the “peak”, to that in the “flat” part is ∆apeak/∆aflat = Q. For high Q factors

most of the noise is in the resonance peak of the curve, and ∆apeak ≈ ∆atotal =
p
kT/c.

Therefore DSFM does not reduce but rather increase the total thermal noise as compared

to static SFM. However, the signal to noise ratio is not modified: at low frequencies (static

SFM) a driving force f0 will induce the motion a0 = f0/c, and the signal to noise ratio is

a0/(αth

√
bw), while if this force is applied at resonance it will induce a response Qa0 and, for

sufficiently small bandwidth, the thermal noise is Qαth

√
bw. Noise and signal are therefore

amplified equally. Correspondingly, DSFM increases sensitivity by a factor of Q as compared

to static SFM, but the (theoretical) signal to noise ratio is unchanged. Finally, we note that

in normal applications the thermal fluctuations of the x and y component are uncorrelated,

and that both should have the same amount of fluctuation (see, however, [26]). Then, since

ha2th(t)iτ =
­|xth(t) + i yth(t)|2

®
τ
= hx2th(t) + y2th(t)iτ = hx2th(t)iτ + hy2th(t)iτ , it follows that

hx2th(t)iτ = hy2th(t)iτ = ha2th(t)iτ /2, therefore

∆xth (νc, bw) = ∆yth (νc, bw) = ∆ath (νc, bw) /
√
2 (10)

and for the total thermal fluctuation of the x and y components: ∆xth = ∆yth = ath/
√
2 =p

kT/ (2c).

IV. FREQUENCY RESPONSE OF DSFM DETECTION SCHEMES TO THER-

MAL FLUCTUATIONS

To calculate the frequency noise, the relation

∆νth =

¯̄̄̄
∂ν

∂ϕ

¯̄̄̄
∆ϕth =

¯̄̄̄
¯
µ
∂ϕ

∂ν

¶−1 ¯̄̄̄¯∆ϕth (11)
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will be used. With ∂ϕ(ν0)/∂ν = −2Q/ν0 (see relation 21, appendix A) the only un-
known quantity is the phase noise ∆ϕth. The phase, as defined by relation (21) is

ϕ (t) = −π/2 + tan−1(x (t) /y (t)). We will assume that DSFM is operated in the Phase

Looked Loop mode and is thus always at resonance; then hx(t)iτ =
­
ath (t) /

√
2
®
τ
= 0 and

hy(t)iτ =
­
Qa0 + ath (t) /

√
2
®
τ
= aos, with aos = Qa0 the oscillation amplitude at resonance.

The correct calculation of the phase noise is non-trivial, since the phase is a non-linear func-

tion of the two variables x(t) and y(t), which is non-regular at the origin and thus the

common rules for noise/error propagation have to be applied with care. The correct calcu-

lation based on statistical mechanics is presented in appendix B. Here we will assume that

a finite oscillation is applied to the cantilever in order to prevent the system to be near the

origin of the {x(t), y(t)} phase space. Then, the mean phase is hϕ(t)iτ = −π/2[27] and
the fluctuation of the phase is ∆ϕth =

q
hϕ2(t)iτ − hϕ(t)i2τ =

ph(tan−1(x (t) /y (t)))2iτ .
Using the relation hf 2 (z0 + z)i = f2 (z0) + |f 0 (z0)|2 hz2i we have, with f (z) = tan−1 (z),

z (t) = x (t) /y (t) and z0 = hx(t)/y(t)i = 0,

∆ϕth =

vuut 1

1 + hx(t)/y(t)i2τ

*µ
x(t)

y(t)

¶2+
τ

=

s
hx2(t)iτ
hy2(t)iτ

(12)

And finally, with hy2(t)iτ = (a2os + a2th/2) and relation 10 we find for the phase noise measured

around a center frequency νc with a bandwidth bw = 1/τ :

∆ϕth =

s
∆a2th (νc, bw) /2

a2os +∆a2th (νc, bw) /2
(13)

For large oscillation amplitude, the phase noise is therefore ∆ath/(
√
2aos), which can be

interpreted as a variation of the phase due to thermal fluctuation of magnitude ath/
√
2 of

the x-component when the y-component has an oscillation amplitude aos. For very small

oscillation amplitude, relation 13 would give ∆ϕth = 1. However, as discussed above, at

the origin of the {x(t), y(t)} phase space the phase is mathematically not well defined,
relation (12) cannot be used, and relation 13 is not accurate. On physical arguments one

would expect a uniform distribution of phase, that is, a (normalized) probability distribution

p (ϕ) = 1/ (2π), which has a mean deviation ∆ϕ = π/
√
3. As shown in appendix B this is

correct in the limit of vanishing oscillation (see inset of figure 3). The correct relation for

the phase noise has no simple functional relation with the oscillation amplitude, therefore
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we propose

∆ϕth =

s
∆a2th (νc, bw)

2a2os + 3∆a2th (νc, bw) /π
2

(14)

as approximation for the correct phase fluctuation which has the correct large and low

oscillation behavior. Figure 3 shows the known large oscillation behavior for phase noise,

the correct relation calculated in the appendix as well as the approximations according to

relations 12 and relation 14 with the correct small and large oscillation limits.

With relation 11 we finally obtain for the total frequency noise:

∆νth =
ν0
2Q

s
∆a2th (νc, bw)

2a2os + 3∆a2th (νc, bw) /π
2

(15)

In order to discuss this relation, and to compare with the results known from the literature,

we will consider the different approximations for large and low oscillation amplitudes, as well

as for small and large bandwidth. For (very) low bandwidth, and large oscillation amplitude

we obtain, using relation 9

∆νth =
ν0
2Q

s
1

π

kT

ca2ex

Q

ν0

√
bw

which is similar to the result reported in the literature[17, 18, 20] (relation 2). As discussed

in the previous section, this (very) “low bandwidth approximation” is usually not valid.

On the contrary, we believe that in most applications the bandwidth is larger than the

width of the resonance curve. Then, as long as instrumental noise is negligible, the correct

approximation would be a “large bandwidth” approximation where all the thermal noise is

“seen” by the DSFM - detection system. In this case the corresponding (total) frequency

noise is

∆νth =
ν0
2Q

s
1

3/π2 + 2a2ex/a
2
th

(16)

which is∆νth ' (ν0/Q) ath/(2
√
2aex) for large amplitude and for π/

¡
2
√
3
¢
ν0/Q ' 0.9 ν0/Q

for low amplitude. The characteristic frequency determining the thermal frequency noise is

therefore the width ν0/Q of the resonance curve, and for low oscillation amplitudes (aos ¿
ath) the thermal frequency noise is essentially given by the width of the resonance curve.

In particular, this implies that, as demonstrated recently for spectroscopy applications[35],

DSFM is possible without external excitation of the tip-sample system. Moreover, we believe

that a properly designed DFSM-electronics should be able to lock onto the thermal noise of

the cantilever.
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V. EXPERIMENTS

In order to confirm the validity of the relations just discussed, noise measurements have

been made as a function of the bandwidth and the oscillation amplitude. A commercial SFM

- system based on optical beam deflection[29] was used to measure cantilever motion and

analysis of cantilever oscillation was performed either with the DSFM electronics[29] or with

a digital lock-in amplifier[30]. The set-up of the SFM system and the essential features of

the DSFM electronics are shown in figure 1[31]. A cantilever with a nominal force constant

c ' 0.4N/m[32] was used and the tip was kept at a large (1mm) distance from the sample.

For this kind of cantilever, relation 1 gives a total mean (rms) fluctuation of 100pm. Figure

4 shows the the spectral noise measurement of the cantilever movement acquired with the

digital locking amplifier[30]. To characterize the spectral noise density and to discriminate

thermal noise against other (technical) noise sources this data is fitted to the function

f(ν) =
αthq

(1− (ν/ν0)2)2 + ((ν/ν0)/Q)2
+ n0tec

The Lorentzian function is used to describe the thermal noise density of the cantilever, and

the constant n0tec is introduced to describe any additional (technical) noise (see also [9, 36]).

From the fit to the experimental data, a quality factor Q = 100 ± 1, a natural frequency
ν0 = 79.440 ± 0.002kHz, a thermal noise density αth=26.4±0.2 fm/

√
kHz and a constant

n0tec=17±2 fm/
√
kHz is found.

The inset of figure 4 shows the total noise as a function of bandwidth, with the central

frequency of the noise measurements at the resonance peak. In this log-log plot the square

root dependence of the total noise on bandwidth for small bandwidth is clearly recognized

from the slope m = 1/2. For high bandwidth, the total noise saturates. This saturation

occurs for a bandwidth of the order of the width of the resonance curve ∆ν = ν0/Q '
0.8kHz, in good agreement with the discussion above (relations 13 and 16) and the data

obtained from the spectral noise density. The saturation of noise is only observed if other

noise sources are negligible, which is clearly the case in our measurements. Therefore, as

the bandwidth of noise measurement is increased only the thermal noise in the resonance

peak is “seen” by the DSFM detection unit. When other noise sources are not negligible, as

the bandwidth of the DSFM detection unit is increased (bw > ν/Q), the detection unit will

“see” this additional noise and the total noise will not saturate. Instead, it will continue

12



to increase with the square root dependence known from the literature[38]. If the technical

noise is appreciable, a total noise well above the theoretical value∆ath =
p
kT/c for thermal

noise can be experimentally observed since thermal and technical noise is measured.

Finally, figure 5 shows the noise of the frequency as a function of oscillation amplitude.

Two different regimes are recognized: a constant regime for low oscillation amplitude where

the total noise is independent of oscillation amplitude and a second regime where, as evi-

denced by the slope m = −1 in the log (noise) vs. log (aos) plot, the noise decreases with
the inverse of the oscillation amplitude. The transition range of this graph corresponds to

an oscillation amplitude
p
kT/c ' 100pm, in good agreement with the value for the thermal

oscillation amplitude obtained from the frequency noise measurement shown in figure 4.

VI. SUMMARY

In the present work we have revised DSFM frequency detection and have analyzed how

the thermal fluctuation of the cantilever is processed by a DSFM detection electronics. We

find a general relation for the frequency noise as a function of a bandwidth and oscillation

amplitude. This relation is correct for all possible values of parameters, while the relation

known so far from the literature is only correct for a particular range. We find that for

sufficiently large bandwidth -that is, small time constants of the DSFM detection electronics-

essentially all the thermal noise of the cantilever is measured. In this case the width of the

resonance peak is the characteristic noise of any DSFM frequency measurement for small

oscillation amplitude. For larger oscillation amplitude the noise decreases linearly with the

oscillation amplitude. In the large amplitude and (very) low bandwidth limit our general

relation converges within a constant factor, to the relation known from the literature.

We are convinced that the results presented in this work are relevant for the precise

determination of the ultimate limits of DSFM. In particular, our general relation shows that

for small oscillation amplitudes the frequency noise does not diverge, but rather converges

towards a finite value. Therefore, small oscillation DSFM might be much more competitive

than considered up to now. DSFM without external oscillation, that is, driven by thermal

noise, might be possible not only for the measurement of tip-sample interaction, but also

for imaging applications. Since many high precision measurements SFM measurements -in

particular in the field of Electrostatic and Magnetic Force Microscopy- are ultimately based

13



on frequency measurements we believe that the present work will also improve understanding

and optimization of these related SFM techniques and shed light on the ultimate limit of

Scanning Force Microscopy in different important applications.
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VIII. APPENDICES

A. Appendix A

In the harmonic approximation, the fundamental equation describing the dynamics of a

SFM-system is that of the forced harmonic oscillator, m ä(t) + γ ȧ(t) + c a(t) = F (t),

where c is the force constant of the system, m its (effective) mass, γ the constant describing

the damping in the system and F (t) the external force driving the oscillator. With the

definitions ω0 = (c/m)1/2, Q−1 = γ/(mω0) = ω0γ/c, and assuming a harmonic driving force

F (t) = m a0ω
2
0 cos(ωt) = m a0ω

2
0 Re(e

iωt) , where a0 is a displacement determined by a

static force (a0 = F0/c), this equation is transformed into

ä(t) + (ω0/Q) ȧ(t) + ω20a(t) = a0ω
2
0 cos(ωt)

Note that, in order to avoid recurrent 2π factors the angular frequency ω = 2πν will be

used here instead of the frequency ν as in the main text. For the steady state motion this

equation can be solved algebraically with the classical ansatz a(t) = Re {A(ω)eiωt}:

Re
©−ω2A(ω) eiωt + (ω0/Q) iωA(ω) eiωt + ω20 A(ω) e

iωt
ª
= Re

©
a0ω

2
0e

iωt
ª
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from which the complex amplitude A(ω) is determined as

A(ω) =
a0

1− (ω/ω0)2 + i(ω/ω0)/Q
(17)

A dimensionless (but complex) mechanical gain

G(ω) =
1

1− (ω/ω0)2 + i(ω/ω0)/Q
(18)

can be defined so that A(ω) = a0G(ω). For the discussion that will follow, it is more

convenient to describe the complex amplitude A(ω) in Cartesian coordinates:

X(ω) = a0
1− (ω/ω0)2

(1− (ω/ω0)2)2 + ((ω/ω0)/Q)2
(19)

Y (ω) = a0
(ω/ω0)/Q

(1− (ω/ω0)2)2 + ((ω/ω0)/Q)2
(20)

whereX(ω) and Y (ω) are the in-phase and out of phase components of the oscillation. Then

the complex amplitude is A(ω) = X(ω) − iY (ω) and the time response to the excitation

a0ω
2
0 cos(ωt) is a(t) = X(ω) cos(ωt) + Y (ω) sin(ωt) = |A(ω)| cos (ωt+ ϕ(ω)) with a phase

ϕ(ω). This phase describes the delay between the excitation and the response,

ϕ(ω) = − tan−1
µ
Y (ω)

X(ω)

¶
= −π/2 + tan−1

µ
X(ω)

Y (ω)

¶
(21)

As described in the main text, to experimentally determine state of a harmonic oscillator,

the measured deflection a(t) is multiplied with two reference signals cos (ωrt) and sin (ωrt)

to obtain two quadrature signals

xq(t) = a(t) cos (ωrt) =
X(ω)

2
(cos(ω∆t) + cos(ωΣt)) +

Y (ω

2
(sin(ω∆t) + sin(ωΣt))

yq(t) = a(t) sin (ωrt) =
X(ω)

2
(− sin(ω∆t) + sin(ωΣt)) +

Y (ω)

2
(cos(ω∆t)− cos(ωΣt))

with ω∆ = ω − ωr and ωΣ = ω + ωr. With the definitions

M∆(t) =
1

2

 cos(ω∆t) sin(ω∆t)

− sin(ω∆t) cos(ω∆t)

 andMΣ(t) =
1

2

 cos(ωΣt) sin(ωΣt)

sin(ωΣt) − cos(ωΣt)


the output of the two multiplication stages can be written in matrix notation as

{xq(t), yq(t)} = (M∆(t) +MΣ(t)) {X(ω), Y (ω)}. The corresponding time evolution can
thus be decomposed into one vector rotating clockwise with the frequency ω∆ and another

one rotating counter-clockwise with the frequency ωΣ. After the multiplication stage the
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two quadrature signals xq(t) and yq(t) are low-pass filtered. For a simple first order low pass

the corresponding time domain signals are

hxq(t)iτ ≡
1

τ

Z 0

−∞
dξ xq(t− ξ) eξ/τ (22)

=
X(ω)

2

cos(ω∆t)− ω∆ τ sin(ω∆ t)

(1 + ω2∆τ
2)

+
Y (ω)

2

sin(ω∆t) + ω∆ τ cos(ω∆ t)

(1 + ω2∆τ
2)

+
X(ω)

2

cos(ωΣt)− ωΣ τ sin(ωΣ t)

(1 + ω2Στ
2)

+
Y (ω)

2

sin(ωΣt) + ωΣ τ cos(ωΣ t)

(1 + ω2Στ
2)

hyq(t)iτ ≡
1

τ

Z 0

−∞
dξ yq(t− ξ) eξ/τ (23)

=
X(ω)

2

− sin(ω∆t)− ω∆τ cos(ω∆ t)

(1 + ω2∆τ
2)

+
Y (ω)

2

cos(ω∆t)− ω∆ τ sin(ω∆ t)

(1 + ω2∆τ
2)

+
X(ω)

2

sin(ωΣt) + ωΣ τ cos(ωΣ t)

(1 + ω2Στ
2)

+
Y (ω)

2

− cos(ωΣt) + ωΣ τ sin(ωΣ t)

(1 + ω2Στ
2)

(24)

Again, two matrices

Mτ∆(t) =
1

2(1 + τ 2ω2∆)

 cos(ω∆t)− ω∆τ sin(ω∆t) sin(ω∆t) + ω∆τ cos(ω∆t)

− sin(ω∆t)− ω∆τ cos(ω∆t) cos(ω∆t)− ω∆τ sin(ω∆t)

 (25)

MτΣ(t) =
1

2(1 + τ 2ω2Σ)

 cos(ωΣt)− ωΣτ sin(ωΣt) sin(ωΣt) + ωΣτ cos(ωΣt)

sin(ωΣt) + ωΣτ cos(ωΣt) − cos(ωΣt) + ωΣτ sin(ωΣt)

 (26)

can be defined. The first matrix, Mτ∆(t), corresponds to a clockwise rotation with the

frequency ω∆ and a delay angle ϕ∆ = − tan (ω∆τ) while the second matrix, MτΣ(t),

corresponds to a counter-clockwise rotation with the frequency ωΣ and a delay angle

ϕΣ = +tan (ωΣτ).

B. Appendix B

For the calculation of the variation of the phase, we will assume that the variables x(t)

and y(t) are Gaussian variables. At resonance, as discussed above hx(t)iτ = 0 and hy(t)iτ =
Qaexc = aos, therefore their probability distributions are described by

px(x) =

s
1

πa2th
e−(x/ath)

2

py(y) =

s
1

πa2th
e−((y−aos)/ath)

2
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These distributions are normalized and have the standart deviation∆x = ∆y = ath/
√
2 =p

kT/(2c). To calculate the distribution of the phase, first its probability function has to

be calculated according to the general relation (see, for example, [39]),

pϕ(ϕ) =

ZZ
dx dy px(x) py(y) δ(ϕ− tan−1 (x/y))

which in our case leads to

=
1

πa2th

ZZ
dx dy e−(x/ath)

2

e−((y−aos)/ath)
2

δ(ϕ− tan−1 (x/y))

=
1

πa2th

ZZ
dϑrdr e−(r sin(ϑ)/ath)

2

e−((r cos(ϑ)−aos)/ath)
2

δ(ϕ− tan−1 (r sin (ϑ) /r cos (ϑ)))

=
1

πa2th

ZZ
dϑrdr e−(r

2−2r cos(ϑ)aos+a2os)/a2th) δ(ϕ− ϑ) =
1

πa2th
e−a

2
os sin

2(ϕ)/ath

∞Z
0

rdr e−(r−cos(ϕ)aos)
2/a2th)

=
1

πa2th
e−a

2
os sin

2(ϕ)/a2th

 ∞Z
0

dr (r − cos (ϕ) aos) e−(r−cos(ϕ)aos)2/a2th) + cos (ϕ) aos
∞Z
0

dr e−(r−cos(ϕ)aos)
2/a2th)


=

1

πa2th
e−a

2
os sin

2(ϕ)/a2th

µ
a2th
2

e− cos
2(ϕ)a2os/a

2
th) + cos (ϕ) aos

√
π

2
ath(1 + Erf[aos cos (ϕ) /ath])

¶
=
1

2π

µ
e−a

2
os/a

2
th +
√
π
aos
ath

e−a
2
os sin

2(ϕ)/a2th cos (ϕ)

µ
1 + Erf

·
aos
ath
cos (ϕ)

¸¶¶
(27)

where Erf[x] = 2/
√
π
R
dx e−x

2
is the normalized Error Function (Erf[∞] = 1). This prob-

ability distribution is plotted in the inset of figure 3 for the range of oscillation amplitudes

aos/ath = 0−2. For large oscillation amplitude aos >> ath the first term can be neglected, in

addition we can assume Erf[...] ' 1, and only very small angles contribute to the probability
amplitude (sin (ϕ) ' ϕ; cos (ϕ) ' 1) then, with ϕth ≡ ath/aos, we find

pϕ(ϕ) ' 1√
πϕth

e−ϕ
2/ϕ2th

which is a normalized Gaussian probability distribution of the angle ϕ with standart devi-

ation ∆ϕ = ϕth/
√
2 = ath/(

√
2aos), in agreement with the high excitation limit of eq. 13.

We note that the ratio ϕth ≡ ath/aos can be interpreted as the fluctuation of the phase due

to thermal variation ath/
√
2 of the x-component when the y-component of the oscillation

is fixed at aos (for aos >> ath thermal fluctuation of the y-component essentially gives no
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contribution to phase noise). For small oscillation amplitudes the second term in 27 is small

and we find, to first order in 1/ϕth,

pϕ(ϕ) ' 1

2π

µ
1 +

2
√
π

ϕth
cos (ϕ)

¶
The angle probability distribution therefore becomes non-Gaussian and ultimately uniform

(see inset of figure 3), as is expected for vanishing oscillation amplitude. The mean value

of this (normalised) angle distribution is ϕ = 0, and its square deviation (∆ϕ)2 = π2/3 −
2
√
πϕth. The correct phase error ∆ϕ (aos/ath) calculated from the probability distribution

27 is plotted in figure 3, together with the different approximations discussed in this work.

IX. FIGURE CAPTIONS

Figure 1

Schematic description of a typical lock-in type DSFM detection unit. The signal to be

analyzed by the DSFM detection is assumed to be centered around some frequency ν0. It

enters the detection unit at the input “in”, is amplified and usually high-pass filtered (for

simplicity the corresponding components are not shown) before being multiplied with two

reference signals in quadrature at a frequency νref . After this multiplication, the signal is

shifted to the frequencies ν0 − νref and ν0 + νref . The resulting signals are then low-pass

filtered to remove the higher frequency component (ν0 + νref), resulting in two averaged

signals hx(t)iτ and hy(t)iτ . For sufficiently small interaction hx(t)iτ is proportional to the
frequency shift and can be used to re-adjust the driving frequency of the VCO (or NCO)

by means of an appropriate feedback loop (PI-controller). The output of the PI-controller

used to adjust the excitation frequency is then proportional to the frequency shift δν(t).

Figure 2

Simple approximation of the noise density (black) for a thermally excited cantilever as

discussed in the main text together with the correct noise density (red). For large quality

factors, most of the noise is within the main peak at the resonance frequency.

Figure 3

Main graph: Thermal noise error of the phase as a function of the (relative) oscillation

amplitude aos/ath. The black, solid, thin line ending at ∆ϕ(0) = 1 corresponds to the rela-

tion obtained from the relation known in the literature, which diverges for small oscillation

18



amplitude. The black, dotted line corresponds to the relation ∆ϕth =
ph(tan−1(x/y))2i

(12), which is not correct at the singular point {x, y} = {0, 0}. The red, thick, solid line
shows the correct relation calculated from the probability distribution discussed in the ap-

pendix B (see inset and relation 27). Finally, the red, thin, dotted line corresponds to the

approximation ∆ϕth =
p
a2th/(2a

2
os + 3a

2
th/π

2) (relation 14), which has the correct low and

large amplitude limits.

Inset: Probability distributions pϕ(ϕ) for different (relative) oscillation amplitude aos/ath.

The probability distributions have been calculated for the range of oscillation amplitudes

aos/ath = 0 − 2. The probability distribution pϕ(ϕ) for aos/ath = 0 is flat while that for

aos/ath = 2 is essentially Gaussian and has the highest peak at ϕ = 0

Figure 4

Main graph: Spectral noise density of a 0.4N/m cantilever measured with a digital lock-in

amplifier. For this noise measurement, no external excitation was applied to the cantilever

and the motion of the cantilever was measured using the beam-deflection technique. The

larger (red) points correspond to experimental noise data, the solid line to a fit assuming a

constant offset and a Lorenz function (see main text) and the smaller (pink) points show the

error between this fit and the measured data points. Inset: Log-Log plot of the total noise

as a function of bandwidth for a noise measurement centered at the peak of the main noise

curve. For small bandwidth, the frequency noise shows the typical 1/aos behavior (slope -1

in the Log-Log plot). However, for high bandwidth (bw > ν0/Q, with Q quality factor) the

total noise saturates.

Figure 5

Frequency noise of the DSFM detection electronics measured as a function of oscillation

amplitude for two different bandwidths (50 Hz and 100 Hz). For this measurement, the same

cantilever as that used for the previous experiment was utilized (force constant of 0.4N/m).

The cantilever was excited by the DSFM electronics with the phase-locked loop enabled, and

the frequency output δν(t) was fed into a digital lock-in amplifier in order to determine the

total noise of the frequency measurement of the DSFM detection unit. For small oscillation

amplitude of the cantilever (aosci < ath, see main text), the frequency noise is independent

of oscillation amplitude. For large amplitude the noise decreases linearly (slope 1 in the
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log − log plot).
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X. FIGURES

Figure 1: Schematic description of a typical lock-in type DSFM detection unit. The

signal to be analyzed by the DSFM detection is assumed to be centered around some

frequency ν0. It enters the detection unit at the input “in”, is amplified and usually

high-pass filtered (for simplicity the corresponding components are not shown) before

being multiplied with two reference signals in quadrature at a frequency νref . After this

multiplication, the signal is shifted to the frequencies ν0 − νref and ν0 + νref . The

resulting signals are then low-pass filtered to remove the higher frequency component

(ν0 + νref), resulting in two averaged signals hx(t)iτ and hy(t)iτ . For sufficiently small
interaction hx(t)iτ is proportional to the frequency shift and can be used to re-adjust the
driving frequency of the VCO (or NCO) by means of an appropriate feedback loop

(PI-controller). The output of the PI-controller used to adjust the excitation frequency is

then proportional to the frequency shift δν(t).
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Figure 2: Simple approximation of the noise density (black) for a thermally

excited cantilever as discussed in the main text together with the correct

noise density (red). For large quality factors, most of the noise is within the

main peak at the resonance frequency.
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Figure 3: Main graph: Thermal noise error of the phase as a function of the (relative)

oscillation amplitude aos/ath. The black, solid, thin line ending at ∆ϕ(0) = 1 corresponds

to the relation obtained from the relation known in the literature, which diverges for

small oscillation amplitude. The black, dotted line corresponds to the relation

∆ϕth =
ph(tan−1(x/y))2i (12), which is not correct at the singular point {x, y} = {0, 0}.

The red, thick, solid line shows the correct relation calculated from the probability

distribution discussed in the appendix B (see inset and relation 27). Finally, the red,

thin, dotted line corresponds to the approximation ∆ϕth =
p
a2th/(2a

2
os + 3a

2
th/π

2)

(relation 14), which has the correct low and large amplitude limits.

Inset: Probability distributions pϕ(ϕ) for different (relative) oscillation amplitude

aos/ath. The probability distributions have been calculated for the range of oscillation

amplitudes aos/ath = 0− 2. The probability distribution pϕ(ϕ) for aos/ath = 0 is flat

while that for aos/ath = 2 is essentially Gaussian and has the highest peak at ϕ = 0.
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Figure 4: Main graph: Spectral noise density of a 0.4N/m cantilever measured with a

digital lock-in amplifier. For this noise measurement, no external excitation was

applied to the cantilever and the motion of the cantilever was measured using the

beam-deflection technique. The larger (red) points correspond to experimental noise

data, the solid line to a fit assuming a constant offset and a Lorenz function (see main

text) and the smaller (pink) points show the error between this fit and the measured

data points. Inset: Log-Log plot of the total noise as a function of bandwidth for a

noise measurement centered at the peak of the main noise curve. For small

bandwidth, the frequency noise shows the typical 1/aos behavior (slope -1 in the

Log-Log plot). However, for high bandwidth (bw > ν0/Q, with Q quality factor) the

total noise saturates.
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Figure 5: Frequency noise of the DSFM detection electronics measured as a

function of oscillation amplitude for two different bandwidths (50 Hz and 100 Hz).

For this measurement, the same cantilever as that used for the previous experiment

was utilized (force constant of 0.4N/m). The cantilever was excited by the DSFM

electronics with the phase-locked loop enabled, and the frequency output δν(t) was

fed into a digital lock-in amplifier in order to determine the total noise of the

frequency measurement of the DSFM detection unit. For small oscillation

amplitude of the cantilever (aosci < ath, see main text), the frequency noise is

independent of oscillation amplitude. For large amplitude the noise decreases

linearly (slope 1 in the log − log plot).
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